Chapter 11: The Seifert-van Kampen theorem
In this chapter, we show how to understand $\pi_{1}(u \cdot v)$ in terms of U, v, and $U \sim v$.

First, we will cover three sections of algebraic preliminaries.

Algebra terminology (from Section 52)
Let G, G^{\prime} be groups.
A homomorphism $f: G \rightarrow G^{\prime}$ satisfies $f(x \cdot y)=f(x) \cdot f(y) \quad \forall x, y \in G$.
Its kernel is $f^{-1}\left(e^{\prime}\right)$, where e^{\prime} is the identity in G^{\prime}.
A homomorphism is an isomorphism if it is bijective.
A subgroup H of G is normal if $x h x^{-1} \in H \quad \forall x \in G$ and $\forall h \in H$, or equivalently, if $x H=H x \quad \forall x \in G$.

If so, the quotient group G / H has elements the cosets $x H \quad \forall x \in G$, with group operation $(x H) \cdot(y H)=(x \cdot y) H$.

Note $f: G \rightarrow G / H$ is a surjective homomorphism with kernel H.

$$
x \mapsto x H
$$

Conversely, if homomorphism $f: G \rightarrow G^{\prime}$ is surjective, then its kernel N is normal in G, and the induced map $G / N \longrightarrow G^{\prime}$ is an isomorphism.

$$
x N \longmapsto f(x)
$$

Section 67: Direct sums of abelian groups
Section 68: Free products of groups
Section 69: Free groups
Let $\left\{G_{\alpha}\right\} \alpha \in J$ be a family of (abelian?) groups.
Moral: In the category Ab of abelian groups, the categorical product is the direct product $\Pi_{\alpha} G_{\alpha}$, and the categorical coproduct is the direct sum $\Theta_{\alpha} G_{\alpha}$ In the category Gp of groups,
the categorical product is the direct product $\Pi_{\alpha} G_{\alpha}$, and the categorical coproduct is the free product $*_{\alpha} G_{\alpha}$

Schedule: Direct products of (abelian?) groups $\Pi_{\alpha} G_{\alpha}$
Direct sums of abelian groups
$\oplus_{\alpha} G_{\alpha} \quad$ (Section 67)
Free products of groups
$*_{\alpha} G_{\alpha} \quad$ (Section 68)
Free abelian groups
Free groups
$\oplus_{\alpha} \mathbb{Z}$
(Section 67)

* \mathbb{Z} (Section 69)

Section 67: Direct sums of abelian groups
Let $\left\{G_{\alpha}\right\} \alpha \in J$ be a family of (abelian?) groups.
The direct product $\Pi_{\alpha \in J} G_{\alpha}$ is a group with operation given by $\left(x_{\alpha}\right)_{\alpha \in J} \cdot\left(y_{\alpha}\right)_{\alpha \in J}=\left(x_{\alpha} \cdot y_{\alpha}\right) \alpha_{\alpha \in J} . \quad$ This is only a difference in notation. $\left.\left(x_{\alpha}\right)_{\alpha \in J}+\left(y_{\alpha}\right)_{\alpha \in J}=\left(x_{\alpha}+y_{\alpha}\right)_{\alpha \in J}.\right\}$ Additive notation for Abelian groups.
Ex In $\mathbb{Z} \times \mathbb{Z} / 4$ we have $(2,1)+(3,3)=(5,0)$, and we have $-(2,1)=(-2,-1)=(-2,3)$.
Universal property (categorical product) in Gp and Ab :

Given any (abelian?) group H and family of homomorphisms $f_{\beta}: H \rightarrow G_{\beta} \quad \forall \beta \in J$, there exists a unique homomorphism $f: H \rightarrow \prod_{\alpha \in S} G_{\alpha}$ with $\pi_{\beta} \circ f=f_{\beta} \quad \forall \beta \in J$.
(Indeed, let $f(h)=\left(f_{\alpha}(h)\right)_{\alpha \in J} \quad \forall h \in H$.)

Restrict attention to abelian groups $\left\{G_{\alpha}\right\} \alpha \in J$ (where a universal property holds)
The direct sum $\bigoplus_{\alpha \in J} G_{\alpha}$ is the subgroup of $\prod_{\alpha \in J} G_{\alpha}$ consisting of those tuples $\left(x_{\alpha}\right)_{\alpha \in J}$ with $x_{\alpha}=i d_{G_{\alpha}}$ for all but finitely many α.
For J finite, $\bigoplus_{\alpha \in J} G_{\alpha}=\Pi_{\alpha \in J} G_{\alpha}$.
Ex In $\mathbb{Z} \oplus \mathbb{Z} / 4$ we have $(2,1)+(3,3)=(5,0)$, and we have $-(2,1)=(-2,-1)=(-2,3)$.
Universal property (categorical coproduct) in Ab:

where $z_{\alpha}= \begin{cases}x_{\beta} & \text { if } \alpha=\beta \\ i d_{G_{\alpha}} & \text { otherwise }\end{cases}$

Given any abelian group H and family of homomorphisms $f_{\beta}: G_{\beta} \rightarrow H \quad \forall \beta \in J$, there exists a unique homomorphism $f: \bigoplus_{\alpha \in J} G_{\alpha} \rightarrow H$ with $f \circ i_{\beta}=f_{\beta} \quad \forall \beta \in J$.
(Indeed, let $f\left(\sum_{j=1}^{n} i_{B_{j}}\left(x_{\beta j}\right)\right)=\sum_{j=1}^{n} f_{\beta_{j}}\left(x_{\beta_{j}}\right)$.)

