Chapter 1: Fundamental group Associates to each space X a group $\gamma_r(x)$
measuring the 1-dimensional holes. <u>Section II</u> Basic constructions Section 1.2 Van Kampen's theorem Section I. <u>1.2</u> Van Kampen's
<u>3 Covering</u> spaces

The idea What is the algebraic structure of loops C in the
complement of two unlinked loops A and B?

 $\mathbb{R}^3 \setminus (A \vee B) \simeq ?$

The idea What is the algebraic structure of loops C in the
complement of two unlinked loops A and B?

 $\mathbb{R}^3 \setminus (A \vee B) \simeq S \vee S \vee S^2 \vee S^2$ $\pi(\overbrace{S}^{\prime}\circ\overbrace{S}^{\prime}\circ\overline{S}^{\prime})^{\leq} \leq \langle a,b\rangle^{\leq} \mathbb{Z}*\mathbb{Z}$ The idea What is the algebraic structure of loops C in the
complement of two linked loops A and B?

 $aba^{-1}b^{-1}=1$

 $\pi_{1}(t_{orus} \times S^{2}) \cong \langle a, b | aba'b' \rangle \cong \mathbb{Z} \oplus \mathbb{Z}$

Section 1.1 Basic constructions
\nA path is a map
$$
\xi: \mathbb{T} \to X
$$

\nA homotopy of paths is a homotopy $s_{\xi}: \mathbb{T} \to X$ rel {0,1},
\nWe say s_{θ} and s_{θ} are homotopic, denoted $s_{\theta} \approx s_{\theta}$,
\nor [f₀] = [f₁] since this is an equivalence relation.
\n $\begin{array}{ccc}\n f_0 \\
 f_1 \\
 g_0\n \end{array}$
\nThe product of paths $s_{\theta}: \mathbb{T} \to X$ (f(2s) $0 \le s \le 1$).

The product of paths
$$
f,g:\mathbb{I}\rightarrow X
$$

with $f(1)=g(0)$ is defined by $f\cdot g(s) = \begin{cases} f(2s), & 0 \le s \le 1/2 \\ g(2s-1), & 1/2 \le s \le 1 \end{cases}$.

The product respects homotopy classes.

Path $f:\mathcal{I}\rightarrow\mathcal{X}$ is a <u>loop</u> if $f(0)=x_0=f(1)$. The set of all homotopy classes of loops based at x_o
is denoted π ,(X,x,). is denoted π , (X, x.). <u>Proposition</u> to the 13 π , (\times, ∞) is a group with respect $\begin{picture}(120,140) \put(100,140){\line(1,0){155}} \put(100,140){\line(1,0){155}} \put(100,140){\line(1,0){155}} \put(100,140){\line(1,0){155}} \put(100,140){\line(1,0){155}} \put(100,140){\line(1,0){155}} \put(100,140){\line(1,0){155}} \put(100,140){\line(1,0){155}} \put(100,140){\line(1,0){155}} \put(100,14$ product [f]· [g] ⁼ [f. g] · Pf See how Hatcher uses reparametrizations to prove associativity , identity. $(f \cdot g)$. e how Hatcher uses reparametrizations to prove associativity, identity.
g) \cdot h
and Inverses: $\overline{\zeta}:\overline{\perp} \to \mathsf{X}$ by $\overline{\zeta}(\mathsf{s})$ =f(l-s). f $ex_{0} = e_{f(0)}$ $e_{f(Y_6)}$ $e_{f(1/6)}$ $e_{6(1/6)}$ $e_{f(Y_b)}$ \mathcal{L} $\overline{(g-h)}$ % ⁺ $f * F$

The fundamental g*roup of the circle*
We prove $\pi(5) \cong \mathbb{Z}$ using covering spaces. Def (page 56) A covering space of X is a space X Def (page 56) A covering space of X is a
together with a map p: $\widetilde{X} \rightarrow X$ such that together with a map p:x→x such that
• there is an open cover {U≈} of X s.t. ∀∝, Def is a $\rho^{-1}(U_{\alpha})$ is a disjoint union of open sets in \widetilde{X} p (Ux) is a disjoint union of open sets in >
each mapped homeomorphically onto Ux by p. (page map 60) 5 : A $\sqrt{\rightarrow}$ lift $\frac{1}{\widetilde{\chi}}$ of with a ρ ታ map "ነ
= f. $\overline{\zeta}$: $\overline{\gamma}$ \rightarrow $\overline{\chi}$ · p.
 $\frac{1}{\pi}$, $\frac{1}{\pi}$
 $\frac{1}{\pi}$ $\frac{\tilde{f}}{\sqrt{\frac{f}{f}}}$ $\begin{array}{c}\n\widetilde{\mathcal{F}}\rightarrow\widetilde{\mathcal{X}}\\
\uparrow\rightarrow\mathcal{X}\n\end{array}$

 $\frac{130}{130}$ Given a covering space $p: \widetilde{X} \rightarrow X$ of that lifts ft. a homotopy
of Fo, the , there $\overline{\mathcal{F}}$ exists \cdot \rightarrow \times a , and unique a homotopy li H \widetilde{f}_{\bullet} :Y $\widetilde{\mathcal{f}}_{\bm{t}} \cdot \mathsf{Y}$ -Y $\begin{array}{ccc}\n\widetilde{X} & \longrightarrow & \widetilde{Y} \\
\widetilde{X} & \longrightarrow & \widetilde{Y} \\
\hline\n\rightarrow & \widetilde{X} & \longrightarrow & \widetilde{Y} \\
\hline\n\downarrow & & \downarrow & \downarrow \\
\downarrow & & \downarrow & \downarrow & \downarrow \\
\hline\n\downarrow & & \downarrow & \downarrow & \downarrow \\
\hline\n\downarrow & & \downarrow & \downarrow & \downarrow \\
\hline\n\downarrow & & \downarrow & \downarrow & \downarrow \\
\hline\n\downarrow & & \downarrow & \downarrow & \downarrow \\
\hline\n\downarrow & & \downarrow & \downarrow & \downarrow \\
\hline\n\downarrow & &$

 PF idea Unique lifts over an open set exist by the homeomorphism property $(•)$. Piecing these together takes ^a page in Hatcher.

