
Chapter 11 : The Seifert-ran Kampen theorem

In this chapter, we show how to understand it
, (UV)

in terms of U, V
,

and U . V
.
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First
,

we will cover three sections of algebraic preliminaries.



Algebra terminology (from Section 52)
Let G

,
G' be groups.

A homomorphism F : G-G' satisfies f(xy) = f()ofly) x
,y G

.

Its Kernel is f + (e)
,

where e is the identity in G'
.

A homomorphism is an isomorphism if it is bijective .

A subgroup H of G is normal if whH EG and WhEH
,

or equivalently ,
if H = He EG

.

If so
,
the quotient group /H has elements the cosets &H EG,

with group operation (H) . (yH)= (g) H
.

Note : G+ G/H is a surjective homomorphism with Kernel H
.

x 0 xH

Conversely if homomorphism f : G+ G' is surjective, then its kernel N is normal
/

in G, and the induced map G/N-G' is an isomorphism .

N +0 f(x)



Section 67 : Direct sums of abelian groups
Section 68 : Free products of groups
Section 69 : Free groups

Let Goes be a family of (abelian ?) groups.

Moral : In the category Ab of Abelian groups,
the categorical product is the direct product ToGo,
and the categorical coproduct is the direct sum &Go

In the category Gp of groups,
the categorical product is the direct product ToGo,
and the categorical coproduct is the free product * Go

Schedule : Direct products of (abelian ?) groups ToGo
Direct sums of abelian groups ⑦ Go (Section 67)

xoFree products of groups
+& Go (Section 68)

-

tree abelian groups ⑦ (Section 67)
Free groups * (Section 69)



Section 67 : Direct sums of abelian groups
Let &Goes be a family of labelian ?) groups.

The direct product Toes Go is a group with operation given by
(d (ydoes = ( yd)deJ . 3 This is only a difference in notation

.

Hedges (ydges = (d+ ya)deJ .

Additive notation for Abelian groups.

Ex In / we have (2
, 1) + (3

, 3) = (5,
0),

and we have - (2
, 1) = (- 2

,

- 1) = (- 2
,
3)
·

Universal property (categorical product) in Gp and Abi

-........ --H Gift GG
(doesi Given any Labelian ?) group H and

family of homomorphisms F : H-G XBEJ,

I there exists a unique homomorphism F :H

-Go B

with of = FB XBEJ.

(Indeed ,

let f(n) = (fooes WhEH
.
)



Restrict attention to abelian groups &GET (where a universal property holds

The direct sum Go is the subgroup of ToesGa consisting
of those tuples (dret with -= idea for all but finitely many~ &

For J finite
,
Des Go=oes Gr

.

Ex In / we have (2
, 1) + 3

, 3) = (5,
0),

and we have - (2
, 1) = (- 2

,

- 1) = (- 2
,
3)
·

Universal property (categorical coproduct) in Ab :

-........ -- -----He Go (zdde5
Given any abelian group H and

~ 7f family of homomorphisms FiG-H XBEJ,

↑ iB 1 there exists a unique homomorphism : H

FB with foip = FB XBEJ.

GB - B

E Indeed
,

let ( ))=I i).where = itaheise



Ex Let J be infinite and G- B .

To see that s lequipped with the projections TB)
is not the categorical product in Ab,
consider H= & with F = Ts B

.

Correct : Incorrect :

L -........ --H .......=
7 G(d I * j

- 7 c (d) des

FB
↓TB I B ↓TB I

↑ G - XB - XB



Section 68 : Free products of groups

Now
,
let Goes be a family of groups.

The free product *J Go will satisfy the universal property
making it the coproduct in Gp :

Hz- ...----- -----

7if
-
XB Given any group H and

↑

family of homomorphisms FiG-H XBEJ,

↑ is 1 there exists a unique homomorphism . H
FB with foip = FB XBEJ.

GB B

What is a more explicit definition of the free product > Go ?



First
,
let's do an example .

Let ↳= E
..., 92, g, g, g , g.... 3= gY and / = Er

,
r ? r ros =Yr/r]

Though these groups are abelian
,
their free product */ is not

.

