MTG 4302-5316
Introduction to Topology 1

Henry Adams
University of Florida

Administrative
See the course syllabus and webpage.
Overview of course topics.
What is topology?
What is point -set topology?
What is algebraic topology?
Who are the students in our class?
What are your reasons for enrolling?
Which graduate students may take the first year exam?
Book: "Topology" by James Munkres, 2nd Edition. I will be reading it; please do the same.

Thunks to Peter Bubenik, whose notes were extremely helpful when preparing my notes!

Chapter 1: Set Theory and Logic
Section 1: Sets
Well do a "naive" but accurate treatment of sets.
Set A
Element $a \in A$
Subset $B \subset A$ (equivalently $B \subseteq A$)
Proper subset $B \nsubseteq A$
A set can be an element of another set $A \in A \leftarrow$ collection
Power set $P(A)$ is the set of all subsets of A.
$\binom{$ Can't consider the set of all sets, }{ instead the class of all sets. }
Cartesian product

$$
\begin{aligned}
& A \times B=\{(a, b) \mid a \in A, b \in B\} \\
& \text { Formally, }(a, b)=\{\{a\},\{a, b\}\}
\end{aligned}
$$

Section 2: Functions
A function $f: X \rightarrow Y$ is a subset of $X \times Y$ with each $x \in X$ appearing exactly once as the first coordinate of an ordered pair in this subset.

Ex $\quad f: \mathbb{R} \rightarrow \mathbb{R}$

$$
\begin{aligned}
x & \mapsto x^{2}+1 \\
\left\{\left(x, x^{2}+1\right)\right. & \in \mathbb{R} \times \mathbb{R}\}
\end{aligned}
$$

Formally, $g: \mathbb{R} \rightarrow \mathbb{R}_{+}$is a different function, where

$$
x \longmapsto x^{2}+1 \quad \mathbb{R}_{+}=\{x \in \mathbb{R} \mid x>0\} .
$$

Section 3: Relations
Def A relation on a set A is a subset $C \subset A \times A$.
If $(x, y) \in C$, we write $x C_{y}$ and say " x is related to y " or
" x is in the relation C to y ".
An equivalence relation $\sim C A \times A$ is a relation satisfying
(1) $x \sim x$ (reflexive)
(2) $x \sim y \Rightarrow y \sim x$ (symmetric)
(3) $x \sim y, y \sim z \Rightarrow x \sim z \quad$ (transitive)

Equivalence classes form a partition of A disjoint nonempty sets whose union is A

An order relation $\leq c A \times A$ is a relation satisfying
(1) Either $x \leq y$ or $y \leq x$
(2) $x \leq y$ and $y \leq x \Rightarrow x=y$
(3) $x \leq y$ and $y \leq z \Rightarrow x \leq z$

Munkers uses < as the primary symbol, where $x<y$ when $x \leq y$ and $x \neq y$.
Ex (\mathbb{R}, \leq)
Ex $\left(\mathbb{R}^{\prime}, \leq\right)$ with the lexicographic order $(a, b) \leq(c, d) \Leftrightarrow a<c$ or $a=c$ and $b \leq d$.

Section 4: Integers and real numbers
Def A binary operation on a set A is a function $f: A \times A \rightarrow A$.

There is a set of real numbers \mathbb{R} with binary operations,$+ \cdots$, and a linear order \leq satisfying a list of axioms.
(Munkres assumes \mathbb{R} exists.)
Integers $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
Positive integers \mathbb{Z}_{+}
Nonnegative integers $\mathbb{Z} \geq 0$
Def A set $A \subset \mathbb{R}$ is inductive if $\mid \in A$, and if $x \in A \Rightarrow x+1 \in A$.

Induction principle If $A \subset \mathbb{Z}_{+}$is inductive, then $A=\mathbb{Z}_{+}$.
Munkres uses the Inductive Prinuple to prove:
Well-ordering property Every nonempty subset of \mathbb{Z}_{+}has a smallest element.