 1hm 1. $\overline{f}: \mathbb{Z} \rightarrow \pi_1(S)$ via $\overline{\Phi}(n)$ =[wn], where Wn(s) = (cos2ins, sinZins), is an isomorphism . $\begin{matrix}\n\widetilde{\omega}_r \\
\vdots \\
\vdots \\
\vdots\n\end{matrix}$ $\frac{\partial F}{\partial s}$ Note $\widetilde{\omega}_n: \mathbb{I} \rightarrow \mathbb{R}$ via $\widetilde{\omega}_n(s) = ns$ 'S Note ũn:I→R via ũn(s)=n
|ifts wn:I→S' (since pũn=*wn*). S' $Note$ $\mathbb{E}(n) = [\omega_n] = [\rho \widetilde{\omega}_n] = [\rho \widetilde{\varsigma}]$ for any path $\widetilde{\varsigma}$ in \mathbb{R} - I from 0 to n (since $\tilde{s} \simeq \tilde{\omega}_n$ by a linear homotopy). Φ is a homomorphism Φ is injective f_o find Let τ_m : $\mathbb{R} \rightarrow \mathbb{R}$ translate $\tau_m(x)$ = m+x. $\lim_{m \to \infty}$ $\lim_{m \to \infty}$ Note $\widetilde{\omega}_\mathsf{m}\cdot (\tau_\mathsf{m}\widetilde{\omega}_\mathsf{n})$ is a path in IR From O to m+n $\hspace{1cm}$ By Prop I. B_4 Prop 130 (homotopy lifting) \exists lift $\widetilde{f}_t: \mathbb{Z} \rightarrow \mathbb{R}$. So I(m+n)= [p (ŵm·(tmǎn))]=[wm·Wn]=I(m)·I(n). Necessarily f_t(0)=0
By uniqueness of pa
It is surjective Hence m= $\widetilde{\omega}_m(1)$ = $\Phi(n)$, Necessarily $\widetilde{f}_{\mathbf{t}}(0)=0$ $\forall t$ and $\widetilde{f}_{\mathbf{t}}(l)=\operatorname{pt} e\mathbb{Z}$ $\forall t$. By uniqueness of path lifting, $f_\circ = \widetilde{\omega}_m$ and $\widehat{f}_\circ = \widetilde{\omega}_n$, $\widetilde{\omega}_n(1)$ = n. Φ is surjective
Let f: I->S' be a loop based at (1,0). <u>-</u>U 5 I 5 OC IN PENSEN IN (1,9,.
By Prop 1.30 (path lifting) ∃! lift }:I→R with }(0)=O. N eces α rily $\widetilde{f}_{n}(1)$ =n for some n $\epsilon \mathbb{Z}$, giving $\Phi(n)$ =[p}]=[f]. $\widetilde{\omega}_n \longrightarrow \mathbb{R}$ S=0 t=0 $\overline{\Theta}$ += ¹

Applications of π , $(s') \cong \mathbb{Z}$ T hm 1.8 Every nonconstant polynomial has a root in C. Thm 1.9 n=2 case of Brouwer fixed point theorem (Cor 2.15): "Every map $h: D^n \longrightarrow D^n$ has a fixed point: $h(x)=x$." $\overline{\text{Thm}}$ 1.10 n=2 case of Borsuk-Ulam theorem (Cor 2B.7): $^{\prime\prime}$ Every map f:5" \rightarrow R" identifies some antipodal $\mathsf{pair}\colon\mathsf{f(x)=f(-x)}$. $Cor 11$ n=2 case of: very map $h: D^n \to D^n$ has a fixed point: $h(x)=x$.

1.10 n = 2 case of Borsuk-Ulam theorem (Cor 2B.7):

ry map f: s" R" identifies some antipodal pair: f(x)= f(-x).

11 n = 2 case of:

12 n = 2 case of: $"If S" is the union of n+1 closed sets,$ then some set contains an antipodal pair $\{x, -x\}$. $Cor 116$ n=2 case of Invariance of Dimension (Thm 2.26): $\overline{R}^n \neq \overline{R}^m$ for $n \neq m$.

Prop	1.12	π , $(X \times Y) \cong \pi$, $(X) \times \pi$, (Y)
Ex	1.13	π , $(S' \times S') \cong \mathbb{Z} \times \mathbb{Z}$
π , $((S')^n) \cong \mathbb{Z}^n$		

Induced homomorphisms	\$
Def	A map $\psi: (X, x_0) \rightarrow (Y, y_0)$ induces a group homomorphism
$\psi_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$ by $\psi_*([F]) = [\psi \cdot F]$.	
$\psi_*: \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$ by $\psi_*([F]) = [\psi \cdot F]$.	
Well-defined since $\frac{1}{2} \in \mathcal{F}$ via $\frac{1}{2} \in \mathcal{F}$ with $\psi_* = \psi \cdot F$ via $\psi \cdot F$.	
Function	π is a functor (see §2.3) since
$\bullet (\psi \psi)_* = \psi_* \psi_*$ for a composition $(X, x_0) \xrightarrow{\psi} (Y, y_0) \xrightarrow{\psi} (Z, z_0)$.	
$\bullet \bot_*$ = 1, i.e., $\bot: X \rightarrow X$ induces $\bot: \pi_1(X, x_0) \rightarrow \pi_1(X, x_0)$.	

Prop 1.18 If $\phi: X \rightarrow Y$ is a homotopy equivalence, 1. = 1, i.e., 1
Prop 1.18 If $(\rho : \times \rightarrow)$
then $(\rho_* : \pi_*(X, \infty)$ →Y is a homotopy equivalence,
→ ∏,(Y,φ(«o)) is an isomorphism.

