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Definition

For X a metric space and scale r > 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

simplex {x0, . . . , xk} when diam({x0, . . . , xk}) ≤ r .
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Definition

For X a metric space and scale r > 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

simplex {x0, . . . , xk} when diam({x0, . . . , xk}) ≤ r .
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Definition

For X a metric space and scale r > 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

simplex {x0, . . . , xk} when diam({x0, . . . , xk}) ≤ r .
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Definition

For X a metric space and scale r > 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

simplex {x0, . . . , xk} when diam({x0, . . . , xk}) ≤ r .
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Definition

For X a metric space and scale r > 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

simplex {x0, . . . , xk} when diam({x0, . . . , xk}) ≤ r .
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Definition

For X a metric space and scale r > 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

simplex {x0, . . . , xk} when diam({x0, . . . , xk}) ≤ r .



Definition

For X a metric space and scale r > 0, the
Vietoris–Rips simplicial complex VR(X ; r) has

vertex set X

simplex {x0, . . . , xk} when diam({x0, . . . , xk}) ≤ r .



Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r small,
VR(M; r) ' M.
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Theorem (Latschev, 2001)

For r small and dGH(X ,M) small (depending on r),

VR(X ; r) ' M.

Theorem (Chazal, de Silva, Oudot, 2013)

For X and Y totally bounded metric spaces,

d(PH(VR(X ;−)),PH(VR(Y ;−))) ≤ 2dGH(X ,Y ).



Theorem (Hausmann, 1995)

For M a compact Riemannian manifold and r small,
VR(M; r) ' M.

Downsides of the proof:

map VR(M; r)→ M depends on the choice of a total
ordering of all points in M, and

the inclusion M ↪→ VR(M; r) is not continuous.



Let S1 be the circle of unit circumference.

Theorem (Adamaszek, A)

VR(S1; r) '
{
S2k+1 if k

2k+1 < r < k+1
2k+3 for some k ∈ N.
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Čech/nerve version is analogous! By contrast, VRm(S1; r) ' S3.



The Vietoris–Rips simplicial complex may not be metrizable!

Metric space M  X ⊆ M  VR(X ; r)



Definition

For X a metric space and r > 0, the Vietoris–Rips metric
thickening is

VRm(X ; r) =
{

k∑

i=0

λixi

∣∣∣∣∣ λi ≥ 0,
∑

i

λi = 1, xi ∈ X , diam({x0, . . . , xk}) ≤ r

}
,

equipped with the 1-Wasserstein metric.
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Note VRm(X ; r) is a metric r -thickening of X .
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Theorem (Adamaszek, A, Frick)

If M is a Riemannian manifold and r is sufficiently small, then

VRm(M; r) ' M.
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i λiδxi 7→ Fréchet mean.
• f ◦ ι = idM , and ι ◦ f ' idVRm(M;r) via a linear homotopy.
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We can now say something about the n-sphere Sn

Theorem (Adamaszek, A, Frick)

VRm(Sn; r) '
{
Sn r < rc

Σn+1 SO(n+1)
An+2

r = rc .

SO(n + 1) = group of orientation-preserving isometries of Rn+1.
An+2 = group of orientation-preserving symmetries of ∆n+1.
rc = diameter of inscribed regular (n + 1)-simplex.

Theorem (Unpublished)

Č
m

(Sn; r) '
{
Sn r < 1

4

Σn+1 RPn r = 1
4 .



Open questions

1 VRm(Sn; r) and Č
m

(Sn; r) for larger r? Lovász’ strongly
self-dual polytopes

2 Other manifolds M?

3 VR<(X ; r) ' VRm
<(X ; r)?

4 Metric thickenings improve Hausmann’s Theorem, but their
Latschev’s and stability theorems restrict to X finite.

5 Morse, Morse–Bott, and Bestvina–Brady Morse theories

6 Carathéodory and Barvinok–Novik orbitopes

7 Borsuk–Ulam and Gromov “waist of the sphere” theorems
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6 Carathéodory and Barvinok–Novik orbitopes

7 Borsuk–Ulam and Gromov “waist of the sphere” theorems

Izydorek–Rybicki [IR92], Mramor-Kosta [MK95], Volovikov [Vol96], Koikara–Mukerjee [KM96],
Živaljević [Živ99], de Mattos–dos Santos [dMdS07], Crabb–Jaworowski [CJ09], Schick–Simon–
Spiecż–Toruńczyk [SSST11], Blagojević–M.–Ziegler [BMZ11] and [Mat11], and Singh [Sin11].

Main application. Gromov proved in [Gro03] the following version of the Borsuk–Ulam
theorem.

Theorem 1.2 (Gromov’s waist of the sphere theorem). Let f : Sn ! Rk be a continuous
map where n � k � 0.
Then there exists a point z 2 Rk such that for any " > 0,

voln

⇣
U"

�
f�1(z)

�⌘
� voln

⇣
U"

�
Sn�k

�⌘
.