Ex Let J be infinite and $G_{\beta}=\mathbb{Z} \quad \forall \beta$.
To see that $\oplus_{\alpha \in s} \mathbb{Z}$ (equipped with the projections π_{β})
is not the categorical product in $A b$,
consider $H=\pi_{\alpha \in J} \mathbb{Z}$ with $f_{\beta}=\pi_{\beta} \quad \forall \beta$.
Correct:
Incorrect:

$$
\begin{aligned}
& \prod_{\alpha \in J} \mathbb{Z} \cdots \cdots \cdots \cdots \oplus_{\alpha \in J} \mathbb{Z} \ni\left(x_{\alpha}\right)_{\alpha \in J}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section 68: Free products of groups
Now, let $\left\{G_{\alpha}\right\} \alpha \in J$ be a family of groups.
The free product $*_{\alpha \in J} G_{\alpha}$ will satisfy the universal property making it the copraduct in Gp:

Given any group H and
family of homomorphisms $f_{\beta}: G_{\beta} \rightarrow H \quad \forall \beta \in J$,
there exists a unique homomorphism $f: \mathcal{N}_{\alpha \in J} G_{\alpha} \rightarrow H$ with $f \circ i_{\beta}=f_{\beta} \quad \forall \beta \in J$.

What is a more explicit definition of the free product $*_{\alpha \in J} G_{\alpha}$?

First, let's do an example.
Let $\mathbb{Z}=\left\{\ldots, g^{-2}, g^{-1}, g^{0}, g^{\prime}, g^{2}, \ldots\right\}=\langle g\rangle$ and $\mathbb{Z} / 4=\left\{r, r^{2}, r^{3}, r^{0}\right\}=\left\langle r \mid r^{4}\right\rangle$
Though these groups are abelian, their free product $\mathbb{Z} * \mathbb{Z} / 4$ is not.
Its elements are finite words such as $g^{7} r^{3} g^{-2} r$ and $r^{-1} g^{2} r^{-1} g^{-7}$.

$$
\begin{aligned}
& \text { Multiplication looks like } \\
& \left(g^{7} r^{3} g^{-2} r\right)\left(r^{-1} g^{2} r^{-1} g^{-7}\right)=g^{7} r^{3} g^{-2} r r^{-1} g^{2} r^{-1} g^{-7}=g^{7} r^{2} g^{-7} \\
& \text { and } \\
& \left(r^{-1} g^{2} r^{-1} g^{-7}\right)\left(g^{7} r^{3} g^{-2} r\right)=r^{-1} g^{2} r^{-1} g^{-7} g^{7} r^{3} g^{-2} r=r^{-1} g^{2} r^{2} g^{-2} r .
\end{aligned}
$$

Inverses look like $\left(g^{7} r^{3} g^{-2} r\right)^{-1}=r^{-1} g^{2} r^{-3} g^{-7}$

For another example, let $\mathbb{Z}=\langle g\rangle, \mathbb{Z}=\langle h\rangle$, and $\mathbb{Z} / 4=\left\langle r \mid r^{4}\right\rangle$.
Elements of the free product $\mathbb{Z} * \mathbb{Z} * \mathbb{Z} / 4$ are finite words, such as $g h^{2} r h r g^{-7} h^{-1}$ and $h r^{3} h^{-2} g^{-1}$.
Multiplication looks like

$$
\begin{aligned}
& \left(g h^{2} r h r g^{-7} h^{-1}\right)\left(h r^{3} h^{-2} g^{-1}\right)^{2}=g h^{2} r h r g^{-7} r^{3} h^{-2} g^{-1} \\
& \text { and } \\
& \left(h p^{3} h^{-2} g^{-1}\right)\left(g h^{2} r h r g^{-7} h^{-1}\right)=h^{2} r g^{-7} h^{-1} \text {. } \\
& r^{4}=i d \text { in } \mathbb{Z} / 4
\end{aligned}
$$

More generally, the elements of $*_{\alpha \in J} G_{\alpha}$ are reduced words: finite strings of nonidentity elements in the G_{α} 's such that adjacent letters are from different G_{α} 's. To multiply, concatenate and then reduce. The identity is the empty word.
(Checking associativity is hard, but the universal property) is related to a weaker extension property that helps.

