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Administrative

See the course syllabus and webpage .

Overview of course topics .

What is topology ?
What is point-set topology ?
What is algebraic topology ?

Who are the students in our class ?
What are your reasons for enrolling ?
Which graduate students may take

the first year exam ?

Book : "Topology" by James Muntres
,
2nd Edition

.

I will be reading it
; please do the same .

Thanks to Peter Bubenik
,
whose notes were

extremely helpful when preparing my notes :



Chapter 1 : Set theory and Logic .

Section 1 : Sets
Well do a "naive" but accurate treatment of sets

..

Set A
Element acA

Subset B < A (equivalently BIA)
Proper subset BIA

A set can be an element of another set
A c it = collection

Power Set PLA) is the set of all subsets of A
.

I Can't consider the set of all sets Iinstead the class of all sets
.

Cartesian product

A = B = G(a ,
b))azA

,
b = B3

Formally
,

(a
,
b) = [5a3

,
Ea,b3



Section 2 : Functions

A function fix ->X is a subset of XxX with

each Nex appearing exactly once as the first

coordinate of an ordered pair in this subset
.

M

# S: R- R Wx + x !

\(x ,
x+ 1) -R = IR3

Formally , g
:ReRt is a different function,

where
x +(x2) R+

= 3xeR(x03 .



Section 3 : Relations

Def A relation on a set A is a subset CcA*A
.

If (x, g) = C
,

we write eCy and say
"W is related to y" or

" is in the relation (to y" -

An equivalence relation ~ CANA is a relation satisfying
4) x x Creflexive)
(2) x-y =>

yea (symmetric) 8(3) x vy , yez = 2 2 z (transitive) ↓
-

Equivalence classes form a partition of A

↑
disjant nonempty sets whose union is A

An order relation = a ArA is a relation satisfying
(1) Either xey or yex
(2) x=y and ye x => x =

y I order(3) Ey and y
= z => x= z I

Munkres uses < as the primary symbol ,
where wey when Ey and x + y ,

Ex (R
,
=)

Ex C
, =) with the lexicograph ored

.

InarTa
, b) = (c ,d) > azz or



Section 4 : Integers and real numbers

Def A binary operation on a set A is a

function 5 : AxA -> A .

There is a set of real numbers R with binary
operations I ⑧ and a linear order

satisfying a list of axioms .

(Munkres assumes IR exists)

Integers 1 = 2 ....
-2

,
-1

,
0

,
1
,

2
,...

3
Positive integers It
Nonnegative integers & I0

Def A set ACRR is inductive if ICA
,

and if NEA => x+ C A
.

Induction principle If ACI+ is inductive
,
then A: It

.

Muntres uses the Inductive Principle to prove
:

Well-ordering property Every nonempty subset of

It has a smallest element
.

I 2 345 6
. ⑧ . ⑧ ⑧ ⑧ ⑧ -

I I >



For neL+
,

let Sn be the section

Sn = 31 ,

2
, ..., n -13 .

So Sn+1
= 3 1 ,

2
,

. .

.,
n3

,
and S1 = %= 33 .

Strong induction principle Let A <It
,

and

suppose Sn A implies n=A for all next .

Then A = +
·

PS (using well-ordering) If A c1+
,

then let n be
the smallest integer in 1+- AFO (by well-ordering) .

So SnCA
,

which implies =A , a contradiction
.

O

A = +

I 4 5 6 7 8 9 10 11 12

-. ⑧ ⑧ ⑧ ⑧ ⑳ ⑧ ⑧ -
T

- W

%
.

n is the smallest

element not in A
.

S Sn <A .

By assumption on A
,
this

implies =A
,

a contradiction .



Section 5 : Cartesian products

Main point : Define the notation [ArBoz5
,
which is

not a collection of sets since we allow repeats .

Let An indexed family of sets [A03025 consists of
- a nonempty collection of sets t
-

an indexing set 5
- a surjective function 5 : 5 -> A

.