For $n \in \mathbb{Z}_{+}$, let S_{n} be the section $S_{n}=\{1,2, \ldots, n-1\}$.

So $S_{n+1}=\{1,2, \ldots, n\}$, and $S_{1}=\varnothing=\{ \}$.
Strong induction principle Let $A \subset \mathbb{Z}_{+}$, and suppose $S_{n} \subset A$ implies $n \in A$ for all $n \in \mathbb{Z}_{+}$. Then $A=\mathbb{Z}_{+}$.

Pf (using well-ordering) If $A \nsubseteq \mathbb{Z}_{+}$, then let n be the smallest integer in $\mathbb{Z}_{+}-A \neq \varnothing$ (by well-ordering). So $S_{n} \subset A$, which implies $n \in A$, a contradiction.

$$
A \subsetneq \mathbb{Z}_{+}
$$

n is the smallest element not in A.

So $S_{n} \subset A$.
By assumption on A, this implies $n \in A$, a contradiction.

Section 5: Cartesian products
Main point: Define the notation $\left\{A_{\alpha}\right\}_{\alpha \in J}$, which is not a collection of sets since we allow repeats.

Def A_{n} indexed family of sets $\left\{A_{\alpha}\right\} \alpha \in J$ consists of - a nonempty collection of sets \mathcal{A}

- a_{n} indexing set J
- a surjective function $f: J \rightarrow A$.
$\left(\right.$ for $\alpha \in J$, let $\left.f(\alpha)=A_{\alpha}\right)$
We may have $A_{\alpha}=A_{\beta}$ for $\alpha \neq \beta$,
Def $\bigcup_{\alpha \in J} A_{\alpha}=\left\{x \mid x \in A_{\alpha}\right.$ for some $\left.\alpha \in J\right\}$
Note this equals $\bigcup_{A \in \mathcal{A}} A=\{x \mid x \in A$ for some $A \in A\}$ since f is surjective.
Def $\bigcap_{\alpha \in J} A_{\alpha}=\left\{x \mid x \in A_{\alpha}\right.$ for all $\left.\alpha \in J\right\}$, which equals $\bigcap_{A \in A} A$ since f is surjective.

The two most important examples are when the index set is $J=\{1,2, \ldots, m\}$ or $J=\mathbb{Z}_{+}$.

$$
J=\{1,2, \ldots, m\}
$$

An $\frac{m \text {-tuple }}{}$ on a set X is a function $\{1, \ldots, m\} \rightarrow X$, denoted $\left(x_{1}, \ldots, x_{m}\right)$ with $x_{i} \in X$.

Let $\left\{A_{1}, \ldots, A_{m}\right\}$ be a family of sets indexed by $\{1, \ldots, m\}$. Let $X=U_{i=1}^{m} A_{i}=A_{1} \cup \ldots \cup A_{m}$.
The cartesian product $\Pi_{i=1}^{m} A_{i}=A_{1} \times \ldots \times A_{m}$ is

$$
\left\{\text { m-tuples }\left(x_{1}, \ldots, x_{m}\right) \text { of } X \mid x_{i} \in A_{i} \quad \forall i\right\} \text {. }
$$

Ex \mathbb{R}^{m}
Ex $S^{1} \times[0,1]$
is a cylinder

$$
J=\mathbb{Z}+
$$

An infinite sequence or ω-tuple is a function $\mathbb{Z}_{+} \rightarrow X$, denoted $\left(x_{1}, x_{2}, \ldots\right)$ with $x_{i} \in X$.