Here, voln denotes the standard measure on Sn, U"(X) denotes the "-neighborhood of a set
X ✓ Sn with respect to the standard metric on Sn, and Sn�k is the (n � k)-dimensional
equator of Sn.

Memarian [Mem09] gave a more detailed proof of Gromov’s theorem. Karasev and
Volovikov [KV11] generalized it to maps f : Sn ! M of even degree from the n-sphere
to arbitrary k-manifolds M , see figure 1.

z

Sn

Mk

f

f�1(z)

Figure 1: Example of the Gromov–Memarian–Karasev–Volovikov theorem for n = 2 and
M = S1. In this example, f�1(z) is not a large preimage.

The main application of this paper is a parametrized version of this Gromov–Memarian–
Karasev–Volovikov theorem.

Theorem 1.3 (Parametrized Gromov–Memarian–Karasev–Volovikov waist of the sphere the-
orem). Let f : B ⇥ Sn ! E be a bundle map over B, where Sn ,! B ⇥ Sn ! B is the trivial

Sn bundle over B and M ,! E
p�! B is a fiber bundle over B whose fiber is a k-manifold M .

If n = k then we further assume that the fiber maps fb : Sn ! M have even degree at every
base point b 2 B.
Then there exist a subset Z ✓ E such that for all z 2 Z and " > 0,

voln

⇣
U"

�
f�1(z)

�⌘
� voln

⇣
U"

�
Sn�k

�⌘
, (1)

and such that Z is the set of limit points of a sequence of subsets Zi ✓ E with

(pE |Z)⇤ : H⇤(B; F2) ! H⇤(Zi; F2)

being injective. Here, voln is the standard measure on the fiber Sn over pE(z), U"(.) denotes
the "-neighborhood in that fiber, and H⇤ denotes Čech cohomology.

2

Figure Credit: B. Matschke, Journal of Topology & Analysis
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Theorem (Hausman, 1995)

Let M be a Riemannian manifold with r(M) > 0.
If 0 < r ≤ r(M), then VR(M; r) ' M.

Definition

Let r(M) be the largest satisfying:
(a) If d(x , y) < 2r(M), then ∃! shortest geodesic between x and y .

u

x

y
<r(M)

�0(s0)

�(s)�(0)

�0(0)

=

The n-sphere with great circle circumference 1 has r(Sn) = 1
4 .

r(M) > 0 if M has positive injectivity radius and bounded
sectional curvature (in particular if M compact).
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m

(Sn,Sn; r)

VRm(S1; 1
3) ' VRm(S1; 1

3 − ε) ∪ (D2 × S1)

' (S1 × D2) ∪S1×S1 (D2 × S1)

= S1 ∗ S1

= S3

SO(n + 1) = group of orientation-preserving isometries of Rn+1.
An+2 = group of orientation-preserving symmetries of ∆n+1.
rc = diameter of inscribed regular (n + 1)-simplex.
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Theorem (Borsuk–Ulam)

For f : Sn → Rn, there exists a point x ∈ Sn with f (x) = f (−x).

22 2. The Borsuk–Ulam Theorem

more demanding.) Next, in Section 2.4, we prove Tucker’s lemma differently,
introducing some of the most elementary notions of simplicial homology.

As for (3), we will examine various generalizations and strengthenings
later; much more can be found in Steinlein’s surveys [Ste85], [Ste93] and in
the sources he quotes.

Finally, as for applications (4), just wait and see.

2.1 The Borsuk–Ulam Theorem in Various Guises

One of the versions of the Borsuk–Ulam theorem, the one that is perhaps the
easiest to remember, states that for every continuous mapping f :Sn → Rn,
there exists a point x ∈ Sn such that f(x) = f(−x). Here is an illustration
for n = 2. Take a rubber ball, deflate and crumple it, and lay it flat:

Then there are two points on the surface of the ball that were diametrically
opposite (antipodal) and now are lying on top of one another!

Another popular interpretation, found in almost every textbook, says that
at any given time there are two antipodal places on Earth that have the same
temperature and, at the same time, identical air pressure (here n = 2).2

It is instructive to compare this with the Brouwer fixed point theorem,
which says that every continuous mapping f :Bn → Bn has a fixed point:
f(x) = x for some x ∈ Bn. The statement of the Borsuk–Ulam theorem
sounds similar (and actually, it easily implies the Brouwer theorem; see be-
low). But it involves an extra ingredient besides the topology of the considered

2 Although anyone who has ever touched a griddle-hot stove knows that the tem-
perature need not be continuous.
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Figure credit: Jǐŕı Matoušek, Using the Borsuk–Ulam theorem
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vol0(f −1(y)) ≥ vol0(S0 ⊆ Sn).

22 2. The Borsuk–Ulam Theorem

more demanding.) Next, in Section 2.4, we prove Tucker’s lemma differently,
introducing some of the most elementary notions of simplicial homology.

As for (3), we will examine various generalizations and strengthenings
later; much more can be found in Steinlein’s surveys [Ste85], [Ste93] and in
the sources he quotes.

Finally, as for applications (4), just wait and see.