(for =5
,

let f(0) = Ar)

We may have Ar= Ap for &#B .

Def E Ar = Ez retr for some -53
Note this equals
Since f is surjective .

EAA = GA/AEA for some ACA3

Def - Ar= ExAEA:
for all 0253 ,

which equals AGAA Since I is surjective.



The two most important examples are when the

index set is 5 = 21, 2, ..., m3 or 5= &x ·

J = 21 ,
2

,
.

.

.,
m3

An metuple on a sat X is a function 31, ...,m} -> X
,

denoted (2 , ..., xm) with vieX.

Let EA .. .... Am be a family of sets indexed by 31
,...,my ·

Let X = WEA : = An W
...

~
Am .

The cartesian product I , Ai = A
,

x
...

Am is

Em-tuples (2 , ...,
zm) of X 1 Wit An Fi .

Ex Rm Ex S'x 50
, 134IiS a Cylinder

5 = x +

An infinite sequence or co-tuple is a function &+
+ X

,

denoted (2 , x2
,
000) with WieX.

Let EA
,

Az
,
...

3 be a family of sets indexed by It .

tret resion
.

" Protect Tie An is

Ew-tuples (e, x2
,

.. ) of X 1 Wit An Fi .

Ex R



$5 Ex 3 Let A = A
, xAz *... and B = B

,
= Be =...

(a) Show if BiCA :
Fi

,

then BCA
.

(b) Show the converse holds if B is nonempty.

Let (b , bz
,
... ) - B

.
Fix it I

+ and suppose XeB:.L Note (bi
,
bz

, ...,
bi

,
~

,
bit

,
... ) EBCA . SHence We Ai

,
and so Bi C An

(2) Show that if A is nonempty, then each A: is nonemptyo
Does the converse hold ? laxiom of countable choice)

(d) How does ArB relate to i: (AirBiS ?

How does AdB relate to Hi (AirBiS ?



Section 6 : Finite Sets

Def A set A is finite if there is a bijection
5 : A = 51,..., n3 for nex

,

"A has cardinality n

11

or if A is empty "A has cardinality O
"

Goal : Show the cardinality of a finite set is unique .

Lemma Let A be finite and do CA .

Then 55 : A = [1 , . .

.,
n + 13 5g : A - Eao Es [1 , ...,

43
.

Theorem Suppose S : A =11 , ..., n3 and BIA .

Then A g : B => [1, . . ., n3 ·

C Book also proves : 7And if B=0
,

5 h : B => [1
,

. .

., m3 for some min.

# Let 2CX+ be the set of all n for which
the theorem is true .

We will show C is inductive.

If n = 1
,
then B = 0

,
and 5 g : & E> SB .

If theorem is true for
,
we'll show true for ntl

Let 5 : A = 31 , . .

., n +13 ,
let B = A .

If B = 0
,

same as before
.

If B = 0
,

choose doEB and a
,
EA-B

.

Apply lemma to get A-Sao => E1
, ..., n3 .

Note B-Ear3 = A-9903 (consider a . ) .

Since the theorem is true for n
, Ag : B-Ear = 91

,
. .

.,
n3

.

By lemma
,
I bijection BE 031

, . ..,
n+13 -

↳



Corollary 1 If A is finite
,
there is no bijection

of A with a proper subset of itself
.

15 A = >B
-

=s -

gof" would contradict Theorem
.

El, ..., n3

Corollary 2 The cardinality of a finite set A is unique.

If For men
, suppose we had bijections

A E -El
, .

.

., nf
T

=13 E

gof" would contradict Corollary 1 .

El
,

. . .

,
m}

Corollary 3 It is not finite .

5 : 1+

-> I+ - E13 is a bijection of + with
n n + 1 a proper subset .

From now on
,
we'l freely use basic facts about

finite sets
,
such as :

Corollary 4 Set A+ O is finite
5) I surjection 31, ...,n3-7A for some ne4+ A

Es 5 injection A -21
, ..., R3 for some me It .