Let $\left\{A_{1}, A_{2}, \ldots\right\}$ be a family of sets indexed by \mathbb{Z}_{+}.
Let $X=U_{i \in \mathbb{R}^{+}} A_{i}$.
The cartesian product $\Pi_{i \in D^{+}} A_{i}$ is

$$
\left\{\omega \text {-tuples }\left(x_{1}, x_{2}, \ldots\right) \text { of } X \mid x_{i} \in A_{i} \forall i\right\} \text {. }
$$

Ex \mathbb{R}^{ω}

35 Ex 3 Let $A=A_{1} \times A_{2} \times \ldots$ and $B=B_{1} \times B_{2} \times \ldots$
(a) Show if $B_{i} \subset A_{i} \forall i$, then $B \subset A$.
(b) Show the converse holds if B is nonempty.
$\left(\begin{array}{l}\text { Let }\left(b_{1}, b_{2}, \ldots\right) \in B . \text { Fix } i \in \mathbb{R}_{+} \text {and suppose } x \in B_{i} . \\ \text { Note }\left(b_{1}, b_{2}, \ldots, b_{i-1}, x, b_{i+1}, \ldots\right) \in B \subset A . \\ \text { Hence } x \in A_{i}, \text { and so } B_{i} \subset A_{i}\end{array}\right)$
(c) Show that if A is nonempty, then each A_{i} is nonempty.
(d) Does the converse hold ?' (axiom of countable choice)
(d) How does $A \cup B$ relate to $\pi_{i}\left(A_{i} \cup B_{i}\right)$?

How does $A \cap B$ relate to $\pi_{i}\left(A_{i} \cap B_{i}\right)$?

Section 6: Finite sets
Def A set A is finite if there is a bijection $f: A \xrightarrow{\cong}\{1, \ldots, n\}$ for $n \in \mathbb{Z}_{+}, \quad$ "A has cardinality n " or if A is empty

Goal: Show the cardinality of a finite set is unique.
Lemma Let A be finite and $a_{0} \in A$.
Then $\exists f: A \xlongequal{\cong}\{1, \ldots, n+1\} \Longleftrightarrow \exists g: A \cdot\left\{a_{0}\right\} \cong \xlongequal{\cong}\{1, \ldots, n\}$.
Theorem Suppose $f: A \cong\{1, \ldots, n\}$ and $B \subseteq A$.
Then $\nexists \mathrm{g}: B \xrightarrow{\cong}\{1, \ldots, n\}$.
(Book also proves:
(And if $B \neq \varnothing, \exists \mathrm{h}: B \xrightarrow{\cong}\{1, \ldots, m\}$ for some $m<n_{0}$)
Pf Let $C \subset \mathbb{Z}_{+}$be the set of all n for which the theorem is true. We will show C is inductive.

If theorem is true for n, well show true for $n+1$.
Let $f: A \cong \cong 1, \ldots, n+1\}$, let $B \subset A$.
If $B=\phi$, same as before.
If $B \neq \phi$, choose $a_{0} \in B$ and $a_{1} \in A-B$.
Apply lemma to get $A-\left\{a_{0}\right\} \xrightarrow{\tilde{}}\{1, \ldots, n\}$.
Note $B-\left\{a_{0}\right\} \subseteq A-\left\{a_{0}\right\} \quad$ (consider a_{1}).
Since the theorem is true for $n, \nexists g: B-\left\{a_{0}\right\} \xrightarrow{\cong}\{1, \ldots, n\}$.
By lemma, \nexists bijection $B \stackrel{\cong}{\cong}\{1, \ldots, n+1\}$.

Corollary 1 If A is finite, there is no bijection of A with a proper subset of itself.

Pf

Corollary 2 The cardinality of a finite set A is unique.
Pf For $m<n$, suppose we had bijection

Corollary $3 \mathbb{Z}+$ is not finite.
$f: \mathbb{Z}_{+} \longrightarrow \mathbb{Z}_{+}-\{1\}$ is a bijection of \mathbb{Z}_{+}with $n \longmapsto n+1$ a proper subset.

From now on, well freely use basic facts about finite sets, such as:

Corollary 4 Set $A \neq \phi$ is finite
$\Leftrightarrow \exists$ surjection $\{1, \ldots, n\} \rightarrow A$ for some $n \in \mathbb{Z}_{+}$. $\Leftrightarrow \exists$ injection $A \longleftrightarrow\{1, \ldots, k\}$ for some $k \in \mathbb{Z}_{+}$.