<u>Section I.2</u> Van Kampen's theorem (arbitrary unions)

<u>RECALL</u> The Seifert-van Kampen theorem (Two set version, from Munkres.) Thm (Seifert-van Kampen) Let $X=U\vee V$ with U,V open in X, with U.V, $U \cdot V$ path-connected, and $\chi_o \in U \cdot V$. Then the homomorphism
 $\Phi: \pi_1(U,x_o) \times \pi_1(V,x_o) \longrightarrow \pi_1(X,x_o)$ is surjective, and its bernel N is the least normal subgroup containing all words of the form $L_u(w)^{-1}$ $L_v(w)$ for $w \in \pi_1(W_1 \vee \ldots \vee \pi_n(W_n))$. Hence $\pi_1(X) \cong (\pi_1(u) * \pi_1(v)) / N$. $\pi(\mu)$ $\overline{\alpha}$ π , $(u \sim v)$. χ_{ρ} 'π, (χ) B α , ß, N_{2} \mathcal{b} $\pi_1(\mu) = \langle \alpha_1, \alpha_2, \alpha_3 \rangle$ $\pi_1(\vee) = \langle \beta_1, \beta_2, \beta_3 \rangle$ $\pi_1(\mu_1 \vee) = \langle \omega \rangle$ $\pi_1(X) \cong \langle \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 \mid i_u(w)^{1} i_v(w) \rangle$ Note $i_{\alpha}(\omega) = \alpha_3$ and $i_{\alpha}(\omega) = \beta_3$ = $\langle \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 \rangle$ $\alpha_3^{-1} \beta_3$ $\cong \langle \alpha_1, \alpha_2, \beta_1, \beta_2, \omega \rangle$

Section 1.2 Van Kampen's theorem (arbitrary unions) Am

 T hm 1.20 Let $X = U_{\alpha} A_{\alpha}$ s.t. each A_{α} is open, path-connected, and contains x_0 . path-connected, and contains x_o .

If each $A_\alpha \circ A_\beta$ is path-connected, then $\Phi: \mathcal{F}_{\alpha}(\mathcal{A}_\alpha) \to \pi_1(x)$ (defined using the jx) is surjective.
 $\Phi: \mathcal{F}_{\alpha} \pi_1(A_\alpha) \to \pi_1(x)$ (defined using the jx) is surjective. $\Phi:\mathbb{X}_{\alpha} \pi_1(A_{\alpha}) \longrightarrow \pi_1(X)$ (defined using the ja) is surjective. The LCC Let $\lambda = U_{\alpha} A_{\alpha}$ s.t. each A_{α} is open,

path-connected, and contains χ_o .

The each $A_{\alpha} \circ A_{\beta}$ is path-connected, then
 $E: \mathcal{K}_{\alpha} \pi$, $(A_{\alpha}) \to \pi$, (x) (defined using the ja) is surjective.

If fu $\overline{\Phi}: \mathcal{K}_{\alpha} \pi$, $(A_{\alpha}) \rightarrow \pi$, (x) (defined using the ja) is surjective.
If furthermore each $A_{\alpha} \circ A_{\beta} \circ A_{\gamma}$ is path-connected, π , $(A_{\alpha} \circ A_{\beta})$ It furthermore each A_{α} "Ap A_{α} is path-connected, $\pi_{\alpha}(A_{\alpha})$ $\pi_{\alpha}(X)$ $\pi_{\alpha}(X)$ then ker(I) is the normal subgroup generated by $\overline{\eta_1(n_{\alpha}+n_{\beta})}$
all elements i_{ng(w)} i_{gn(w)}⁻¹ for $w \in \pi_1(A_{\alpha} \cdot A_{\beta})$. ign i_{fan} j_a

I For $g_{\alpha}, \widetilde{q_{\alpha}} \in \pi_1(A_{\alpha}), \ q_{\beta} \in \pi_1(A_{\beta}), \ q_{\gamma} \in \pi_1(A_{\gamma}),$ $\mathbb{E}(\mathfrak{g}_{\alpha}\mathfrak{g}_{\beta}^3\widetilde{\mathfrak{g}_{\alpha}}\mathfrak{g}_{\delta}^{-2})=\mathfrak{j}_{\alpha}(\mathfrak{g}_{\alpha})\mathfrak{j}_{\beta}(\mathfrak{g}_{\beta})^3\mathfrak{j}_{\alpha}(\widetilde{\mathfrak{g}_{\alpha}})\mathfrak{j}_{\delta}(\mathfrak{g}_{\delta})^{-2}$ then $\pi_1(A_\alpha)$

 A_{\bullet} and A_{\bullet}

 $\mathcal{A}_\mathbf{\Sigma}$

Ex Write X as union of 5 open $Non-Ex$ To see the triple intersection sets each containing the bold assumption is necessary, consider tree and one extra edge. $X\setminus \{a\}$, $A_{\beta} = X\setminus \{b\}$, $A_{\gamma} = \bigtimes \setminus \{c\}$, Double, triple intersections path-connected . Double intersections contractible \Rightarrow ker(I) trival. Sondie intersections contractible - Rec (2) crivial.
So Φ gives an isomorphism $\pi_i(X) \cong \ast_{i=1}^5 \pi_i(A_i) = \ast_{i=1}^5 \mathbb{Z}$. To get the right answer $\mathbb{Z} * \mathbb{Z}$,
 \Box use only Ax and Ap.

Applications to cell complexes	Y obtained from path-connected	Y by attacking
2-cells e ² via $Q_{\alpha}:S^1 \rightarrow X$.	X_0	X_{α}
Ex $\kappa_o \in X$. Choose paths κ_v to image (Q_{α}) .	X_0	X_{α}
Prop 1.26	$(a) X \hookrightarrow Y$ induces a surjection $\pi_1(X, \kappa_o) \rightarrow \pi_1(Y, y_o)$	ω :th kernel N , so $\pi_1(Y) \cong \pi_1(X)/N$.
(b) If instead Y were obtained by attaching n-cells for some n>2, then X \hookrightarrow Y induces an isomorphism $\pi_1(X) \cong \pi_1(Y)$.		
(c) For X a path-connected CW complex, the inclusion $X^2 \hookrightarrow X$ induces an isomorphism $\pi_1(X) \cong \pi_1(X)$.		