Section 7 : Countable and uncountable sets

Le5 A set A is

· infinite if it is not finite
· countably infinite if I bijection A => &+
· countable if it is finite or countably infinite
· uncountable if it is not countable

.

Ex I is countably infinite .

7It 1234568 0 a y
Zi 2i+ 1

= ↓ 5 I I I I I I I I I I
R 0 I - 12 -23-34 ...

i -

i

Lemma If (C It is infinite
,

then C is countably infinite .

If Define S : L +
=> C

,

Let S(1) = smallest element of C
.

If f(1) , . .

.,
f(n-1) have been defined

,

then let 5 (n) = smallest element of C-Ef(), ...,
f (n-1)3 .

This is called a recursive definition
.

Must do things "in order" :

certainly can't define f(n)= smallest element of (-38(1), . .

.,
f(n)3

.

5 injective : For men
,
note (-[fCD) , ..., f(n-1)3 contains

f(n) but not 5(m) .

So S(m) = 5(n)
.



f subjective : Let ceC
.

Note F(1+) = 31, . . ., c3 Since 5 injective .

Hence Inc I+ with f(n) = <

Let me It be the smallest integer with f(m) =
c

.

So Fiem
,
f(i)ec => (4[f() ,

. .

., f(m-1))
=> f(m) =

< by def of 5
.

Hence f(m) =

c
,

as desired
.

E

Thm For BF0
,
the following are equivalent :

(1) B is countable

(2) 5 surjection f : R + B
13) 5 injection : B2 It .

If (1) = (2) B countably infinite 75 :

+
E)B v

B finite [1,
. . ., n3- B ~

Ex-

(2) = (3) Given f:+-> B
,
define giB ->+ by

Note g9 ,

(b) emallest element, i empti sincecrits
(3) = (1)

g
: B 2 I + image (B) finite /

↳ i image (B) infinite - apply last lemmadE

image(B)
· Ent2+ :

n= g(b) for some beB3



Corollary &+
= I t is countable

.

P Define 5 : 2
+

+ &
=

2 I+
(n

,
m) 1 2 .3

Note 5 is injective by the uniqueness of prime factorizations .

Thi A finite product of countable sets is countable

$5 Proceed by induction .

Thm E0, 13 is uncountable ISe,thecountableproduct easietable)

PS Recall an element of 50
,
13" is an infinite tuple

(X , x2
,

x3
,

... ) with X :
= 50

, 13 .

We show
any 9

: +-> 30, 13" is not subjective .

g(I) = (Xn. X12
, X13

,
X14

,
can
I

g(z) = (Xn
,

X22
,

X23
, X2Y

,
...

S

g(3) = (Xx)
,

x32
, x32

,
x34.... I

g(4) = (x41
,

x42
,

x43
,

x44.... )

Define y = (y
, y, 93 , - . ) = [0, 13 N by yi =Es d

.

Note
y is not in the image of g .

Fact R is uncountable
.

Muntres : decimal expanison proof unsatisfying.ILater proof using order properties.

7



For A a set
,
recall the power set P(A) is the set

of all subsets of A .

Thm P(1+) is uncountable
.

This follows from the following stronger theorem :

# For A a set
,

* a surjection : A -P(A)
and I an injection f

: P(A) 2 A

If Let g : A -> P(A) .

Let B = (a =A |a = A - g(a)3 .

If we had B= g(ao) for some doEA
,
we'd have

doeB E) are A-g(ar) -S ar EA-B
.

This is a contradiction
.

Hence g is not surjective.

I If If
:BrA

,
then define g

: A -B by letting Cg(a) = f - (a) for acim(5)
,

and defining o arbitrarily for a tim(5) .



Ex The set + of positive rationals is countable
.

(n
,
m) -mom/n

I+ + 2
+

- k +

*
I +

Thm A countable union of countable sets is countable
.

PI Let [AnBnes be an indexed family of countable sets

with J countable .

In
Get surjections It- An En

I2 +

-> 5

Define surjection &+ +
+ - Es An

(k ,
m) fg(n) (m)



Def Sets A
,
B have the same cardinality

if 5 bijection 5 : A EB
.

