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Definition

For X a metric space and scale r > 0, the
Vietoris—Rips simplicial complex VR(X; r) has
@ vertex set X

@ simplex {xp,...,xx} when diam({xp,...,xk}) <r.
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Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r small,
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Theorem (Chazal, de Silva, Oudot, 2013)

For X and Y totally bounded metric spaces,
d(PH(VR(X; ), PH(VR(Y; -))) < 2dan(X. ).




Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r small,
VR(M; r) ~ M.

Downsides of the proof:

e map VR(M; r) — M depends on the choice of a total
ordering of all points in M, and

@ the inclusion M — VR(M; r) is not continuous.




Let ST be the circle of unit circumference.

Theorem (Adamaszek, A)
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Let ST be the circle of unit circumference.
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Cech/nerve version is analogous! By contrast, VR™(S'; r) ~ S3,



The Vietoris—Rips simplicial complex may not be metrizable!

Metric space M ~ XCM ~ VR(X; r)



Definition

For X a metric space and r > 0, the Vietoris—Rips metric
thickening is

VR™(X; r) =
k
{Z)\ixi Ai > 0, Z/\i =1, x; € X, diam({xo, ..., xk}) < r},
i=0 i

equipped with the 1-Wasserstein metric.

Note VR™(X; r) is a metric r-thickening of X.



Definition

For X a metric space and r > 0, the Vietoris—Rips metric
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Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then
VR™(M; r) ~ M.
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Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then
VR™(M; r) ~ M.

Proof.
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We can now say something about the n-sphere S”

Theorem (Adamaszek, A, Frick)

mren sn r<r
VR™(S"; r) ~ {Z”“ SO(n+1) ‘

An+2 F=rfe.

SO(n 4+ 1) = group of orientation-preserving isometries of R™1.
An.2 = group of orientation-preserving symmetries of A™1.
re = diameter of inscribed regular (n 4+ 1)-simplex.
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@ VR™(S";r) and C"(S™; r) for larger r? Lovasz' strongly
self-dual polytopes

@ Other manifolds M?

@ VR (X;r) ~ VRZ(X;r)?

© Metric thickenings improve Hausmann's Theorem, but their
Latschev's and stability theorems restrict to X finite.

© Morse, Morse—Bott, and Bestvina—Brady Morse theories
@ Carathéodory and Barvinok—Novik orbitopes

@ Borsuk-Ulam and Gromov “waist of the sphere” theorems
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Theorem (Hausman, 1995)

Let M be a Riemannian manifold with r(M) > 0.
If0 < r < r(M), then VR(M; r) ~ M.

Let r(M) be the largest satisfying:
(a) If d(x,y) < 2r(M), then 3! shortest geodesic between x and y.

X

u

A

@ The n-sphere with great circle circumference 1 has r(S") = %.

@ r(M) > 0 if M has positive injectivity radius and bounded
sectional curvature (in particular if M compact).
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An.2 = group of orientation-preserving symmetries of A",
re = diameter of inscribed regular (n + 1)-simplex.
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Theorem (Borsuk—Ulam)

For f: S" — R", there exists a point x € S" with f(x) = f(—x).

Figure credit: Ji¥i Matousek, Using the Borsuk—Ulam theorem
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Theorem (Borsuk—Ulam)
For f: S" — R", there exists a point x € S" with f(x) = f(—x).

Theorem (Gromov's “waist” theorem)

For f: S" — R with k < n, there exists some y € R” with
vol, k(F~1(y)) > vol, x(S"k C s").
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Theorem (Borsuk-Ulam)
For f: S" — R", there exists a point x € S" with f(x) = f(—x).

Theorem (Gromov's “waist” theorem)

For f: S" — R with k < n, there exists some y € R” with
vol,,_k(f_l(y)) > vol,,_k(S"_k C S").
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Figure credit: Benjamin Matschke, Journal of Topology & Analysis
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k
at most 5 such that - \if (x;) = >° Aif (—xi).
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Theorem (Borsuk—Ulam)

For f: S" — R", there exists a point x € S" with f(x) = f(—x).

Theorem (A, Bush, Frick)

For f: S" — R™?2, there exists a set {xy,...,Xn12} of diameter
at most r, such that > \if(x;) = > A\if (—x;).

Proof: $72 “C " VR™(S";r,) L R7+2

rp is the side-length of an inscribed simplex



Theorem (A, Bush, Frick)

For f: S" — R"*2, there exists a point > Aix; of diameter at most
that of an inscribed simplex such that f(>_ \ix;) = f(D>_ Ai(—x;))-