Section 68: Free products of groups
Now, let $\left\{G_{\alpha}\right\} \alpha \in J$ be a family of groups.
The free product $*_{\alpha \in J} G_{\alpha}$ will satisfy the universal property making it the copraduct in Gp:
$H \leftarrow \cdots \cdots \cdots \cdots{ }_{\alpha \in J}^{*} G_{\alpha} \ni x_{\beta} \longleftarrow \cdots$ reduced word of length one

Do you see now why the definition of i_{β} makes sense?
$f\left(g_{1} g_{2} \cdot \ldots \cdot g_{n}\right)=f_{\beta_{1}}\left(g_{1}\right) f_{\beta_{2}}\left(g_{2}\right) \cdot \ldots \cdot f_{\beta_{n}}\left(g_{n}\right)$ where $g_{i} \in \beta_{i} \quad \forall i$.

Let G be a group.
Elements $x, y \in G$ are conjingate if $y=c x c^{-1}$ for some $c \in G$.
A normal subgroup of G is one that contains all conjugates of its elements.
For S a subset of G, let N be the intersection of all normal subgroups of G containing S. Can you see why N is a normal subgroup of G ? It is called the least normal subgroup containing S.

Lemma The least normal subgroup N of G containing S is generated by all conjugates of elements of S.
Pf Let N^{\prime} be the subgroup of G generated by all conjugates of elements in S. Clearly $N^{\prime} C N$ since N is normal.

To show $N \subset N^{\prime}$, it suffices to show N^{\prime} is normal in G. So, let $x \in N^{\prime}$ and $c \in G$.
Then $x=x_{1} x_{2} \ldots x_{n}$ with $x_{i}=c_{i} s_{i} c_{i}^{-1}$ for some $c_{i} \in G$ and s_{i} satisfying $s_{i} \in S$ or $s_{i}^{-1} \in S$.
So $\quad c x c^{-1}=\left(c x_{1} c^{-1}\right)\left(c x_{2} c^{-1}\right) \ldots\left(c x_{n} c^{-1}\right)=\left(\left(c c_{1}\right) s_{1}\left(c c_{1}\right)^{-1}\right)\left(\left(c c_{1}\right) s_{2}\left(c c_{2}\right)^{-1}\right) \cdot \ldots \cdot\left(\left(c c_{n}\right) s_{n}\left(c c_{n}\right)^{-1}\right)$, giving $\left(x c^{-1} \in N^{\prime}\right.$, as desired.

The Let $G=G_{1} * G_{2}, N_{i}$ normal in G_{i}, N the least normal subgroup of G containing N_{1} and N_{2}, Then $G / N \cong\left(G_{1} / N_{1}\right) *\left(G_{2} / N_{2}\right)$.

Proof uses the universal property

Corollary If N is the least normal subgroup of G containing G_{1}, then $\left(G_{1} * G_{2}\right) / N \cong G_{2}$.

Section 69 Free groups
A free group is isomorphic to $*_{\alpha \in J} \mathbb{Z}$.
Possible notation is $*_{\alpha \in J}\left\langle g_{\alpha}\right\rangle$, where $\left\langle g_{\alpha}\right\rangle=\left\{\ldots, g_{\alpha}^{-2}, g_{\alpha}^{-1}, g_{\alpha}^{0}, g_{\alpha}^{1}, g_{\alpha}^{2}, \ldots\right\}$ is infinite cyclic.
A free abelian group is isomorphic to $\Theta_{\alpha \in J} \mathbb{Z}$.
There are universal properties characterizing these as the "free objects" in the categories $G p$ and $A b$ of groups and abelian groups, respectively.
Any subgroup of $\bigoplus_{i=1}^{m} \mathbb{Z}$ isomorphic to $\bigoplus_{i=1}^{n} \mathbb{Z}$ for $n \leqslant m$.
Similarly, any subgroup of a free group is free.
(One beautiful proof uses covering spaces.)
But, surprisingly, $\mathbb{Z} * \mathbb{Z}=*_{i=1}^{2} \mathbb{Z}$ has a subgroup
isomorphic to $w_{i=1}^{n} \mathbb{Z}$ for any integer n !

Indeed, the subgroup of $\mathbb{Z} * \mathbb{Z}=\langle a, b\rangle$ generated by $b, a b a^{-1}, a^{2} b a^{-2}, \ldots, a^{n-1} b a^{-(n-1)}$ is isomorphic to $*_{i=1}^{n} \mathbb{Z}$.

Ex The element $a b a b a^{-2} b^{3} a^{2} b^{-1} a b^{2} a^{-1}$ is in the subgroup H of $\mathbb{Z} * \mathbb{Z}$ generated by $b, a b a^{-1}, a^{2} b a^{-2}$.

Aside: $\left(a^{2} b a^{-2}\right)^{-1}=a^{2} b^{-1} a^{-2}$
Check that
ababa $a^{-2} b^{3} a^{2} b^{-1} a b^{2} a^{-1}=\left(a b a^{-1}\right)\left(a^{2} b a^{-2}\right)(b)(b)(b)\left(a^{2} b^{-1} a^{-2}\right)\left(a b a^{-1}\right)\left(a b a^{-1}\right)$
is the unique way to write this element as a product of the terms $b, a b a^{-1}, a^{2} b a^{-2}$ and their inverses.

