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The idea What is the algebraic structure of loops B in the

complement of a single loop A ?

a+a = 2a

a- a = 0

RA=?



The idea What is the algebraic structure of loops B in the

complement of a single loop A ?

a+a = 2a

a- a = 0

#(A = S'vS2

# (S-S2)=



The idea What is the algebraic structure of loops Cin the

complement of two unlinked loops A and B ?

abab"#1

R3 \(AvB) =?



The idea What is the algebraic structure of loops Cin the

complement of two unlinked loops A and B ?

abab"#1

#\(AvB) = S:SiSigh

#
,
(SiSivS2S4) = Xa

, b)=*2



The idea What is the algebraic structure of loops Cin the

complement of two linked loops A and B ?

aba"b" = 1

#\(AvB) = torus -S2
# (torus ~ S2) = Xa

, blababy=* 2



Section 1
.

1 Basic constructions

A path is a map 5 : 1 + X

A homotopy of paths is a homotopy ftl-X rel50, 13 .

We sayfo and f. are homotopic ,
denoted fo f

,

or [fo] = [fi) since this is an equivalence relation
.

The product of paths f, g
:+X

with f(l) = g(o) is defined by
·

The product respects homotopy classes.



Path f :l+ X is a loop if flo)= ro = -(1) ·
The set of all homotopy classes of loops based at No ·is denotedT

,
(X

, ro).

Proposition 1
.
3 #T

,
(X

,
No) is a group with respect

to the product [f] · [g] = [f . g] ·

Pf See how Hatcher uses reparametrizations to prove associativity ,
identity.

(f . g) . h Inverses : F :I+X by 5(s)= f(l-s).
f

2xo = 2 f(0)

2 f(v/6)

2 f (2/6)

ef()(b)

2f(4(b)

s . 19 . h)
% +

f * E



The fundamental group of the circle
We prove I

.
(5)= & using covering spaces.

Def (page 56) A covering space of X is a space
together with a map p:-X such that

·· there is an open cover [Ur] of X S.
t

.
Vt,

p (Ud) is a disjoint union of open sets in X
each mapped homeomorphically ontoNo by p.

Def (page 60) A lift of a map 5 : -X
is a map 5 : V+ * with pF= f

.

F Up Un

Y=X



Prop 1
.

30 Given a covering space p : X-X,

(Fa homotopy ft : X-X
,
and a lift Fox-Y

offo
,
there exists a unique homotopy FtY+*

that lifts foo

Ex Y= pt = 503 (path lifting) Ex Y=I Chomotopy lifting)

& ↑
·E ·

Fo
7 ! Fo Lo ↑

Fo
7 ! Fo Lo

Y E C. X Y
·

E X
Pf idea Unique lifts over an open set exist by the homeomorphism property (. ).

Piecing these together takes a page in Hatcher.



Thm 1
.
7:-, (s) via #(n)= [rn]

,

where R
Wn(s)= (cos2ins

,
sinZins)

,
is an isomorphism.

LoPf Note Wn : IwIR via Wn(s)= ns

lifts Wn : It S' (since pin= Wn) · si

Note #(n)= [Wn] = [pi] = [pE) for any path F in IR -& I

from O to n (since F= W by a linear homotopy) .

It is a homomorphism It is injective fo fi

Let [milR->R translate [m(x)= m+N · Suppose E(m)= E(n), so him Win
.

Note Wm · (ImWn) is a path in IR from O to man By Prop 1
.30 Chomotopy lifting) 7 lift Ft :+R

.

So #(m+n) = [p (wmo([mWn))] = [Wm · Wn] = E (m) · I (n)
· NecessarilyFt(0)= 0 Xt and

-

Fx(l)= pet Xt
.

By uniqueness of path lifting ,
fo = Em and F

-
= Fin.

I is surjective Hence m = Em(1) = En (1) = n .

Let f: Its' be a loop based at(1, 0)
· ptzX

S = 1

By Prop 1 .
30 (path lifting) 7! lift F : ItR with F(0)= 0

.

Necessarily F.
(1)= n for some neI

, giving(n) = [p)= [f) .

Wm Wn < R
S= 0

t=0
0

+= 1



Applications of N
. (S)=

Thm 1 .
8 Every nonconstant polynomial has a root in K

.

Thm 1 .
9 n = 2 case of Brouwer fixed point theorem (Cor2

.
15) :

"Every map hiD"- Dh has a fixed point : h(x)= 2
.