Section 7: Countable and uncountable sets
Def A set A is

- infinite if it is not finite
- countably infinite if \exists bijection $A \xlongequal[\cong]{\cong} \mathbb{Z}+$
- countable if it is finite or countably infinite
- uncountable if it is not countable.

Ex \mathbb{Z} is countably in finite.

$$
\begin{array}{cccccccccccc}
\mathbb{Z}_{+} & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & \ldots & 2 i & 2_{i+1} \\
& I & I & I & I & I & I & I & I & & I & I \\
\mathbb{Z} & 0 & 1 & -1 & 2 & -2 & 3 & -3 & 4 & \ldots & i & -i
\end{array}
$$

Lemma If $c \subset \mathbb{Z}_{+}$is infinite, then C is countably infinite.

Pf Define $f: \mathbb{R}_{+} \xrightarrow{\cong} C$,
Let $f(1)=$ smallest element of C.
If $f(1), \ldots, f(n-1)$ have been defined,
then let $f(n)=$ smallest element of $C-\{f(1), \ldots, f(n-1)\}$.

This is called a recursive definition. Must do things "in order": certainly can't define $f(n)=$ smallest element of $c-\{f(1), \ldots, f(n)\}$.
f infective: For $m<n$, note $(-\{f(1), \ldots, f(n-1)\}$ contains $f(n)$ but not $f(m)$. So $f(m) \neq f(n)$.
f surjective: Let $c \in C$.
Note $f\left(\mathbb{I}_{+}\right) \nsubseteq\{1, \ldots, c\}$ since f injective.
Hence $\exists n \in \mathbb{Z}_{+}$with $f(n) \geq c$
Let $m \in \mathbb{Z}_{+}$be the smallest integer with $f(m) \geq c$.
So $\forall i<m, \quad f(i)<c \Rightarrow c \notin\{f(1), \ldots, f(m-1)\}$
$\Rightarrow f(m) \leq c$ by def n of f.
Hence $f(m)=c$, as desired.
Thm For $B \neq \phi$, the following are equivalent:
(1) B is countable
(2) \exists surjection $f: \mathbb{Z}+\rightarrow B$
(3) \exists injection $g: B \longleftrightarrow \mathbb{Z}_{+}$.

Pf $(1) \Rightarrow(2) \quad B$ countably infinite $\exists f: Z_{+} \xrightarrow{\cong} B \quad J$
B finite

$$
\{1, \ldots, n\} \xrightarrow{\cong} B
$$

$(2) \Rightarrow(3)$ Given $f: \mathbb{Z}_{+} \longrightarrow B$, define $g: B \longrightarrow \mathbb{Z}_{+}$by $g(b)=$ smallest element of $f^{-1}(b)$. (nonempty since f surjective) Note g is injective since $b \neq b^{\prime} \Rightarrow f^{-1}(b) \cap f^{-1}\left(b^{\prime}\right)=\phi \Rightarrow g(b) \neq g\left(b^{\prime}\right)$.

$$
\begin{aligned}
(3) \Rightarrow & (1) \\
g: B & \longrightarrow \mathbb{Z}_{+}+ \\
& \cong \underbrace{}_{\text {image }(B)}
\end{aligned}
$$

image (B) finite V
image (B) infinite - apply last lemma J

$$
\because\left\{n \in \mathbb{Z}_{+}: n=g(b) \text { for some } b \in B\right\}
$$

Corollary $\mathbb{Z}_{+} \times \mathbb{Z}_{+}$is countable.
Pf Define $f: \mathbb{Z}_{+} \times \mathbb{Z}_{+} \longrightarrow \mathbb{Z}_{+}$
$(n, m) \longmapsto 2^{n} \cdot 3^{m}$
Note f is injective by the uniqueness of prime factorizations.
The A finite product of countable sets is countable
Pf Proceed by induction.
Ihm $\{0,1\}^{\omega}$ is uncountable ($\left.\begin{array}{l}\text { so the countable product of countable } \\ \text { sets need not be countable. }\end{array}\right)$
Pf Recall an element of $\{0,1\}^{\omega}$ is an infinite tuple $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ with $x_{i} \in\{0,1\}$.