 Rmk Choice of path γ_{α} doesn't matter, since a different path n_{α} gives a conjugate element η a Ufor $\overline{\eta_{\bf w}} = (\eta_{\bf w}\overline{\chi_{\bf w}})$ Yor Ufor $\overline{\chi_{\bf \alpha}}$ (Yor $\overline{\eta_{\bf w}}$).

Pf (a)	2x	
Let $Z = Y \vee \{ \text{rectangular string } \} \approx Y$.	$(X - Y \wedge \text{linear})$	$(X - Y \wedge \text{linear})$
Note $A = Z - U_{\alpha} \{ y_{\alpha} \} \approx X$ and $B = Z - X \approx X$	X_0	X_{α}
Note $A \circ B \approx V_{\alpha} S'$ with $\pi_1(A \circ B)$ generated		
(<i>loosely speaking</i>) by $[X_{\alpha} \cup X_{\alpha}]$.	$(A \circ B)$ generated	

Van Kampen's says $\pi_1(y) \cong \pi_1(z)$ is isomorphic to the quotient of $\pi_1(A) \cong \pi_1(\times)$ by the normal subgroup generated by the image of $\pi_1(A \cap B) \to \pi_1(A)$, which corresponds to N.

(b) The only difference with the above proof is $A \cap B \simeq V_{\alpha} S^{n-1}$, with n>2. The only difference with the above proof is $A \cap B \simeq v_{\alpha} S^{n-1}$, with n>2.
So $\pi_1(A \cap B)$ is trivial and van Kampen's gives $\pi_1(Y) \cong \pi_1(Z) \cong \pi_1(A) \cong \pi_1(X)$. van Kampen

 (c) If X is finite-dimensional $(x=x^n$ for some n) then (c) follows from (b) and induction. (Add on 3-cells, then 4-cells, etc.)

Otherwise, let
$$
S:\mathbb{Z}\rightarrow\mathbb{X}
$$
 be a loop based at $x_0 \in \mathbb{X}^2$. $\mathbb{Z}_m(s)$ is compact and hence lives in a finite subcomplex of \mathbb{X} by Proposition A.1, and hence in \mathbb{X}^n for some n. Since $\pi_1(\mathbb{X}^2) \rightarrow \pi_1(\mathbb{X}^n)$ is surjective by (b). S is homotopic to a loop in \mathbb{X}^2 . So $\pi_1(\mathbb{X}^2) \rightarrow \pi_1(\mathbb{X})$ is surjective.

To see it is also injective, suppose f is a loop in X^2 To see it is also injective, suppose f is a loop in χ^2
which is nullhomotopic in X via a nullhomotopy \vdash IXI \to X. $\text{Im}(F)$ is compact, hence lies in X^n for some $n \geq 2$. which is nullhomotopic in X via a nullhomo
Im(F) is compact, hence lies in Xⁿ fo
Since $\pi_1(X^2) \longrightarrow \pi_1(X^n)$ is injective by (b), Since $\pi_1(x^2) \rightarrow \pi_1(x^n)$ is injective by (b),
it follows that f is nullhomotopic in X^2 .

<u>Corollary</u> For every group G there is a $\overline{2}$ -dimensional CW complex X_{G} with $\pi_{i}(X_{G}) \cong G$ $\frac{\mathsf{Pf}}{\mathsf{I}}$ Choose a presentation G = \langle g& $\mathsf{r}_\mathsf{B} \rangle$ which exists since every group is a anion exists since every

Construct X_{G} from $Var_{S_{\alpha}}^{1}$ by attaching Z-cells e_{A}^{2} via loops specified by the words VB.

Section 1.3 Covering spaces

 $\frac{1}{20}$ Given a covering space $p: \widetilde{X} \rightarrow X$ a homotopy $f_t: Y \rightarrow X$, and a lift $\widetilde{f}_t: Y \rightarrow \widetilde{X}$ of fo, there exists a unique homotopy $\widetilde{f}_t: Y \rightarrow \widetilde{X}$ that lifts $5t$. $\frac{\text{Prop I.31}}{\text{Then } \rho_{*}: \pi_{1}(\tilde{X}) \rightarrow \pi_{1}(X)}$ be a covering space. let p: X→X be a co
,(x̃)→π,(X) is injective. that lift to loops (not paths) in \widetilde{X} . Also, Image(px) is all homotopy classes of loops in ^X are Also, Image(px) is all homoto
Ehat lift to loops (not p
<u>PF</u> If [f]e ker(p_{*}), t
By Prop 1.30 we can lift then p + is nullhomotipic in X,
+ to see f is nullhomotopic in $\widetilde{\mathsf{X}}$, ___________________________________ P C learly loops lifting to loops represent elements in Image (ρ *). $a \bigodot a$ Cientry loops in ting to loops represent elements in Image (pr).
Conversely, [g]e Image (px) implies g=g' with g' lifting to a loop, which by Prop 1.30 means g lifts to a loop.

Prop 1.32 Let p: $\widetilde{X} \rightarrow X$ be a covering space
with X and X path-connected. The number of sheets $|p^{-1}(x_0)|$ is equal to the index $[\pi_r(x):H]$. sneets ip (xo)| is e
where H=p*n,(x), space
 $x \text{ of } x \text{$ $\begin{array}{ccc}\n\text{Pf} & \text{Define} & \text{I}: \{cosets \text{ of } H\} \longrightarrow p^{-1}(x_0) & by \\
 & & \text{HLg} & \longrightarrow & \tilde{g}(1)\n\end{array}$

 $H[g] \longrightarrow g(I)$
where \tilde{g} is a lift of g starting at \tilde{x}_{o} . & is well-defined since elements of ^H lift to loops. Φ is surjective since $\widetilde{\times}$ is path-connected. E is injective since $E(H[g_i]) = E(H[g_i])$ implies $g_1 \overline{g}_i$ lifts to a loop in \widetilde{X} based at \widetilde{x}_o , g.g. litts to a loop in X based at
so [g_i][g₁] = H and H[g₁]=H[g₂]。