"

Thm 1 .
10 n = 2 case of Borsuk-Ulam theorem (Cor2B

.
7) :

"Every map f: S"-RR" identifies some antipodal pair : f(x)= f(x) .

"

Cor 1
.

11 n = 2 case of : =-----.g2

"If s" is the union of nt closed sets,

then some set contains an antipodal pair Ex,
-23

.

"
T ↓ f

Cor 1
. 16 n =2 case of Invariance of Dimension (Thm 2

. 26) :

"R * R" for n + m
.

" pressure R
temperature

Prop 1
.

12 it
, (X +Y) = H

,
(X) = i

,
(X)

Ex 1
.
13 #

,
(S'xs) = X +I

# ((s)n) = In ↳p



Induced homomorphisms -D
· ·G

Def A map 4 : (X
,
xo)- (Y

, yo) induces a group homomorphism
U*:, (X ,

vo)->, (X, yo) by 4* /[+]) = [c7] .
↑

4 ([f) · [g])= [4(f · g)= [47 · ng) = 4= ([+)) · 4= (5g))

well-defined since fo f, via f > 4to = yf , via left

Functor it
,

is a functor (see S2
. 3) since

· (4y)* = 4* Y* for a composition (X
.
20)# (Y

, yo)# (E
,

z0)
·

= 1
,

i
.
l

.,
1 : X+ X induces 1: (X,)- #

,
(X,)·

Prop 1
.

18 If U : X+ Y is a homotopy equivalence,
then 4:, (X,

20)-> I
, (Y, +(d) is an isomorphism .



Section 1
.

2 Van Kampen's theorem Carbitrary unions

u
U

D-

-
Y= torus Z = graph



RECALL The Seifert-ran Kampen theorem (Two set version
,
from Munkres .)

Thm (Seifert-van Kampen) Let X= U-V with U
,
V open in X,

with U, V
,
UeV path-connected, and NotUeV. Then the homomorphism
: #,

(U
,2) * i, (V, 20) -> It,

(X
,
20)

is surjective, and its kernel N is the least normal subgroup containing
all words of the form in/w)"ir(w) for wer (UIV, No) ·
HenceH, (X)= (H, (u)*(v) /N. In1 (h) ju

&
No i

,
(U+v) = w

= H , (x)~ in
Sitiv) in

# (k) =<0 , % ,) N
, (V) = 1 B

, Br,Ba) , (UV) = (w)

# (X)= (d
,
da

,
da

,
Bi

,
Br

,
By / in(w) ir(w) Note in (w) = &3 and ir(w)= Bs

=&
,

de
,
da

, Bi , Be, Bs) &BaY
=> [01

,
de

, Bi , Ba
,
w]



As As

As
Section 1

.

2 Van Kampen's theorem Carbitrary unions Ar

Thm 1
.
20 Let X= UoAd S .

t
.
each Ar is open, I For 90 ,%E,

(Ad)
, gre (As), gre(Au), (path-connected, and contains No. #/gogggr) = jolga) ip(ga) jo (5) ju(9r)

· If each AovAs is path-connected,
then (A)

(E:T, (Ad-> #
,
(x) (defined using the ja) is surjective · ~

· If furthermore each AovAovAr is path-connected, iT
,
/AdAn i,

(x)
then Ker(t) is the normal subgroup generated by
all elements iog(w) igo(w)" for we

. (AorAs) · inte (A) to
Ex Write X as union of 5 open Non-Ex To see the triple intersection

sets each containing the bold assumption is necessary,
consider

tree and one extra edge .
An = X1dab

,
Ap = X15b3

,
Ar = X15c3.

Double
,
triple intersections path-connected .

Double intersections contractible => Ker(t) trivial.

So I gives an isomorphism It
,
(x)=* Hi(A)= *EX

.

(To get therightanswer



Applications to cell complexes

Y obtained from path-connected X by attaching
2cells es via 40 : S+X

.

Fix ZoeX
.

Choose paths ro to imagelled .

Let NETT
,
(X

,
20) be normal subgroup generated by all Colora.

Prop 1
.

26

(a) X- Y induces a surjection.
(X

, 20)->.
(X

, yo)
with Kernel N

,
so n (Y)= +

,
(X)/N

·

(b) If instead y were obtained by attaching n-cells for some >2,
then XcoY induces an isomorphism It. (X)=. (X) ·

(c) For X a path-connected CW complex
,
the inclusion

*cX induces an isomorphism it
,
(X4 = H, (X) .