We show any $g: \mathbb{Z}_{+} \rightarrow\{0,1\}^{\omega}$ is not surjective.

$$
\begin{aligned}
& g(1)=\left(\begin{array}{llll}
x_{11}, & x_{12}, & x_{13}, & x_{14}, \ldots
\end{array}\right) \\
& g(2)=\left(\begin{array}{llll}
x_{21}, & x_{22}, & x_{23}, & x_{24}, \ldots
\end{array}\right) \\
& g(3)=\left(\begin{array}{llll}
x_{31}, & x_{32}, & x_{33}, & x_{34}, \ldots
\end{array}\right) \\
& g(4)=\left(\begin{array}{llll}
x_{41}, & x_{42}, & x_{43}, & x_{44}, \ldots
\end{array}\right)
\end{aligned}
$$

Define $y=\left(y_{1}, y_{2}, y_{3}, \ldots\right) \in\{0,1\}^{\omega}$ by $y_{i}= \begin{cases}0 & \text { if } x_{i i}=1 \\ 1 & \text { if } x_{i i}=0 .\end{cases}$
Note y is not in the image of g.
Fact \mathbb{R} is uncountable. (Mankres: decimal expanison proof unsatisfying.)

For A a set, recall the power set $P(A)$ is the set of all subsets of A.

Ihm $\mathcal{P}\left(\mathbb{Z}_{+}\right)$is uncountable.
This follows from the following stronger theorem:
The For A a set,
\nexists a surjection $g: A \longrightarrow P(A)$ and \nexists an injection $f: P(A) \hookrightarrow A$

Pf Let $g: A \rightarrow \rho(A)$.
Let $B=\{a \in A \mid a \in A-g(a)\}$.
If we had $B=g\left(a_{0}\right)$ for some $a_{0} \in A$, wed have $a_{0} \in B \Longleftrightarrow a_{0} \in A-g\left(a_{0}\right) \Longleftrightarrow a_{0} \in A-B$.
This is a contradiction.
Hence g is not surjective.
If $\exists f: B \longrightarrow A$, then define $g: A \longrightarrow B$ by letting $g(a)=f^{-1}(a)$ for $a \in \operatorname{im}(f)$, and defining g arbitrarily for $a \notin \operatorname{im}(f)$.

Ex The set \mathbb{Q}_{+}of positive rationals is countable.

Thy A countable union of countable sets is countable.
Pf Let $\left\{A_{n}\right\}_{n \in J}$ be an indexed family of countable sets with J countable.

Get surjection $\mathbb{Z}_{+} \xrightarrow{\mathbb{Z}_{+}} \xrightarrow{f_{n}} A_{n} \quad \forall n$
Define surjection $\mathbb{Z}_{+} \times \mathbb{Z}_{+}$

$$
(k, m) \longmapsto f_{g(k)}(m)
$$

Def Sets A, B have the same cardinality if \exists bijection $f: A \stackrel{\cong}{\cong} B$.

Cantor - Schroder - Bernstein Thm
If \exists injections $f: A \hookrightarrow B$ and $g: B \hookrightarrow A$, then A and B have the same cardinality.

Pf Assume WLOG A and B are disjoint.
For $a \in A$ consider

$$
\ldots \longmapsto b_{-3} \stackrel{g}{\longmapsto} a_{-2} \stackrel{f}{\longmapsto} b_{-1} \stackrel{g}{\longmapsto} a_{0} \stackrel{{ }^{\prime}}{\longmapsto} b_{1} \stackrel{g}{\longmapsto} a_{2} \stackrel{f}{\longmapsto} b_{3} \stackrel{g}{\longmapsto} a_{4} \stackrel{f}{\longrightarrow} \ldots
$$

Similarly for $b \in B$.
Three possibilities: The sequence
(1) Stops at some $b_{-k} \in B \quad$ (B-stopper)
(2) Stops at some $a_{-k} \in A \quad$ (A-stopper)
(3) Is bi-infinite or cyclic.