Its elements are finite words such as

-g
- 7

g7p3 I-r and rgr &

Multiplication 100 Is like

(g7r3g2 r)(r
+gr

- 7
= rg7 = 97 g7+ g)

and
-(r+grj7)(gtrgr) = rigg gr = r gag r .

Inverses look like (g7r3g2)" = r
+

g
=r -

g
=



For another example,
let =g) , =<hy

,
and / =<r/r

.

Elements of the free product *** are finite words
,
such as

Ih rhrj7ht and hihig .

Multiplication looks like

(ghhrthi) ((r h g) = ghirbrgp hig+I ~
and

Shhrth) = high .I
-
r4= id in /4

More generally,
the elements of Ages Go are reduced words : finite strings

of monidentity elements in the Go's such that adjacent letters are from different Go's
.

To multiply ,

concatenate and then reduce
.

The identity is the empty word
.

Checking associativity is hard
,
but the universal propertyI is related to a weaker extension property that helps . S



Section 68 : Free products of groups

Now
,
let Goes be a family of groups.

The free product *J Go will satisfy the universal property
making it the coproduct in Gp :

Hz- ...----- 7

↑ 7 ! j
= - G ↑B

- a reduced word of length one

FB ↑ is 1 Do
you see now why the

G - XB definition of up makes sense ?

f(gig. : ... 9n) = f , (g) +Ba(g) : ... fon(gn) where giE Xi
.



Let G be a group ,

Elements rytG are conjugate if y = crc for some CEG.

A normal subgroup of G is one that contains all conjugates of its elements.

For S a subset of G, let N be the

intersection of all normal subgroups of G containing So

Can you see why N is a normal subgroup of G %
It is called the least normal subgroup containing So

Lemma The least normal subgroup N of G containing S is generated by all conjugates of elements of So

Pf Let N' be the subgroup of G generated by all conjugates of elements in So

Clearly N'CN since N is normal
.

To show NaN'
,

it suffices to show N' is normal in Go So
,

let REN and CEG
.

Then = 2
, 2 :.. :An with

1
= Ci Sici for some CitG and si satisfying sitS or sieS

.

So (xc" = ((x , (7) (2x2) ... ((kn(t) = (a) S , (x)
+)((x) Sc(c(z)

+) ..... ((c(n)Su(c(n)))
·

givingCEN' ,
as desired

.



Thm Let G = G
,
* G2

,
Ni normal in Gi

, SN the least normal subgroup of G containing N,
and N2

.
Proof uses the

Then G(N = (G . /N) * (G2/Nz) . universal property

Corollary If N is the least normal subgroup
of G containing Gi

,

then (G , *G2)/N = G2
·



Section 69 Free groups

A free group is isomorphic to *
s
1

.

Possible notation is *d)
,

where ga) = E..., g, g , 98 , 9a,9,
... is infinite cyclic .

A free abelian group is isomorphic to 1
.

There are universal properties characterizing these as the "free objects" in the

categories Gp and Ab of groups and abelian groups, respectively·

Any subgroup of isomorphic to 1 for nem
.

Similarly, any subgroup of a free group is free
.

(One beautiful proof uses covering spaces.
L*T7 = *EI has a subgroupBut,surprisiny eE for any integer n !



Indeed
,
the subgroup of * = a

,
b) generated by

- <n-1)
is isomorphic to * I .

b
,
abat

,
a ba"

, ...,
a ba

Ex The element abababababia" is in the

subgroup H of * generated by b, abat, a ba?

Aside : (a baz)"=
a ba

Check that
abababababia" = Laba) (a bat)(b)(b)(b) (a ba 2) (aba) (aba)
is the unique way to write this element as a product of
the terms b

,
abat

,
aba and their inverses

.

One can show there is an isomorphism He = >*L*1 = <90, 91 ,92
b C 7 Go
abat < >

gi
a ba E 7

92



Group presentations

Let E = Eggots be a set (of generators)
and R = Erek be a set (of relations)

X+with = <c) B.
Recall <90) = E

....g,g8, ga, ... is theUB & EJ I
infinite cyclic group with generator go.

Then <ZIRY is the group (* < gr))/N,GET

where N is the least normal subgroup containing R .