Rmk Choice of pathNo doesn't matter
,

since a

different path no gives a conjugate element
No Hou = Mov Wo Not Wond .



Pf (a)
Let Z = X- Erectangular strips3 = Y

.

Choose you et .

Note A =z- VoSyc3 = X and B= z-X = *

are open path-connected sets with union Z
.

Note AnB= VoS' with it, (AnB) generated
Cloosely speaking) by [NoMata].

Van Kampen's says IT
.
(X) = H, (z) is isomorphic to the quotient of

#, (A),
(X) by the normal subgroup generated by the image of IT

,
(A1B)+ It, (A),

which corresponds to N
.

(b) The only difference with the above proof is ArB = voS"
,
with n > 2

.

So H,
(AnB) is trivial and van Kampen's gives it

.
(Y)= +

, (z)[ ,
(A)= , (X) ·

van Kampen



(c) If X is finite-dimensional (X=X"for some n)
,

then (c) follows from (b) and induction
.

(Add on 3-cells
,
then 4-cells

,
etc.)

Otherwise
,
let f :I-X be a loop based at woeX?

[m(5) is compact and hence lives in a finite subcomplex
of X by Proposition A.

l
,

and hence in X" for some n.

Since #T
, (X)-> #, (X) is surjective by (b),

f is homotopic to a loop in X 2.

So it
,
(X2)-> H

,
(x) is surjective·

To see it is also injective, suppose f is a loop in X
which is nullhomotopic in X via a nullhomotopy F: IXI+X.

[m(F) is compact, hence lies in X" for some n = 2
.

Since #T
, (X)+, (X") is injective by (b),

it follows that f is nullhomotopic in X2.



Corollary For
every group G there is a

-

2dimensional CW complex X a with it
.
(Xa)= G

Pf Choose a presentation G = < go/rp)
,

which exists since every group is a

quotient of a free group.

Construct XG from VoSd by attaching 2-cells e
via loops specified by the words VB.

Ex G = F/nI



Section 1
.

3 Covering spaces



Prop 1
.

30 Given a covering space p : X-X,
a homotopy ft : X-X

,
and a lift Fox-Y

offo
,
there exists a unique homotopy FtY+*

that lifts foo

Prop 1
.

31 Let p : NoX be a covering space.
Then PK :, (* ) -> #

,
/X) is injective · areAlso

, Image (PE) is all homotopy classes of loops in X
that lift to loops (not paths) in F

.

PEkerP,then pisnuhomtipin
-

P

Clearly loops lifting to loops represent elements in Image (P *) · an ab

Conversely , [g]tImage(P*) implies g =

g
1 with g' lifting to a loop,

which by Prop 1
.
30 means g lifts to a loop.



Prop 1
.

32 Let p : Fox be a covering space
with X andE path-connected.

The number of
sheets Ip"(20)) is equal to the index [N

,
(x) : H] , are

where H = P*, (*) ·

Pf Define # : Ecosets of H3- + p"(20) by P
HIg] g(1) -

where i is a lift ofa starting at E
.

& is well-defined since elements of H lift to loops.

an ab

I is surjective since * is path-connected.
# is injective sinceECHIg ,

])= ECHIgz]) implies

g. lifts to a loop in X based at Fo
,

so [gi][gz]"eH and HIg 1] = HIg2] .



We care about lifts of general maps, not just of homotopies.

Prop 1
.

33 (Lifting criterion) Let p : (*,)-> (X
, 20) be a covering space.

Let f : (Y
, yo) -> (X,

vo) be a map with Y connected and locally path-connected.
Then a lift F : (

, yo) + (X, *d of f exists if Ext(Yiyo)) < P* (t(*) ·

= Rmk (E) is obvious since 5= P***.

Y + X Ex 1
.

3
.

7: Necessity of Y locally path-connected
↓ & S

I na

b B-
&

↓ P f
Quotient mapf - an ab

collapsing 503xE1, 13

#
,
(Y

, yo) is trivial group,

but no lift exists
.



We care about lifts of general maps, not just of homotopies.

Prop 1
.

33 (Lifting criterion) Let p : (*,)-> (X
, 20) be a covering space.