Since f, g injective, these sequences partition $A \Perp B$.
Define $h: A \xlongequal{\cong} B$ via
$h(a)=f(a)$ if a is in A-stopper seq. $h(a)=g^{-1}(a)$ if a is in B-stopper seq. (either works) if a is in bi-infinte/cyclic seq.

Sections 9-11
Perhaps the most commonly used axiomatic system for mathematics is Zermelo-Fränkel set theory

- ZFC with Axiom of Choice
- ZF without Axiom of Choice

Tho In ZF, the following are equivalent:

- Axiom of Choice ($\xi 9$)
- Well-ordering theorem ($\$ 10)$
- Maximum principle
- Zorn's lemma

Section 10: Well-ordered sets
Def A well-order on a set A is an order relation (total order) s.t, every nonempty subset of A has a smallest element.

Ex $\left(\mathbb{Z}_{x} \leq\right)$
Ex $\left(\mathbb{Z}_{+} \times \mathbb{Z}_{+}\right.$, lexicographic $)$

Non-Ex $\quad(z, \leq)$
Non-Ex $\left(\mathbb{R}_{\geq 0}, \leq\right) \quad$ think $(0,1)$
Non -Ex $\left(\mathbb{Z}_{+}\right)^{\omega}:=\mathbb{Z}_{+} \times \mathbb{Z}_{+} \times \mathbb{Z}_{+} \times \ldots$, lexicographic order. Indeed, consider the set of all sequences with a single entry 2 and all other entries 1: $(1,1,1,1,2,1,1,1,1, \ldots)$

Well-ordering theorem Every set has a well-ordering.
Proved by Zermelo in 1904.
Startled mathematical community.
Nobody has constructed specific well-ordering on $\left(\mathbb{D}_{t}\right)^{\omega}$.
Proof uses Axiom of Choice.

Section 9: Axiom of Choice
Axiom of Choice Given a collection \mathcal{A} of disjoint nonempty sets, \exists a set C consisting of exactly one element from each set in A.
(Ie., $C \subset \bigcup_{A \in A} A$, and $|C \cap A|=1$ for each $A \in A$.)
What if the sets are not disjoint?
Def A choice function on a collection B of nonempty sets is a function $f: B \longrightarrow \underset{B \in B}{\cup} B$ such that $f(B) \in B$, for all $B \in B$.

Consequence of
Axiom of Choice

For any collection of nonempty sets, there exists a choice function.

Section II: Maximum principle and Zorn's Emma
Def A partial order \leq on a set S (poset) Satisfies

- $a \leqslant a$
- $a \leq b, b \leq a \Longrightarrow a=b$
- $a \leq b, \quad b \leq c \Rightarrow a \leq c$

Some pairs of elements may not be comparable ($a \neq b$ and $b \neq a$ is okay).

Ex Subsets of $\{1,2,3\}$ under inclusion.

Def A chain is a totally ordered subset of a poset.
Ex $\phi \subset\{2\} \subset\{1,2,3\}$ is a chain. It is contained in a maximal chain $\phi \subset\{2\} \subset\{2,3\} \subset\{1,2,3\}$, for example.

Maximum principle In a poet, every chain is contained in a maximal chain.

Zorn's lemma Let A be a poset. If every chain in A has an upper bound in A, then A has a maximal element.
u s.t. $c \leq u \quad \forall c$ in chain
Maximum principle implies Zorn's lemma
Let A be a poset. By the Maximum principle, let $B \subset A$ be a maximal chain. By the hypothesis to Zorvis lemma, let $u \in A$ be an upper bound for B. To see u is maximal in A, note that if $u<v$, then the chain $B \cup\{v\}$ would contradict the maximality of B.

The In ZF, the following are equivalent:

- Axiom of Choice
- Well-ordering theorem
- Maximum principle
- Zorn's lemma