We care about lifts of general maps, not just of homotopies.
\nProof 1.33 (Lifting criterion) Let
$$
p: (\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)
$$
 be a covering space.
\nLet $f: (Y, y_0) \rightarrow (X, x_0)$ be a map with Y connected and locally path-connected.
\nThen a lift $\tilde{F}: (Y, y_0) \rightarrow (\tilde{X}, \tilde{x}_0)$ of F exists iff $f: f: ((Y, y_0)) \subseteq p* (\pi_1(\tilde{X}, \tilde{x}_0))$.
\n $\tilde{F} \rightarrow \tilde{X}$
\n $\tilde{F} \rightarrow \tilde{X$

We care about lifts of general maps, not just of homotopies.
\n**Prop** 1.33 (Lifting criterion) Let
$$
p: (\tilde{\chi}, \tilde{\chi}) \rightarrow (\tilde{\chi}, \chi_0)
$$
 be a covering space.
\nLet $f: (\tilde{\chi}, y_0) \rightarrow (\tilde{\chi}, \tilde{\chi}_0) \rightarrow (\tilde{\chi}, \tilde{\chi}_0) \rightarrow (\tilde{\chi}, \chi_0)$ be a covering space.
\nThen a lift $\tilde{f}: (\tilde{\chi}, y_0) \rightarrow (\tilde{\chi}, \tilde{\chi}_0)$ of f exists iff f $f: (\tilde{\chi}, y_0) \rightarrow (\tilde{\chi}, \tilde{\chi}_0)$
\n $Pf \left(\Rightarrow)$ is obvious since $S_{\tilde{\chi}} = p_{\tilde{\chi}} \tilde{\chi}_{\tilde{\chi}}$.
\n $\frac{S_{\tilde{\chi}}}{\tilde{\chi}}$ will be well-defined. \tilde{S} will be well-defined.
\nFor $y \in \tilde{\chi}$, let χ be a path in γ from y_0 to y .
\nPath f_0 in χ based at χ_0 little uniquely to path \tilde{f}_0 in $\tilde{\chi}$ based at $\tilde{\chi}_0$.
\n $\frac{\tilde{f} \chi}{\tilde{f} \chi} = \tilde{f} \chi + \chi$ by $\tilde{f}(y) = \tilde{f}_0 \chi$.
\n $\frac{\tilde{f} \chi}{\tilde{f} \chi} = \tilde{f} \chi + \chi$ by $\tilde{f}(y) = \tilde{f}_0 \chi$.
\n $\frac{\tilde{f} \chi}{\tilde{f} \chi} = \tilde{f} \chi + \chi$ by $\tilde{f}(y) = \tilde{f}_0 \chi$.
\n $\frac{\tilde{f} \chi}{\tilde{f} \chi} = \tilde{f}_0 \chi + \tilde{f}_0 \chi + \tilde{f}_0 \chi$ into χ to χ .
\n $\frac{\tilde{f} \chi}{\tilde{f} \chi} = \tilde{f}_0 \chi + \tilde{f}_0$

 $\frac{F}{F}$ continuous: Let yeY. Since $\rho: \widetilde{X} \rightarrow X$ is a covering space,
let $s(y) \in U$ $\subsetneq X$ with $\widetilde{f}(y) \in U \subset \widetilde{X}$ and $\rho|_{\widetilde{u}}: \widetilde{u} \rightarrow U$ a homeomorphism. Since $s^{-1}(u)$ is open in Y, choose a path-connected open set $y \in V \subseteq s^{-1}(u)$.
We will show $\mathcal{F}|_V = (\mathfrak{gl}_u)^{-1} \mathcal{F}|_V$, hence $\widetilde{\mathcal{F}}$ is continuous at y.

Indeed, fix a path γ in γ from yo to y.
For each y'eV, fix a path η in V from y to y'.
Each path fr⁺n in X has a lift $\widetilde{s_{\alpha}} \cdot \widetilde{f_{\eta}} = (\rho |_{\alpha})^{-1} \overline{f_{\eta}}$ mapping to
Thus $\widetilde{f}(V) \subset \widetilde{U}$ and $\widetilde{f$ $\widetilde{\mathcal{U}}$.

We also have ^a unique lifting property.

 $\frac{1}{3}$
Prop 1.34 Given a covering space $\rho: \tilde{\times} \rightarrow \tilde{\times}$ and a map $S: \forall \rightarrow \tilde{\times}$ if two lifts \widetilde{f}_1 unique lifting property.
a covering space p:X→X
& :Y→X agree at a point It two lifts
then $\widetilde{f}_1 = \widetilde{f}_2$. and a map $5:Y\rightarrow X$, $\tilde{5}, \tilde{5}, \tilde{7}$
and Y is connected, $\overline{Y \rightarrow S}$

 \overline{PF} The main idea is to show $\{y \in Y | \overline{S}_i(y) = \overline{S}_z(y)\}$ is open and closed.

Classification of covering spaces

Thm 1.38	X path-connected, locally path-connected, semically simply-connected.	Then
basepoint-preserving iso classes of path-connected	B	S subgroups of
Covering spaces $p: (\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$	B	2 $\pi_1 (X, x_0)$
is a bijection.	$[p: (\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)]$	$p_*(\pi_1 (\tilde{X}, \tilde{x}_0))$

Rmk If you ignore basepoints, then you map to conjugacy classes of subgroups.