Let f : (Y
, yo) -> (X,

vo) be a map with Y connected and locally path-connected.
Then a lift F : (

, 20) -> (,
Ed of - exists if fal(Yiyol) < P* (n) .)

↑

Pf() is obvious since 5 =

P*F .

So our definition of So our definition of

= will be well-defined
.
I will be continuous

.

(E) Y is path-connected since it is connected and locally path-connected .

For yet, let t be a path in Y from yo to yo
Path fr in X based at to lifts uniquely to path Fr in I based at 50.

Define 5 : Y+ * by F(y) = Full) .

th[fr' · fr] E f
* (i, /Y,

Xo)) = PE(i , (, Fo)) ·
By Prop.

1 .
31

,
frr lifts to a loop in X.

and the second half isFr traversed backwards,
so Fr(l) = Fu(l).



continuousetySinis acoveringspahomeomorphism.
Since f"(h) is open in y choose a path-connected open set yeVcft(u)·
We will show Flu = (in)ofIr ,

hence F is continuous at yo

Indeed
,
fix a path y in y from yo to yo

For eachye a pathMinfoyto With Fa= (ph)"fu mapping to U.
Thus FCV)cG and Flr = (plu)ofIv ·

I
F

b

na

-↓Pu
vengo -o antob



We also have a unique lifting property.

Prop 1 .
34 Given a cover space p :*-X and a map f : Y+ X,

if two lifts F
,

52 :-
agree at a point and Y is connected, Ethen F,= F .

Pf The main idea is to show EyeY/F : ly)= Fly)3 is open and closed.



Classification of covering spaces

Thm 1
.

38 X path-connected, locally path-connected, semilocally simply-connected.
Then

basepoint -

preserving iso classes of path-connectedS
covering spaces p : (X,)-> (X, zo) S B

, S SubgroupoiS
[p : (F,)+ (X,)]1 < PE(n, (FF)

is a bijection .

Rmk If you ignore basepoints
,
then you map

to conjugacy classes of subgroups.

Def Covering spaces p:X-X and

P2 : X+ X are isomorphic if there
is a homeomorphism f:- *
with p= put .

*, "*

pilup



Prop 1
.
37 (B is well-defined and injective

Let X be path-connected and locally path-connected .
(,) (2,)

Two connected covering spaces are basepoint- preserving isomorphic
iff Pi* (iti (e))= Pe* (i , (,E)) ·

PI
s a

P

(X
,
zo

Pf (z) P,
= paf and Pz = pif" induce (or imply) E and 7

.

(E) By the lifting Criterion
-
(Prop 1

.
33) ~= gives a lift p : X

,
- (so Pap = p .

)
,

and

- gives a lift-> * (so P,z = P2) · X , 50X
Since these lifts compose to fix basepoints

,

unique lifting (Prop 1 . 34) gives TP = 1
,

and Pip =A AD
X(E) Note p . (Papil = (P . Ez)p1 = Pap,

= P1.

PI
s a

P

(X
,
zo



Classification of covering spaces

Thm 1
.

38 X path-connected, locally path-connected, semilocally simply-connected.
Then

basepoint -

preserving iso classes of path-connectedS
covering spaces p : (X,)-> (X, zo) S B

, S SubgroupoiS
[p : (F,)+ (X,)] 1 < PE(n, (FF)

is a bijection .

Def X is semilocally simply-connected (Sls2) if AxeX
,

Ex The Hawaiian earrings are

7 open set zeU with (v)->,
(X) trivial

.
not slsc

.

To see this condition is necessary, consider the universal cover
,

Ex The cone over the Hawaiian
and V small enough to be evenly-covered. earrings is slss but not Isc

.

-

Recall X is locally simply-connected (1sc) if
it has a basis with simply-connected sets.

Note Is = SISc
.



Prop 1
.

36 (B is surjective
X path-connected, locally path-connected, semilocally simply-connected.

ThenF subgroups HC , IX,
20)

,
7 covering space p : /n,0) + (,

20) with PE,
(H)= H

.

Pf (1) Define the universal cover p:*-X with i
,
(*) trivial.

(2) Define YH as a quotient of X.

(1) X : = EEr]ly is a path in X starting at 203
·

p:- X via p([w])= w(l)·
The slsc hypothesis is used to define the topology on E via a basis

.

Can check this is a covering space.