2.1 The Borsuk–Ulam Theorem in Various Guises

One of the versions of the Borsuk–Ulam theorem, the one that is perhaps the
easiest to remember, states that for every continuous mapping f :Sn → Rn,
there exists a point x ∈ Sn such that f(x) = f(−x). Here is an illustration
for n = 2. Take a rubber ball, deflate and crumple it, and lay it flat:

Then there are two points on the surface of the ball that were diametrically
opposite (antipodal) and now are lying on top of one another!

Another popular interpretation, found in almost every textbook, says that
at any given time there are two antipodal places on Earth that have the same
temperature and, at the same time, identical air pressure (here n = 2).2

It is instructive to compare this with the Brouwer fixed point theorem,
which says that every continuous mapping f :Bn → Bn has a fixed point:
f(x) = x for some x ∈ Bn. The statement of the Borsuk–Ulam theorem
sounds similar (and actually, it easily implies the Brouwer theorem; see be-
low). But it involves an extra ingredient besides the topology of the considered

2 Although anyone who has ever touched a griddle-hot stove knows that the tem-
perature need not be continuous.
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For f : Sn → Rn, there exists a point x ∈ Sn with f (x) = f (−x).
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Izydorek–Rybicki [IR92], Mramor-Kosta [MK95], Volovikov [Vol96], Koikara–Mukerjee [KM96],
Živaljević [Živ99], de Mattos–dos Santos [dMdS07], Crabb–Jaworowski [CJ09], Schick–Simon–
Spiecż–Toruńczyk [SSST11], Blagojević–M.–Ziegler [BMZ11] and [Mat11], and Singh [Sin11].

Main application. Gromov proved in [Gro03] the following version of the Borsuk–Ulam
theorem.

Theorem 1.2 (Gromov’s waist of the sphere theorem). Let f : Sn ! Rk be a continuous
map where n � k � 0.
Then there exists a point z 2 Rk such that for any " > 0,

voln

⇣
U"

�
f�1(z)

�⌘
� voln

⇣
U"

�
Sn�k

�⌘
.

Here, voln denotes the standard measure on Sn, U"(X) denotes the "-neighborhood of a set
X ✓ Sn with respect to the standard metric on Sn, and Sn�k is the (n � k)-dimensional
equator of Sn.

Memarian [Mem09] gave a more detailed proof of Gromov’s theorem. Karasev and
Volovikov [KV11] generalized it to maps f : Sn ! M of even degree from the n-sphere
to arbitrary k-manifolds M , see figure 1.

z

Sn

Mk

f

f�1(z)

Figure 1: Example of the Gromov–Memarian–Karasev–Volovikov theorem for n = 2 and
M = S1. In this example, f�1(z) is not a large preimage.

The main application of this paper is a parametrized version of this Gromov–Memarian–
Karasev–Volovikov theorem.

Theorem 1.3 (Parametrized Gromov–Memarian–Karasev–Volovikov waist of the sphere the-
orem). Let f : B ⇥ Sn ! E be a bundle map over B, where Sn ,! B ⇥ Sn ! B is the trivial

Sn bundle over B and M ,! E
p�! B is a fiber bundle over B whose fiber is a k-manifold M .

If n = k then we further assume that the fiber maps fb : Sn ! M have even degree at every
base point b 2 B.
Then there exist a subset Z ✓ E such that for all z 2 Z and " > 0,

voln

⇣
U"

�
f�1(z)

�⌘
� voln

⇣
U"

�
Sn�k

�⌘
, (1)

and such that Z is the set of limit points of a sequence of subsets Zi ✓ E with

(pE |Z)⇤ : H⇤(B; F2) ! H⇤(Zi; F2)

being injective. Here, voln is the standard measure on the fiber Sn over pE(z), U"(.) denotes
the "-neighborhood in that fiber, and H⇤ denotes Čech cohomology.

2

Figure credit: Benjamin Matschke, Journal of Topology & Analysis



Theorem (Borsuk–Ulam)

For f : Sn → Rn, there exists a point x ∈ Sn with f (x) = f (−x).

Theorem (Gromov’s “waist” theorem)

For f : Sn → Rk with k ≤ n, there exists some y ∈ Rn with
voln−k(f −1(y)) ≥ voln−k(Sn−k ⊆ Sn).

What about f : Sn → Rk with k ≥ n?
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Theorem (Borsuk–Ulam)

For f : Sn → Rn, there exists a point x ∈ Sn with f (x) = f (−x).

Theorem (A, Bush, Frick)

For f : Sn → Rn+2, there exists a set {x0, . . . , xn+2} of diameter
at most rn such that

∑
λi f (xi ) =

∑
λi f (−xi ).

Proof: Sn+2 “ ⊆ ” VRm(Sn; rn)
f−→ Rn+2

rn is the side-length of an inscribed simplex



Theorem (A, Bush, Frick)

For f : Sn → Rn+2, there exists a point
∑
λixi of diameter at most

that of an inscribed simplex such that f (
∑
λixi ) = f (

∑
λi (−xi )).