One can show there is an isomorphism $H \longleftarrow \cong \mathbb{Z} * \mathbb{Z} * \mathbb{Z}=\left\langle g_{0}, g_{1}, g_{2}\right\rangle$

$$
\begin{aligned}
b & \longleftrightarrow g_{0} \\
a b a^{-1} & \longleftrightarrow g_{1} \\
a^{2} b a^{-2} & \longleftrightarrow g_{2}
\end{aligned}
$$

Group presentations
Let $Z=\left\{g_{\alpha}\right\}_{\alpha \in J}$ be a set (of generators)
and $R=\left\{r_{\beta}\right\}_{\beta \in K}$ be a set (of relations)
with $r_{\beta} \in{ }_{\alpha \in J}^{*}\left\langle g_{\alpha}\right\rangle \quad \forall \beta$.
Then $\langle Z \mid R\rangle$ is the group $\left({ }_{\alpha \in J}^{*}\left\langle g_{\alpha}\right\rangle\right) / N$, where N is the least normal subgroup containing R.

Ex $\langle a, b\rangle \cong \mathbb{Z} * \mathbb{Z}$
Ex $\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle \cong \mathbb{Z} \oplus \mathbb{Z}$
Ex $\langle r, s| r^{n}, s^{2}, \frac{s r s r}{s r s=r^{-1}}$ is the dihedral group (symmetries of regular n-goo)
Ex $\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3} \mid \alpha_{3}^{-1} \beta_{3}\right\rangle \cong\left\langle\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, g\right\rangle$
The group isomorphism problem (deciding if two finitely presented groups are isomorphic) is undecidable. In some finitely presented groups the word problem (deciding if a word is the identity) is undecidable.

Section 70 The Seifert-van Kampen theorem
Chm (Seifert-vanKampen) Let $X=U \cup V$ with U, V open in X, with $U, V, U \cap V$ path-connected, and $x_{0} \in U \cap V$. Then the homomorphism

$$
\Phi: \pi_{1}\left(u, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective, and its kernel N is the least normal subgroup containing all words of the form $i_{u}(g)^{-1} i_{v}(g)$ for $g \in \pi_{1}\left(u_{1} V, x_{0}\right)$. Hence $\pi_{1}(X) \cong\left(\pi_{1}(u) * \pi_{1}(v)\right) / N$.

Section 70 The Seifert-van Kampen theorem
Thm (Seifert-vanKampen) Let $X=U \cup V$ with U, V open in X, with $U, V, U \cap V$ path-connected, and $x_{0} \in U \cap V$. Then the homomorphism

$$
\Phi: \pi_{1}\left(u, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective, and its kernel N is the least normal subgroup containing all words of the form $i_{u}(g)^{-1} i_{v}(g)$ for $g \in \pi_{1}\left(u_{1} V, x_{0}\right)$. Hence $\pi_{1}(X) \cong\left(\pi_{1}(u) * \pi_{1}(v)\right) / N$.

$$
\begin{aligned}
\pi_{1}(U) & =\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}\right\rangle \quad \pi_{1}(V)=\left\langle\beta_{1}, \beta_{2}, \beta_{3}\right\rangle \quad \pi_{1}\left(U_{0} V\right)=\langle g\rangle \\
\pi_{1}(X) & \cong\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3} \mid i_{u}(g)^{-1} i_{v}(g)\right\rangle \quad \text { Not } \\
& =\left\langle\alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3} \mid \quad \alpha_{3}^{-1} \beta_{3}\right\rangle \\
& \cong\left\langle\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}, g\right\rangle
\end{aligned}
$$

To see that the path-connected assumption is necessary, note that if $X=S^{\prime}$ with U, V as drawn, then Φ is not even surjective.

Corollary If $U \cap V$ is simply connected, then
$\Phi: \pi_{1}(u) * \pi_{1}(v) \longrightarrow \pi_{1}(X)$ is an isomorphism.
Ex $\pi_{1}($ figure eight $)=\pi_{1}\left(s^{\prime} \vee s^{\prime}\right) \cong\langle a, b\rangle$.

More generally, if $\left(Y, y_{0}\right)$ and $\left(Z, z_{0}\right)$ are two pointed spaces, then their wedge sum $y \vee z$ is the quotient space $(y \Perp z) /\left(y_{0} \sim z_{0}\right)$.

True if $X_{1} Y_{\text {are }}$ (If path-connected Y has a contractible nobs N_{y} about y_{0}, "CW complexes" and path-connected Z has a contractible nbhd N_{z} about z_{0}, then applying the corollary

$$
\begin{aligned}
& \text { then applying ene corollary } \\
& \text { (with } U=Y \vee N_{z}, V=N_{y} \vee Z, U_{n} V=N_{y} \vee N_{z} \simeq *, U \cup V=y \cdot z \text {) }
\end{aligned}
$$

gives $\pi_{1}(y, z) \cong \pi_{1}(y) * \pi_{1}(z)$.