<u>Def</u> Covering spaces $\rho_i \colon \widetilde{X}_i \longrightarrow X$ and $\overline{\rho_{2}} \colon \widetilde{X}_{2} \to X$ are <u>isomorphic</u> if there <u>Def</u> Covering spaces p. $\widetilde{X}_1 \longrightarrow X$
p. $\widetilde{X}_2 \longrightarrow X$ are <u>isomorphic</u> if d
is a homeomorphism f: $\widetilde{X}_1 \longrightarrow \widetilde{X}_2$ with $p_1 = p_2 f$. \overrightarrow{X} , \overrightarrow{Y} , \overrightarrow{Y} , \overrightarrow{Y} $\begin{matrix} p_1 \vee \vee \vee \end{matrix}$

Prop 1.37 (B is well-defined and injective) Let X be path-connected and locally path-connected. $(\widetilde{\chi}_{1},\widetilde{\chi}_{1})$ $(\widetilde{\chi}_{2},\widetilde{\chi}_{1})$ Two connected covering spaces are basepoint - preserving isomorphic _et X De path-connected and
Two connected covering spaces
iff p_{1*}(π,(Χ,,π))= p_{2*}(π,(Χ,,π)). $\overrightarrow{p_1}$ Pz (\times, κ_o)

 \overline{Pf} (=) $p_1 = p_2 f$ and $p_2 = p_1 f^{-1}$ induce (or imply) \subseteq and \supseteq .

(=) By the lifting criterion (Prop 1.33) - \leq gives a lift $\widetilde{\rho}_i \colon X_i$)
Prop J.
→ X.
→ マ $(\mathfrak{so} \rho_2 \widetilde{\rho_1} = \rho_1)$ $\rho_i = \rho_2 f$ and $\rho_2 = \rho_1 f^{-1}$ induce (or imply) \subseteq and \supseteq .

the lifting criterion (Prop 1.33)

gives a lift $\widetilde{\rho}_i : \widetilde{X}_1 \to \widetilde{X}_1$ (so $\rho_1 \widetilde{\rho}_i = \rho_1$), and

gives a lift $\widetilde{\rho}_i : \widetilde{X}_1 \to \widetilde{X}_1$ ($Sine$ these lifts compose to fix basepoints, $\begin{array}{ccc}\n & \overbrace{\mathfrak{p}} & \over$ Since these litts compose to tux basepoints,
Unique lifting (Prop 1.34) gives $\widetilde{\mathfrak{p}}_i\widetilde{\mathfrak{p}}_i=\mathbb{1}_{\widetilde{\mathsf{X}}_i}$ and $\widetilde{\mathfrak{p}}_i\widetilde{\mathfrak{p}}_i=$ $\frac{1}{\sqrt{2}}$.
 $\frac{1}{\sqrt{2}} = \frac{\gamma_2 \gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1}$
 $\frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1}$
 $\frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1}$
 $\frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_1} \frac{\gamma_1}{\gamma_$ Uniform $(\widetilde{X}, \widetilde{\alpha})$ gives $\widetilde{\beta_1} \widetilde{\beta_1} = \mathbb{1}_{\widetilde{X}_1}$ and $\widetilde{\beta_1} \widetilde{\beta_2} = \mathbb{1}_{\widetilde{X}_2}$.
 $(\widetilde{X}_1, \widetilde{\alpha})$ $\overline{\widetilde{\beta_1}}$ $(\widetilde{X}_2, \widetilde{\alpha})$ Note $\rho_1(\widetilde{\rho}_2 \widetilde{\rho}_1) = (\rho_1 \widetilde{\rho}_2) \widetilde{\rho}_1 = \rho_2 \widetilde{\rho}_1 = \rho_1.$ ρ_1 ρ_2 (X, $\overline{\kappa_o}$

Classification of covering spaces <u>Thm 1.38</u> X path-connected, locally path-connected, semilocally simply-connected. Then basepoint - preserving iso classes of path-connected ^S covering spaces p: (X,) - > (X,zo) ^S ^B , ^S Subgroupo iS $\left[\widehat{\rho}\colon\left(\widetilde{\times},\widetilde{\varkappa}_{0}\right)\longrightarrow\left(\right.\times,\varkappa_{\varpi}\right)\right]\quad\longmapsto\qquad\longrightarrow\qquad\left.\rho_{\divideontimes}\left(\left.\left.\gamma_{\cdot}\left(\widetilde{\times},\widetilde{\varkappa}_{\cdot}\right)\right.\right)\right.$ $(\widetilde{\chi}, \widetilde{\kappa}) \rightarrow (\chi, \kappa)$
 $(\widetilde{\chi}, \widetilde{\kappa}) \rightarrow (\chi, \kappa)$
 $(\widetilde{\chi}, \widetilde{\kappa}) \rightarrow (\chi, \kappa)$ is a bijection. Def X is semilocally simply-connected (Sls2) if AxeX, >, (X) trivial . not slsc. Ex The Hawaiian earrings are \exists open set xeV with $\pi(v) \rightarrow \pi(x)$ trivial. To see this condition is necessary, consider the universal cover, Ex The cone over the Hawaiian
and V small enough to be evenly-covered. Ex The cone over the Hawaiian - Recall ^X is locally simply-connected (1sc) if it has a basis with simply-connected sets. Note $s \Rightarrow s$ lsc.

Prop 1.36 (B is surjective)
X path-connected, locally path-connected, generally, semioally simply-connected.
Then V subgroups H c T ₁ (X, x ₀), 3 covering space p (X ₁ , X ₀) → (X, x ₀) will h p _N (T ₁ (X ₁ , X ₀) = H.
Pf (I) Define the universal cover p: X → X with T ₁ (X) trivial.
(2) Define X _n as a quotient of X.
(1) $\overline{X} := \{[x] \mid x \text{ is a path in X stacking at x0}\}.$
p: X → X via p([x]) = x(1).
The slsc hypothesis is used to define the topology on X via a basis.
Can check this is a covering space.
To see that X is path-connected, form a path T → X with
0 → [x ₀] and 1 → [x] via t → [x ₀]. where Y ₀ (s) = {x(s) 0 ≤ s ≤ t (x(t) + s ≤ 1).
To see that X is simply-connected, recall P* injective, let X ₀ ∈ Y ₀ = L ₀

 \mathcal{I} mage($\rho_{\rm \ast}$) is represented by loops lifting to loops. Δ mage(px) is represented by jobps jitting to labys.
Note t \mapsto [xt] lifts χ , and for this to be a loop means [xt]=[x]=[x].