Cantor - Schroder - Bernstein Thm Sectio Ex 6)
If 5 injections f : A coB and giBcA ,

then A and B have the same cardinality.

Pf Assume WLOG A and B are disjoint .

For a A consider

· irb
, frantbstrate ..... rob, a. bt

I

4

Similarly for be B.

Three possibilities
: The sequence

4) stops at some b-r eB (B-stopper)
(2) Stops at some a - me A (A-stopper)
⑬3) Is bi-infinite or cyclic .

Since fig injective,
these sequences partition A H B

.

Define h :AEsB via

h(a) = f(a) if a is in A stopper seg.

h(2) = g- (a) if a is in B-stopper 198, ·leither works) if a is in bi-infrite/cyclic seg .



Sections 9-11

Perhaps the most commonly used axiomatic system for mathematics

is Zermelo-Frankel set theory
- ZFC with Axiom of Choice

- ZF without Axiom of Choice

#m In ZF
,
the following are equivalent :

· Axiou of Choice (59)
· Well-ordering theorem (S(0)
· Maximum principle (S(1)
· Zorn's lemma (51)



Section 10 : Well-ordered sets

DefA well-orderon a set A is

anorder relation est(total ordee
.. I a

Ex (I =

,
=) Y 4 d ↑

④ R R ② d

# (1 +
= X+

,

= lexicographic) * ↑ I D IE⑯ O & 9 C

& N D X d

Non-Ex ( ,
=)

Non-Ex (Rzo
, =) think (0, 1)

Non-Ex (T+)
*

= = 2+
= 1 +

+ X
-

x

..., lexicographic order
.

Indeed
,

consider the set of all sequences with a single entry
2 and all other entries 1 : 31

,
1
,

1
,

1
,

2
,

1
,

1
,

1
,

1
, ... )

Well-ordering theorem Every set has a well-ordering .

Proved by Zermelo in 1984
.

Startled mathematical community.

Nobody has constructed specific well-ordering on (11) *.
Proof uses Axiom of Choice

.



Section 9 : Axiom of Choice

Axiom of Choice Given a collection t of disjoint nonempty sets,
I a set C consisting of exactly one element from each set in A

.

(I .e, CMA ,
and I CuAl =

1

for each A < A
.)

What if the sets are not disjoint ?

Def A choice function on a collection B of nonempty
sets is a function f : B- U B

Be B

such that f(B)=B
,

for all Be B
.

Consequence of For any collection of nonempty sets
,

Axiom of Choice there exists a choice function .



Section II : Maximum principle and Zorn's lemma

Def A partial order on a set S (poset)
satisfies
· a = a

· E
:

E?
Some pairs of elements may not be comparable

la Eb and b Ea is okay) ·

Ex Subsets of E1 ,
2

,
33 under inclusion .

[1 ,
2

,
33

[1 , 23 31
,
33 [2 , 33

[13 \2} 433

①
Def A chain is a totally ordered subset of a poset .

Ex & <[23 <E1 ,
2

, 33 is a chain
.

It is contained

in a maximal chain & >[2}<[2,23 <31 ,
2
,
33

,

for example.

Maximum principle In a poset, every chan is

contained in a maximal chain
.



Zorn's lemma Let A be a poset . If everychainlet ment
upper bound in A

,
then A

↑ ↑

u st
. CEU FC in chain m s

.
t

.
me a => m= a FaCA

Maximum principle implies Zorn's lemma

Let A be a poset . By the Maximum principle,
let BCA be a

maximal chain
. By the hypothesis to Zorn's lemma

,
let

UEA be an upper bound for B .
To see U is

maximal in A
,

note that if nev
,

then the chain

BuEuY would contradict the maximality of B .

#m In ZF
,
the following are equivalent :

· Axiou of Choice (59)
· Well-ordering theorem (S(0)
· Maximum principle (S(1)
· Zorn's lemma (51)