The (Seifert-van Kampen) Let $X=U \cup V$ with U, V open in X, with $U, V, U \cap V$ path-connected, and $x_{0} \in U \cap V$. Then the homomorphism

$$
\Phi: \pi_{1}\left(u, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective, and its kernel N is the least normal subgroup containing all words of the form $i_{u}(g)^{-1} i_{v}(g)$ for $g \in \pi_{1}\left(U \wedge V_{1} x_{0}\right)$. Hence $\pi_{1}(X) \cong\left(\pi_{1}(u) * \pi_{1}(v)\right) / N$.

Proof Sketch (following Hatcher Thy 1.20)
Notation: A factorization of $[f] \in \pi_{1}(x)$ is a product $[f]=\Phi\left(\left[h_{1}\right] \cdots\left[h_{n}\right]\right)$ with each $\left[h_{i}\right]$ in $\pi_{i}(u)$ or $\pi_{1}(v)$.

Recall from the proof of Munkres Thy 59.1 that [f] has a factorization

$$
[f]=\left[f_{1}, \alpha_{1}\right]\left[\alpha_{1}, f_{1} \alpha_{2} \bar{l}_{2}\right] \ldots \cdot\left[\alpha_{k-2} f_{k-1}-\alpha_{k-1}\right]\left[\alpha_{k-1} f_{k}\right]
$$

$=\Phi\left(\left[h_{1}\right]\left[h_{2}\right] \cdot \ldots \cdot\left[h_{k_{1}-1}\right]\left[h_{k}\right]\right)$. Hence Φ is surjective.

It is clear $N c \operatorname{ker}(\Phi)$ since $\forall g \in \pi_{1}(U n V)$,

$$
\begin{aligned}
\Phi\left(i_{u}(g)^{-1} i_{v}(g)\right) & =\Phi\left(i_{u}(g)^{-1}\right) \Phi\left(i_{v}(g)\right) \\
& =\Phi\left(i_{u}(g)\right)^{-1} \Phi\left(i_{v}(g)\right) \\
& =j_{u}\left(i_{u}(g)\right)^{-1} j_{v}(i v(g)) \\
& =i_{\text {entity }}
\end{aligned}
$$

since $U \cap V_{C}^{\rightarrow} U_{C}^{c} X$ commutes.
Aside Similary for conjugates:
Given any $c \in \pi_{1}(u) * \pi_{1}(v)$,
We have $\Phi\left(c \quad i n(g)^{-1} i v(g) c^{-1}\right)=\Phi(c) \Phi\left(i u(g)^{-1} i v(g)\right) \Phi\left(c^{-1}\right)$

$$
=\Phi(c) \Phi(c)^{-1}
$$

$=$ identity.
It remains to show $\operatorname{ker}(\Phi) \subset N$, i.e. if two factorizations have the same image

$$
\Phi\left(\left[h_{1}\right] \cdots\left[h_{k}\right]\right)=\Phi\left(\left[h_{1}^{\prime}\right] \cdots\left[h_{l}^{\prime}\right]\right),
$$

then one can be obtained from the other by regarding $\left[h_{i}\right] \in \pi_{1}(U \cap v)$ as lying in $\pi_{1}(u)$ or $\pi_{1}(v)$ and reducing. ie. by applying relations in N.

- Let $F: I \times I \rightarrow X$ be a homotopy from $h_{1} \cdots h_{k}$ to $h_{1}^{\prime} \cdots h_{l}^{\prime}$.
- By compactness of $\operatorname{I\times I~(and~the~Lebesgue~number~lemma)~}$ We can subdivide $I \times I$ into small squares, each mapped into U or V.

- At each vertex of the subdivision, choose a path in U, in V, or in $U_{n} V$ to x_{0}.
- Obtain the blue factorization from the red one by regarding the green loop γ (including the paths to x_{0}) as lying in V insead of in U, using a relation in N. Then homotope across the small square.
- Continue until we obtain the factorization $\left[h_{1}^{\prime}\right] \cdots\left[h_{l}^{\prime}\right]$
from $\left[h_{1}\right] \cdots\left[h_{k}\right]$ after applying relations in N.

Chm (Seifert-vanKampen) Let $X=U \cup V$ with U, V open in X, with $U, V, U \sim V$ path-connected, and $x_{0} \in U \cap V$. Then the homomorphism

$$
\Phi: \pi_{1}\left(u, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective, and its kernel N is the least normal subgroup containing all words of the form $i_{u}(g)^{-1} i_{v}(g)$ for $g \in \pi_{1}\left(U \wedge V, x_{0}\right)$. Hence $\pi_{1}(X) \cong\left(\pi_{1}(u) * \pi_{1}(v)\right) / N$.

