MTG 6346, Topology 1 Website: people. clas. ufl. edu/henry-adams/mtg6346-f2024 Syllabus (and office hours)

<u>Chapter O:</u> Geometric notions Cell complexes

<u>Chapter 2</u>: Homology Associates to each space X the abelian groups (or vector spaces) $H_k(X)$ measuring the k-dimensional holes. Hard to define, easy to compute.

Singular vs simplicial homology. Homology with different coefficients.

<u>Chapter 3:</u> Cohomology Associates to each space X a graded ring $H^*(X)$ measuring holes of all dimensions.

Hard to define, easy to compute.

<u>Chapter 4</u>: Homotopy groups Associates. to each space X the groups $T_{k}(X)$ measuring the k-dimensional holes. Easy to define, hard to compute.

A positive result is Whitehead's Theorem: If a (continuous) map $f: X \rightarrow Y$ between CW complexes induces isomorphisms $\pi_k(X) \longrightarrow \pi_k(Y)$ $\forall k$, then $X \simeq Y$.

<u>Chapter O:</u> Geometric notions Homotopy and homotopy type Maps $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are homeomorphisms if $gf = 1_X$, $fg = 1_Y$. Denoted $X \cong Y$, $X \approx Y$, or X = Y. Def The maps f, g are homotopy equivalences if $gf \cong 1_X$ and $fg \cong 1_Y$. We say X and Y are homotopy equivalent, denoted $X \simeq Y$. We still need to define homotopies between maps...

Let
$$A c X$$
. A retraction is a
map $r: X \rightarrow X$ with $r(X) = A$
and $r|_A = 1_A$.
So $r^2 = r$. (Analogous to projections)
In algebraic topology, surjections b/w spaces need not induce
surjections b/w groups, but retractions do.
A deformation retraction of X onto A is a
homotopy rel A from 1_X to a retraction $r: X \rightarrow A$.
I.E., a deformation retraction is $F: X \times I \rightarrow X$
with $f_o = 1_X$, $f_1(X) = A$, and $f_t|_A = 1_A$ $\forall t$.

Det For f: X -> Y, the mapping cylinder is the quotient space $M_{\varsigma} = (X \times I) \amalg Y$ $(x,1) \sim f(x) \quad \forall x \in X$ f(X) M_{f} Clearly Ms deformation retracts onto Y.
Corollary 0.21 shows if f is a homotopy equivalence, then Ms deformation retracts onto X×{03=X.
Hence if X=Y, then I a third space Z that deformation retracts onto X and Y (choose Z=Ms).

Question Can the Mobins band be written as a mapping cylinder?

Answer: Yes, with f a 2-to-1 map from the circle to itself.

Question Let ACX. If there is a retraction from X onto A, then is there a deformation retraction from X onto A?

Answer: Not in general. A deformation retraction is a homotopy equivalence but a retraction need not be.

Question Does Bing's house with two rooms deformation retract onto a point? Answer: Yes, but it is not easy.

<u>Cell complexes</u> Closed n-disk $D^n = \{x \in \mathbb{R}^n \mid |x| \le 1\}$. Boundary (n-1)-sphere $S^{n-1} = \partial D^n = \{x \in \mathbb{R}^n \mid |x|=1\}$. (Open) n-cell $e^n = D^n \setminus \partial D^n$. (Note $e^{\circ} = D^{\circ} = pt$ since $\partial D^{\circ} = \phi$.) $\chi^2 = \chi$ <u>Def</u> A <u>CW complex</u> X is built by (1) Starting with a discrete set X°. (2) Inductively forming the n-skeleton X^n from X^{n-1} by attaching n-cells e_{α}^n via $\varphi_{\alpha}: S^{n-1} \to X^{n-1}$. As a set, $X^n = X^{n-1} \coprod_{\alpha} e_{\alpha}^n$ As a space, $X^n = (X^{n-1} \coprod_{\alpha} D^n_{\alpha}) / x \sim (\varrho_x(\alpha) \forall x \in \partial D^n_{\alpha}.$ (3) Let X= Un X". Give X the Weak topology: $A \subset X$ is open (resp. closed) in $X \Leftrightarrow A \cap X^n$ is open (resp. closed) in $X^n \forall n$. • A consequence is Closure-finiteness: the closure of each cell intersects only finitely many cells.

Ex 0.3 The sphere $S^n(n \ge 1)$ has a CW structure with a O-cell e° and an n-cell e° attached via $S^{n-1} \rightarrow e^2$. An alternate CW structure is two O-cells, $\subset \bigcirc_{\varsigma'} \subset$ two 1-cells, two 2-cells, ..., two n-cells. This allows us to define $S^{\infty} = U_n S^n$, which is contractible. (Rmk: HW1. Could use Whitehead's theorem, but don't.) Has a $\mathbb{Z}/2$ group action, whose orbit (quotient) space is: $\frac{E \times 0.4}{RP^n} = \begin{cases} \text{all lines through origin in } R^{n+1} \\ = (R^{n+1} \setminus \{\vec{D}\}) / v \sim \lambda v \text{ for } 0 \neq \lambda \in R \end{cases}$ $\mathbb{R}P^{2} = e^{\circ} \mathbb{R}P^{1} = e^{\circ} v e^{\circ} \mathbb{R}P^{2} = e^{\circ} v e^{\circ} v e^{2}$ RP° **R**P' It follows by induction that \mathbb{RP}^n has a CW structure $e^{\circ} \cup \dots \cup e^n$ with one i-cell $\forall i \leq n$. $= S^n / (v \sim -v)$

Ex 0.5 RP= Un RP

$$\begin{array}{c|c} \hline Operations & on spaces\\ \hline Let X,Y & be CW complexes and A(n+m)$$
-cell
e"xe" for each n-cell of X and m-cell of Y.
\hline Quebient X/A has CW structure with one cell for each
cell of XA, plus a O-cell (for A).
For example, the quotient of a surface by its 1-skeleton is S².
 $\hline Wledge sum X*Y$
For example, X"/X" = VaS², with
one n-sphere for each n-cell of X.
 $\hline Cone CX = [X \times I]/(X \times S13)$
 $CX is contractible.$
 $\hline CX$

Two criteria for homotopy equivalence <u>Collapsing subspaces</u>: If (X, A) is a CW pair consisting of a CW complex X and a contractible subcomplex A, then the quotient map $X \rightarrow X/A$ is a homotopy equivalence. X/AX X/BX W

Attaching spaces Let X,Y be spaces and AcX. Let S: A -> Y be a map. The attaching space (or adjunction space) is the quotient $Y v_s X = (X \amalg Y) / a \sim f(a)$ $\forall a \in A$. Fact If (X,A) is a CW pair and $f,g:A \rightarrow Y$ are homotopic, then $Yv_{f}X \simeq Yv_{g}X$. We are skipping the section on the homotopy extension property, though this important property is how many facts in Chapter O are proven. W