Before we define a topology on \widetilde{X} we make a few preliminary observations. Let U be the collection of path-connected open sets $U \subset X$ such that $\pi_1(U) \to \pi_1(X)$ is trivial. Note that if the map $\pi_1(U) \to \pi_1(X)$ is trivial for one choice of basepoint in U. it is trivial for all choices of basepoint since U is path-connected. A path-connected open subset $V \subset U \in \mathcal{U}$ is also in U since the composition $\pi_1(V) \to \pi_1(U) \to \pi_1(X)$ will also be trivial. It follows that U is a basis for the topology on X if X is locally path-connected and semilocally simply-connected.

Given a set $U \in \mathcal{U}$ and a path y in X from x_0 to a point in U, let

 $U_{[y]} = \{ [y \cdot \eta] | \eta$ is a path in U with $\eta(0) = y(1) \}$

As the notation indicates, $U_{[y]}$ depends only on the homotopy class [y]. Observe that $p:U_{[y]} \to U$ is surjective since U is path-connected and injective since different choices of η joining $\gamma(1)$ to a fixed $x \in U$ are all homotopic in X, the map $\pi_1(U) \rightarrow \pi_1(X)$ being trivial. Another property is

 $U_{[y]} = U_{[y']}$ if $[y'] \in U_{[y]}$. For if $y' = y \cdot \eta$ then elements of $U_{[y']}$ have the (*) form $[y \cdot \eta \cdot \mu]$ and hence lie in $U_{[y]}$, while elements of $U_{[y]}$ have the form $[\gamma \cdot \mu] = [\gamma \cdot \eta \cdot \overline{\eta} \cdot \mu] = [\gamma' \cdot \overline{\eta} \cdot \mu]$ and hence lie in $U_{[\gamma']}$.

This can be used to show that the sets $U_{[v]}$ form a basis for a topology on \widetilde{X} . For if we are given two such sets $U_{[y]}$, $V_{[y']}$ and an element $[y''] \in U_{[y]} \cap V_{[y']}$, we have $U_{[y]} = U_{[y'']}$ and $V_{[y']} = V_{[y'']}$ by (*). So if $W \in \mathcal{U}$ is contained in $U \cap V$ and contains $\gamma''(1)$ then $W_{\lceil \gamma'' \rceil} \subset U_{\lceil \gamma'' \rceil} \cap V_{\lceil \gamma'' \rceil}$ and $\lceil \gamma'' \rceil \in W_{\lceil \gamma'' \rceil}$.

The bijection $p:U_{[y]} \to U$ is a homeomorphism since it gives a bijection between the subsets $V_{[y']}\subset U_{[y]}$ and the sets $V\in\mathcal{U}$ contained in U. Namely, in one direction we have $p(V_{[y']}) = V$ and in the other direction we have $p^{-1}(V) \cap U_{[y]} = V_{[y']}$ for any $[y'] \in U_{[y]}$ with endpoint in V, since $V_{[y']}\subset U_{[y']} = U_{[y]}$ and $V_{[y']}$ maps onto V by the bijection p .

The preceding paragraph implies that $p: \widetilde{X} \to X$ is continuous. We can also deduce that this is a covering space since for fixed $U \in \mathcal{U}$, the sets $U_{[y]}$ for varying [y] partition $p^{-1}(U)$ because if $[y''] \in U_{[Y]} \cap U_{[Y']}$ then $U_{[Y]} = U_{[Y']} = U_{[Y']}$ by $(*)$.

 (2) For $[x], [y'] \in \widetilde{X}$, define $[x] \rightarrow [y']$ if $y(1)=y'(1)$ and $[x \cdot \overline{y'}] \in H$. This is an equivalence relation since H is a subgroup

- · reflexive: identity
- symmetric : inverses
- Symmetric inverses
• transitive: H closed under multiplication

Define \widetilde{X}_{H} to be the quotient space $\widetilde{X}_{H}=\widetilde{X}/\sim$.
Can check the map $\widetilde{X}_{H} \rightarrow X$ induced from Ex] \rightarrow x(1) gives a coveri*ng* space.

 $We claim $\pi_1(\widetilde{X}_H, \widetilde{x_o}) \rightarrow \pi_1(X, x_o)$ has image H$ (where \widetilde{x}_{0} is the equivalence class of [xo]). Indeed, a loop χ in X lifts to a loop in $X_H \Leftrightarrow [x] \sim [x] \Leftrightarrow [x] \in H$.

 (1) (2) $\langle a^2, b^2, ab \rangle$ Deck transformations and group actions $\langle a, b^2, bab^{-1} \rangle$ (3) (4) Let $\rho: \widetilde{\mathsf{X}} \rightarrow \mathsf{X}$ be a covering space. The group of deck transformations is $\langle a^2, b^2, aba^{-1}, bab^{-1} \rangle$ $\langle a, b^2, ba^2b^{-1}, baba^{-1}b^{-1}\rangle$ $G(\tilde{\chi}) = \begin{cases} \text{covering space} & \tilde{\chi} \xrightarrow{h} \tilde{\chi} \\ \text{isomorphisms} & \text{if } \chi \neq 0 \end{cases}$ (6) (5) $\langle a^3, b^3, ab^{-1}, b^{-1}a\rangle$ $\langle a^3, b^3, ab, ba \rangle$ equipped with composition . $\overline{E_{\mathsf{X}}(7)}$ G(\overline{x}) \cong $\mathbb{Z}/_{4}$ (8) G(\overline{x}) \cong $\mathbb{Z}/_{2}$ x $\mathbb{Z}/_{2}$ (7) $\langle a^4, b^4, ab, ba, a^2b^2 \rangle$ $\langle a^2, b^2, (ab)^2, (ba)^2, ab^2a \rangle$ (9) (10) A covering space is normal if $\forall x \in X$ and $\widetilde{\kappa},\widetilde{\kappa}^{\prime} \in \rho^{-1}(\kappa), \exists$ h \in G($\widetilde{\chi}$) with h($\widetilde{\kappa}$)=h($\widetilde{\kappa}^{\prime}$). $\langle a^2, b^4, ab, ba^2b^{-1}, bab^{-2} \rangle$ $\langle b^{2n}ab^{-2n-1}, b^{2n+1}ab^{-2n} | n \in \mathbb{Z} \rangle$ (11) (12) (Maximal symmetry) $\langle a \rangle$ $\langle b^nab^{-n} | n \in \mathbb{Z} \rangle$ $\frac{E_{X}}{E_{1}}$ (1), (2), (5)-(8), (1) normal. (13) (14) $\langle ab \rangle$ $\langle a, bab^{-1} \rangle$