Ex In the finitely presented case, if $\pi_{1}\left(U_{1} x_{0}\right)=\left\langle\alpha_{1}, \ldots, \alpha_{k} \mid r_{1}, \ldots, r_{l}\right\rangle$

$$
\begin{aligned}
& \pi_{1}\left(v, v_{0}\right)=\left\langle\beta_{1}, \ldots, \beta_{m} \mid s_{1}, \ldots, s_{n}\right\rangle \\
& \pi_{1}\left(u N, r_{s_{0}}\right)=\left\langle g_{1}, \ldots, g_{p} \mid t_{1}, \ldots, t_{q}\right\rangle
\end{aligned}
$$

then $\pi_{1}\left(X_{1} x_{0}\right) \cong\left\langle\alpha_{1}, \ldots, \alpha_{k}, \beta_{1}, \ldots, \beta_{m} \mid r_{1}, \ldots, r_{2}, s_{1}, \ldots, s_{n}, i_{n}\left(g_{1}\right)^{-1} i_{v}\left(g_{1}\right), \ldots, i_{u}\left(g_{p}\right)^{-1} i_{v}\left(g_{p}\right)\right\rangle$.

$$
\text { Aside } i_{u}\left(g_{1} g_{2}\right)^{-1} i_{v}\left(g_{1} g_{2}\right)=i_{u}\left(g_{2}\right)^{-1} i_{u}\left(g_{1}\right)^{-1} i_{v}\left(g_{1}\right) i_{v}\left(g_{2}\right)=i_{u}\left(g_{2}\right)^{-1} i_{u}\left(g_{1}\right)^{-1} i_{v}\left(g_{1}\right) i_{n}\left(g_{2}\right) i_{u}\left(g_{2}\right)^{-1} i_{v}\left(g_{2}\right) .
$$

Chm (Seifert-vanKampen) Let $X=U \cup V$ with U, V open in X, with $U, V, U \wedge V$ path-connected, and $x_{0} \in U \cap V$. Then the homomorphism

$$
\Phi: \pi_{1}\left(U, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective, and its kernel N is the least normal subgroup containing all words of the form $i_{u}(g)^{-1} i_{v}(g)$ for $g \in \pi_{1}\left(U \cap V, x_{0}\right)$. Hence $\pi_{1}(X) \cong\left(\pi_{1}(u) * \pi_{1}(v)\right) / N$.

Corollary Given the hypotheses of the theorem, if $U_{\cap} V$ is simply connected, then
 is an isomorphism.

Thm (Seifert-vanKampen) Let $X=U \cup V$ with U, V open in X, with $U, V, U \cap V$ path-connected, and $x_{0} \in U \cap V$. Then the homomorphism

$$
\Phi: \pi_{1}\left(u, x_{0}\right) * \pi_{1}\left(V, x_{0}\right) \longrightarrow \pi_{1}\left(X, x_{0}\right)
$$

is surjective, and its kernel N is the least normal subgroup containing all words of the form $i_{u}(g)^{-1} i_{v}(g)$ for $g \in \pi_{1}\left(U_{\wedge}, V_{1} x_{0}\right)$. Hence $\pi_{1}(X) \cong\left(\pi_{1}(u) * \pi_{1}(v)\right) / N$.

Corollary Given the hypotheses of the theorem, if V is simply connected, then Φ induces an isomorphism

where N is the least normal subgroup of $\pi_{1}\left(u_{1}, x_{0}\right)$ containing all words of the form $i_{u}(g)$ for $g \in \pi_{1}\left(u \wedge v, x_{0}\right)$.

Ex Let $T=S^{\prime} \times S^{1}$ be the torus.
We already saw $\pi_{1}(T) \cong \pi_{1}\left(S^{\prime}\right) \times \pi_{1}\left(S^{\prime}\right) \cong \mathbb{Z} \times \mathbb{Z}$.
Alternatively, apply SVK with $\pi_{1}(u)=\langle a, b\rangle$, $\pi_{1}(v)=\{u d\}, \quad \pi_{1}(u \cap v)=\langle g\rangle, \quad i_{u}(g)=a b a^{-1} b^{-1}$ to get

$$
\pi_{1}(T) \cong\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle \cong \mathbb{Z} \times \mathbb{Z}
$$

Ex Let T\#T be the double torus.
Apply SVK with $\pi_{1}(u)=\left\langle a_{1}, b_{1}, a_{2}, b_{2}\right\rangle$,
$\pi_{1}(v)=\{i d\}, \quad \pi_{1}(u \cap v)=\langle g\rangle, \quad i_{n}(g)=a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1}$ to get

$$
\pi_{1}(T \# T) \cong\left\langle a_{1}, b_{1}, a_{2}, b_{2} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1}\right\rangle
$$

Aside: In homework, you determine $\pi_{1}(T \| T)$ using SVK on a union using different pieces.

Ex Let $\mathbb{R P}^{2}$ be real projective space: $\mathbb{R P}^{2}=S^{2} / \sim$, where $x \sim-x \quad \forall x \in S^{2}$.

