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Applied topology/Topological data analysis

Topological methods for the analysis of high dimensional
data sets and 3D object recognition - Singh et al.
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Barcodes: The persistent topology of data - Ghrist
On the local behavior of spaces of natrual images - Carisson et al.

» Topological techniques for applied problems

» Heavy emphasis on mathematical theory



Setting

My work...

> revolves around the theory of one-parameter persistent
homology

» builds on previous research on geometric constructions used in
persistent homology

» solves some preexisting problems and provides tools for future
research



Simplicial complexes
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Vietoris—Rips

“Connect points that are close”

» VR<(X;r)={o C X | o finite, diamo < r}




Background: Filtrations and persistence -—-+—+—-—-

One-parameter filtration: “spaces evolving over time"

XSS(‘.‘: XS — Xt

Apply H, to get the persistent homology module H,(X)



Barcodes

The “output” of persistent homology

The barcode of H,(X) records the lifetimes of homological
features:

Barcodes exist under reasonable conditions and are “stable” to
perturbations



Vietoris—Rips persistent homology
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Topology of simplicial complexes

» Standard coherent / colimit topology
» Classical metric topology (not used here)

» Metric thickening topology

All agree for finite simplicial complexes but can differ for infinite



Simplicial metric thickenings

» Metric reconstruction via optimal transport Adamaszek,
Adams, and Frick (2018)

If K is a simplicial complex with vertex set a metric space (X, d),

Km:{ZA,ax, ’ Ai>0foralli, » Ai=1, [xl,,..,x,,]GK},
i=1 i=1

equipped with the 1-Wasserstein metric

» Isometric embedding X — K™

» Vietoris—Rips metric thickenings: VR™(X; r)



Vietoris—Rips properties

Theorem (Hausmann / Adamaszek, Adams, and Frick)

For a closed Riemannian manifold M,
VR(M; r) ~ VR™(M; r) ~ M for small enough r.

Theorem (Equivalence of Vietoris—Rips persistent homology)

If X is a totally bounded metric space, then H,(VR(X)) and
Hn,(VR™(X)) have identical barcodes up to open vs. closed
endpoints.

Theorem (Gillespie)

The natural map VR (X;r) — VRZ(X; r) is a weak homotopy
equivalence.



Vietoris—Rips properties

“Close filtrations produce close barcodes”

Theorem (Stability of Vietoris—Rips persistent homology)
If X and Y are totally bounded metric spaces, then

di (bar(Hn(VR(X))),bar(H,,(VR(Y)))) < 2dgn(X,Y)

and

di (bar(H,,(VRm(X))),bar(H,,(VRm(Y)))) < 2dgn(X,Y)

Applies even in the case of spaces with infinitely many points.



VRE(SLr) O0O®® -

» Homotopy types of VR(S?; r): Adamaszek and Adams, 2015.

» Matching homotopy types of the metric thickenings
VRZ (SY; r): Vietoris-Rips Metric Thickenings of the Circle,
Journal of Applied and Computational Topology, 2023

Theorem

e (385 G, then VRE(SH 1) = 57041




Implications for persistence

P Interpretation of persistent homology in practice

> New techniques in persistent homology

Footprints of Geodesics in Persistent Homology — Virk



What measures are possible?
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Method outline

» Gather clusters

» Identify every measure with an odd polygonal measure while
preserving homotopy type



Technical properties

» Need properties of homotopies of simplicial metric thickenings
» Support homotopies

> Homotopy extension property

Extend classical ideas:
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Algebraic Topology — Hatcher
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The homotopy types
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> Result: a CW complex
» Induction to find homotopy types

— A O
Q&=



Barcodes of VRZ(S*)
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Anti-Vietoris—Rips

“Connect points that are far”

» AVR(X;r) ={o C X | o finite, spreado > r}
» Contravariant filtration
» AVR™(X; r): metric thickening topology

» Connections/applications to graph coloring



Graph coloring

» An n-coloring of G is the same as a homomorphism G — K,

> Replace K, with AVR(S?; 2%)

» Circular chromatic number: [xc] = x



> Again, collapse to regular polygonal measures to get a cell
complex

> Now we get n-gons for both even and odd n
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Gluing
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» First step: gluing in “diameters” produces Mobius strip M
» Degree two map S! — M ~ S!



Techniques for higher dimensions
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> Rely on degrees of attaching maps
» Third step uses homotopy group m,(S" VV §")

» Fourth step introduces a manifold and applies Mayer—Vietoris



Homotopy types

Theorem
Ifr € (5254, 50~ ], then AVRZ(SY; r) ~ §21.

Degree two maps = persistent homology depends on
characteristic of field
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