Deck transformations and group actions	the
0.134 Let $\rho: (\tilde{\chi}, \tilde{\kappa}_0) \rightarrow (\chi, \tilde{\kappa}_0)$ be a p.c. (b)eng	
0.25	0.26
1.26	0.27
2.27	0.28
3.28	0.29
4.20	0.20
5.20	0.20
6.20	0.20
7.21	0.20
8.22	0.20
9.23	1.20
10.20	0.20
11.22	0.20
12.23	0.20
13.24	0.20
14.25	0.20
15.26	0.20
16.20	0.20
17.20	0.20
18.20	0.20
19.20	0.20
10.20	0.20
11.20	0.20
12.20	0.20
13.20	0.20
14.	

Deck transformations and group actions

\nLet
$$
p: (\tilde{x}, \tilde{x}_0) \rightarrow (\tilde{x}, \tilde{\omega})
$$
 be a p.t. p_0 for $[\tilde{x}] \rightarrow (\tilde{x}, \tilde{\omega})$ with $\chi = p_0 \tilde{\chi}$.

\nProof 1.39 Let $p: (\tilde{x}, \tilde{x}_0) \rightarrow (\tilde{x}, \tilde{\omega})$ be a p.t. 100 m/s, ω with $\chi = p_0 \tilde{\chi}$.

\nso $[\tilde{x}] \rightarrow (\tilde{x}, \tilde{\omega})$ with $\chi = p_0 \tilde{\chi}$.

\n(a) $p: \tilde{\chi} \rightarrow X$ normal to \tilde{x} from $[\tilde{x}, \tilde{x}_0]$ and \tilde{x} with $\chi = p_0 \tilde{\chi}$.

\n(b) $G(\tilde{\chi}) \cong N(H)/H$, where the normal in $T_1(X, \tilde{x}_0)$.

\n(c) $6(\tilde{\chi}) \rightarrow (\tilde{x}, \tilde{\chi})/H$ if $p: \tilde{\chi} \rightarrow \chi$ normal.

\nCorollary 1.1. χ from $[\tilde{x}, \tilde{x}_0]$ and χ in $[\tilde{x}, \tilde{x}_0]$ and χ in $[\tilde{x}, \tilde{x}_0]$.

\nFor $[X, \tilde{x}_0]$ with χ in $[\tilde{x}, \tilde{x}_0]$ and χ in $[\tilde{x}_0]$ and χ

Deck transformations and group actions Ex The group $G(\tilde{X})$ of deck transformations acts on the covering space X by A group action on a set Y is a function $\begin{array}{lll} \text{c.k}\ \text{transformations}\ \text{and}\ \text{group} \ \text{actions} & \text{Ex} \ \text{The}\ \text{group} \ \text{G}(\widehat{\mathsf{x}}) \ \text{of} \ \text{deck}\ \text{transformations} \ \text{acts}\ \text{on}\ \text{the}\ \text{covering}\ \text{space}\ \widetilde{\mathsf{X}} \ \text{by} \ \widetilde{\mathsf{x}} \xrightarrow{\mathsf{A}} \widetilde{\mathsf{x}} \xrightarrow{\mathsf{A}} \widetilde{\mathsf{x}} \xrightarrow{\mathsf{A}} \widetilde{\mathsf{x}} \xrightarrow{\mathsf{A}} \widetilde{\mathsf{x}} \xrightarrow{\mathsf{$ n group action on a set (15 a Function) (4);
G×Y -> Y, denoted (g,y) +> g.y, satisfying (h,
• id.y = y Yy e Y $G(\overline{X}) \times \overline{X} \rightarrow \overline{X}$
 $(h, \overline{x}) \mapsto h(\overline{x})$
 $(h, \overline{x}) \mapsto h(\overline{x})$
 $(h, \overline{x}) \mapsto h(\overline{x})$ ^y ⁼ ^y FyeY o id.y = y VyeY

g' (g.y) = (g'g).y Vg,g'eG, VyeY. $EX \mathbb{Z}$ acts on \mathbb{R} That is, it is a homomorphism from G to the group of permutations of Y. & $\begin{tabular}{l} \hline \texttt{transformation} \\ \times \quad by \end{tabular}$ $Ex \mathbb{Z}^n$ acts on \mathbb{R}^n A group action on a space Y is a $\begin{array}{ccc}\n\text{Ex} & \langle a,b\rangle & \text{acts} & \text{on} & ++\n\end{array}$ A group action on a space Y is a $EX \langle a,b \rangle$ acts on
homomorphism from G to the group of homeomorphisms of Y. So does $\mathbb{Z}/4$, via rotations, \pm The <u>orbit space</u> Y/G is the but not freely. quotient space Y/2, where yeg . ^y FyzY and gEG. $For a normal covering space $\widetilde{X} \rightarrow X$,$ the orbit space $\widetilde{X}/G(\widetilde{x})$ is homeomorphic to X_{\bullet}

Deck transformations and group actions

 $(*)$

Proposition 1.40. If an action of a group G on a space Y satisfies $(*)$, then:

(a) The quotient map $p: Y \rightarrow Y/G$, $p(y) = Gy$, is a normal covering space.

- (b) G is the group of deck transformations of this covering space $Y \rightarrow Y/G$ if Y is path-connected.
- (c) G is isomorphic to $\pi_1(Y/G)/p_*(\pi_1(Y))$ if Y is path-connected and locally pathconnected.

Each $y \in Y$ has a neighborhood U such that all the images $g(U)$ for varying $g \in G$ are disjoint. In other words, $g_1(U) \cap g_2(U) \neq \emptyset$ implies $g_1 = g_2$.