We already saw $\pi_{1}\left(\mathbb{R} P^{2}\right) \cong \mathbb{Z} / 2$ since $\mathbb{R} P^{2}$ has a simply connected 2-fold covering space
$\left(s^{2}\right)$

Alternatively, apply SVK with $\pi_{1}(u)=\langle a\rangle$, $\pi_{1}(v)=\{u\}, \quad \pi_{1}(u \cap v)=\langle g\rangle, \quad i_{u}(g)=a^{2}$ to get

$$
\pi_{1}\left(\mathbb{R} P^{2}\right) \cong\left\langle a \mid a^{2}\right\rangle \cong \mathbb{Z} / 2 .
$$

Ex Let K be the Klein bottle.
Apply SVK with $\pi_{1}(u)=\langle a, b\rangle$,

$$
\pi_{1}(v)=\{u\}, \quad \pi_{1}(u \cap v)=\langle g\rangle, \quad i u(g)=a b a^{-1} b
$$

to get

$$
\pi_{1}(K) \cong\left\langle a, b \mid a b a^{-1} b\right\rangle
$$

Later, we will see that any compact surface is homeomorphic to either the 2 -sphere S^{2}, the n-fold connected sum of tori $\underbrace{T \# \ldots \# T}_{n \text { times }}$, or the m-fold connected sum of projective planes $\frac{\mathbb{R}^{2} \# \ldots \# \mathbb{R}^{2}}{m \text { times }}$.
Using SVK, we can compute the fundamental groups of these surfaces (and their abelianizations) to show no two surfaces on this list are homeomorphic.
$\pi_{1}(\underbrace{T \# \ldots \#}_{n \text { times }}) \cong\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}\right\rangle$ with abelianization $\oplus_{i=1}^{2 n} \mathbb{Z}$. $\pi_{1}(\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}) \cong\left\langle a_{1}, \ldots, a_{m} \mid a_{1}^{2} a_{2}^{2} \cdots a_{m}^{2}\right\rangle \quad$ with abelianization $\left(\Theta_{i=1}^{m-1} \mathbb{Z}\right) \oplus \mathbb{Z} / 2$.

Note the Klein bottle K is homeomorphic to $\mathbb{R} P^{2} \# \mathbb{R} P^{2}$:

Klein bottle K

"standard form"

$\mathbb{R} P^{2} \# \mathbb{R} P^{2}$

$$
\pi_{1}(k) \cong\left\langle a, b \mid a b a^{-1} b\right\rangle
$$

$$
\pi_{1}(k) \cong\left\langle a, c \mid a^{2} c^{2}\right\rangle
$$

Section 71: The fundamental group of a wedge of circles
Let $\left\{\left(S_{\alpha}^{1}, P_{\alpha}\right)\right\}_{\alpha \in J}$ be a collection of circles, each with a chosen basepoint $p_{\alpha} \in S_{\alpha}^{\prime}$.
Their wedge sum is $\bigvee_{\alpha \in J} S_{\alpha}^{1}=\left(\frac{1}{\alpha \in J} S_{\alpha}^{1}\right) /\left(p_{\alpha} \sim p_{\beta} \forall \alpha, \beta \in J\right)$.
(The topology is such that a set U is open in the wedge sum \Longleftrightarrow each intersection Un S_{α}^{1} is open in S_{α}^{1}.)
$\operatorname{Thm} \pi_{1}\left(\bigvee_{\alpha \in J} S_{\alpha}^{1}\right) \cong \underset{\alpha \in J}{*}\left\langle f_{\alpha}\right\rangle$

Be careful with the topology！
Ex The Hawaiian earrings space is $X=\bigcup_{n \geq 1} C_{n}$ ， where $C_{n}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\,\left(x-\frac{1}{n}\right)^{2}+y^{2}=\frac{1}{n^{2}}\right.\right\}$ ， with the subspace topology from \mathbb{R}^{2} ． （This is not the wedge sum topology．）

The loop $g:[0,1] \rightarrow X$ that wraps around C_{n}
 over $\left[\frac{1}{n+1}, \frac{1}{n}\right]$ is continuous．
Note $[g]$ does not belong to the subgroup of $\pi_{1}(x)$ generated by $\left[f_{1}\right],\left[f_{2}\right], \ldots,\left[f_{n}\right]$ for any n ，
where f_{i} wraps around C_{i} ．
（To see this，for $N>n$ consider the map $h: X \rightarrow C_{N}$ which is the identity on C_{N} and maps C_{i} to the basepoint for $i \neq N$ ． Note $h_{*}([g]) \neq 0$ but $h_{*}\left(\left[f_{i}\right]\right)=0$ for $\left.i=1, \ldots, n_{\text {．}}\right)$
Hence $\pi_{1}(X) \neq *_{i=1}^{\infty}\left\langle\left[f_{i}\right]\right\rangle$ ．

Aside：Interestingly， while the abelianization of $\pi_{i}\left(V_{i=1}^{\infty} S^{\prime}\right)=⿻ 丷 木_{i=1}^{\infty} \mathbb{Z}$ is $\oplus_{i=1}^{\infty} \mathbb{Z}$ ，the abelianization of $\pi_{1}(X)$ is

$$
\prod_{i=1}^{\infty} \mathbb{Z} \oplus\left(\prod_{i=1}^{\infty} \mathbb{Z} / \bigoplus_{i=1}^{\infty} \mathbb{Z}\right)_{0}
$$

elements are words of finite length （in an infinite alphabet）

Section 72: Adjoining a two-cell
If desired, you can be more careful with basepoints. Let $x_{0} \in U \wedge V$, let $y_{0} \in U$, let γ be a path in U from y_{0} to x_{0}.