To see thatI is path-connected, form a path I-* with

OI [to] and 1H[r] via tH[rt]
,

where Ut(s) =

Gr(s) OEsEt

((t) t = SE)
.

To see that* is simply-connected, recall P* injective · Let [W]eImage(P#)·
Image(P*) is represented by loops lifting to loops.

Note tr[rt] lifts - ,
and for this to be a loop means [v] = [v] = [r]



I l
↓ p

-



(2) For [v]
.
[c] < *, define [c]-[vi] if (Il = r'(D) and [r .FeH .

This is an equivalence relation sinceH is a subgroup
· reflexive : identity
· symmetric : inverses
· transitive : It closed under multiplication

DefineHobe thequotientspace gives a coveringsearch

We claim It, (EH ·
*) -> i,

(X
,
20) has image I

(where Fo is the equivalence class of [20])
Indeed

,
a loop y in X lifts to a loop in XH # [W]-[v] E) [WJEH

·

AI

↑
&

~ Th
or

X

H = (a) H(X)= (a ,by



Deck transformations and group actions

Let p :*-X be a covering space. The group
of deck transformations is

G(*) = covering space S& isomorphisms .
equipped with composition .

Ex (7) G(x)= /4 (8) G(x) = 21 x */

A covering space is normal if VeX
and E

,
E' = p"(z) , J heG(*) with h(E) = hEl

.

(Maximal symmetry)

Ex (1)
,
(2)

,
(5)-18)

,
(11) normal

.



Deck transformations and group actions

Prop 1
.39 Let p : (F)+ (X

,2) be a p.

c. covering

space of the p.c
.,

1
. p. c. space Xo Let H=p *)

·

(a) p:*+X normal # H normal in M. /X,
20)

.

(b) G(x) = N(H)/I
,

where the normalizer of H

is N(H) = &gett, (X, vo) lg " Hg = H3 ·

· G(x) = +
,
(X

,2)/H if p:*-X normal
.

· G(X)=, (X,
20) for the universal cover.

Ex (5) a normal covering space.
H= (a3, b3

,
ab"

,
bay.

Note bab b Hb = H.
Il

(ba)a(a b)



If(a) Let J be a path from Eo to EEP"(x0)
Deck transformations and group actions Note P*

(n
,
(,) = [r]"H[r]

for [VJE iT,
(X

, zo) withU = pos ·
[Prop 1

.39 Let p : (F)+ (X
,2) be a p.

c. covering # a · To an
space of the p.c

.,
1

. p. c. space Xo Let H=p *)
·

ab

a
-b ba

19 /pa j

(a) p:*+X normal # H normal in M. /X,
20)

.

↑
anD

(b) G(x) = N(H)/I
,

where the normalizer of H an H =La2,
b2

,
aba

,
baby

is N(H) = EgzTt, (X, vo) lg Hg = H3 · H =La
,

b3
,
ab

,
baY [w] #N(H).

b" (babb= a@H

[W]eN(H) P* (π
,
(,))#H .

· G(x) = +
,
(X

,2)/H if p:*-X normal
.

No deck transformation ElYo
·

· G(X)=, (X,
20) for the universal cover.

So [r]eN(H) iff Pa(n,
(F,Ell = pA (n,

(*
,
Fo))

,

which by the lifting criterion is equivalent
to deck transformations taking E

,
to Go

and vice-versa .

Hence p:-X is normal
=> such deck transformations exist Ep"(n)
=> N(H) = #, (X,

no
=>H is normal in It

, (X, 20)·



Deck transformations and group actions Ex The group G(E) of deck transformations
acts on the covering space * by

A group action on a set Y is a function G(X) + T - Y *
GXY + Y

,
denoted (g.g)-goy , satisfying (h

,
z) ++ h(z) 4XP

id
. y = y FyeY
g . (g . y) = (gg) . y Vg ,geG,

VyeY
.

Ex & acts on IR
That is

,
it is a homomorphism from G to the & ·

group of permutations of Y.

Ex I" acts on R
A group action on a space Y is a Ex<a

, by acts on

homomorphism from G to the 11 =
group of homeomorphisms of Y .

So does 2/4 ,

via rotations
,

1-1

The orbit space Y/G is the but not freely.
quotient space Y/2

,

where

yeg . y FyzY and gEG .
For a normal covering space *-X,
the orbit space /G(E) is

homeomorphic to X
.



Deck transformations and group actions