Apply SVK with

$$
\begin{aligned}
& \pi_{1}\left(u, y_{0}\right)=\langle[a],[b]\rangle \\
& \pi_{1}\left(u, x_{0}\right)=\langle\hat{\gamma}[a], \hat{\gamma}[b]\rangle \quad \text { Recall } \hat{\gamma}[\alpha]:=[\bar{\gamma} * a * \gamma] \\
& \pi_{1}\left(v, x_{0}\right)=\{i d\} \\
& \pi_{1}\left(u, v, x_{0}\right)=\langle[g]\rangle \\
& i_{u}([g])=[\bar{\gamma} * a * b * \bar{a} * \bar{b} * \gamma]=\hat{\gamma}[a] * \hat{\gamma}[b] * \hat{\gamma}[a]^{-1} * \hat{\gamma}[b]^{-1} \\
& t_{0} \text { get } \\
& \pi_{1}\left(T, x_{0}\right) \cong\langle\hat{\gamma}[a], \hat{\gamma}[b]| \hat{\gamma}[a] * \hat{\gamma}[b] * \hat{\gamma}[a]^{-1} * \hat{\gamma}\left[b b^{-1}\right\rangle \\
& \cong\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle .
\end{aligned}
$$

Thu (See Munkres Thm 72.1 and $\$ 72$ Exercise \#2) spaces are normal.
Let A be a normal space and $f: S^{\prime} \rightarrow A$ be continuous, $S^{\prime} \subset B^{2}$.
Consider the adjunction space $A v_{f} B^{2}:=\left(A \Perp B^{2}\right) /\left(f(x) \sim x \quad \forall x \in S^{\prime}\right)$.
Then $A \rightarrow A v_{s} B^{2}$ induces a surjection $\pi_{1}(A) \rightarrow \pi_{1}\left(A v_{f} B^{2}\right)$ whose kernel N is the least normal subgroup of $\pi_{1}(A)$ containing [f].

Section 73: The fundamental group of the torus and dunce cap
Def The $\frac{n \text {-fold dunce cap } \text { is the quotient space }}{}$

$$
B^{2} /\left(x \sim r(x) \quad \forall x \in S^{\prime}\right) \text {, }
$$

where $\begin{aligned} & \\ & \\ & S^{1} \longrightarrow S^{1} \text { is } \\ & e^{i \theta} \mapsto e^{i(\theta+2 \pi / n)}\end{aligned}$

Equivalently,
Def The n-fold dunce cap is the adjunction space $S^{\prime} v_{f} B^{2}:=\left(S^{\prime} \Perp B^{2}\right) /(f(x) \sim x)$, where $f: S^{\prime} \rightarrow S^{\prime}$ via $e^{i \theta} \mapsto e^{i n \theta}$.

The n-fold dunce cap is

- a ball B^{2} for $n=1$,
- the projective plane $\mathbb{R P}^{2}$ for $n=2$,
- not a manifold for $n \geq 3$.
$\operatorname{Thm} \pi_{1}(n$-fold dunce cap $) \cong \mathbb{Z} / n \cong\left\langle a \mid a^{n}\right\rangle$

Ex Find a space X with $\pi_{1}(x) \cong \mathbb{Z} / 3 \times \mathbb{Z} / 9$.
Ans $X=(3$-fold dunce cup $) \times(9-$ fold dunce cap $)$.
Ex Find a space X with $\pi_{1}(x) \cong \mathbb{Z} / 3 * \mathbb{Z} / 9 * \mathbb{Z}$.
Ans $X=(3$-fold dunce cup $) \vee(9$-fold dunce cap $) \vee S^{\prime}$.
Ex Find a space X with $\pi_{1}(X) \cong(\mathbb{Z} * \mathbb{Z}) \times(\mathbb{Z} * \mathbb{Z})$.
Ans $X=\left(S^{\prime} \vee S^{\prime}\right) \times\left(S^{\prime} \vee S^{\prime}\right)$.

More generally, ...

Fact For any finitely presented group

$$
G=\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

there is a space X with $\pi_{1}(X) \cong G$.
Indeed, let X be the adjunction space obtained from $A=V_{i=1}^{n} S^{\prime} \quad\left(\right.$ so $\left.\pi_{1}(A) \cong\left\langle g_{1}, \ldots, g_{n}\right\rangle\right)$
by attaching m balls B^{2} along their boundary circles, where the j th attaching map $S^{\prime} \longrightarrow A$ for $j=1, \ldots, m$ is given by the j-th relation r_{j}.

$$
\underline{E x} G=\left\langle g_{1}, g_{2}, g_{3}, g_{4} \mid \quad g_{1}, g_{2} g_{3}^{-1}\right\rangle \quad \underline{E x} \quad G=\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{3}, g_{1} g_{3} g_{2}^{-1} g_{1}^{7} g_{3}, g_{2} g_{3}^{2}\right\rangle
$$

$X=$ hard to visualize, but not hard to understand abstractly!

This is a theme in algebraic topology: many algebraic objects (or morphisms) have topological analogues.