This presentation is...

finitely generated if Z finite·
Exa

,
by = * I · finitely presented if Z

,
R finite :

91, ..., gn/r, ...,
rm)

.

Ex (a
,
blaba b) = 201

Ex Jr . S/r", 2 ,
srsr) is the dihedral group (symmetries of regular n-gon)
srs = r

+

Ex ↳ 1 ,
de

,
Ga

, Bi , Be, s 1 &3 Ba) = (01
,

02
,

Bi
,

Be
,
9)

The group isomorphism problem (deciding if two finitely presented groups are isomorphic) is undecidable·
In some finitely presented groups the word problem (deciding if a word is the identity) is undecidable·



Section 70 The Seifert-van Kampen theorem

Thm (Seifert-ran Kampen) Let X= UrV with U,V open in X,
with U, V, UV path-connected, and oEUV. Then the homomorphism
:

,
(U,)* #

,
(V

,)- #,
(X,o)

is surjective, and its kernel N is the least normal subgroup containing
all words of the form in(g)"ir(g) for get (UV, No) ·
Hence #, (X)= (π, (k) * +

, (v) / N. In
(h) ja

di ?
>

Bi π
,
(U - V) π , (x)·& 2

In
sil) in

Bee2



Section 70 The Seifert-van Kampen theorem

Thm (Seifert-ran Kampen) Let X= UrV with U,V open in X,
with U, V, UV path-connected, and oEUV. Then the homomorphism
:

,
(U,)* #

,
(V

,)- #,
(X,o)

is surjective, and its kernel N is the least normal subgroup containing
all words of the form in(g)"ir(g) for get (UV, No) ·

+Hence #, (X)= (π, (4) x +
, (v) / N. In -

π
,
(k) j

U

di ? π
,
(U - v) = 9

B π , (x)· >

e

U & 2
V

↳ s π
,
(v) ju

↑, (k) =< 1, 02 , 37 #
, (V) = < Bi

,
B2

,
Ba>

, (UV) =<g)

#
,
(X)= 101

,
02

,
Ga

,
Bi

,
By

,
Ba 1 (u(9) ir(g) Note in (g) = &3 and ir(g)= 33

= Li
,

de
,

Ga
, Bi , Be,

>1 &3 B2Y
= [01

,
de

, Bi , B2
, 97



To see that the path-connected assumption is necessary,
note that if X= S' with U

,
V as drawn, U

then I is not even surjective .

Corollary If UrV is simply connected
,
then V

:
, (U) * #

, (v)-> ↑
,
(X) is an isomorphism.

Ex i
, (figure eight) = +

,
(S'vS') = (a

,
b)

. Dv
More generally ,

if (Y
, yo) and (,

z0) are two pointed spaces, then their

wedge sum XvE is the quotient space (* ((z) / (you zo) ·

True if X
,Y are
If path-connectedY has a contractible abbd Ny about yo, UE !

v"CW complexes" and path-connected Z has a contractible ubbd Nz about 0,Diethen applying the corollary · Nz &·(with U=YUNz
,
V=NE

, HENNz, Ur=Yuz) n -
gives i

, (Y-z) = #
, (y) * #

,
(z)

.

Y= torus = graph



Thm (Seifert-ran Kampen) Let X= UrV with U,V open in X,
with U, V, UV path-connected, and oEUV. Then the homomorphism
:

,
(U,)* #

,
(V

,)- #,
(X,o)

is surjective, and its kernel N is the least normal subgroup containing
all words of the form in(g)"ir(g) for get (UV, No) ·
Hence #, (X)= (π, (k) * +

, (v) / N. In -
π

,
(k) j

U

e
Proof Sketch (following Hatcher Thm 1

. 20) π
,
(U - V) F 9 - π , (x)

>

&Notation : A factorization of [FJE#. (X) is a product Ly
B

Ju
[f] == ([n. J... [hn]) with each [hi] in

. (U) or . (v) .
S

H
,
(v)

Recall from the proof of Munkres Thm 59
% 1 that If] has a factorization

[f] = [f,) [o,f .

....[frn] [Onfn]
= ([hi)[n] . .... [hm) [hn])

.

Hence & is surjective.

fzx ↑
Nofail t

cas
7

~
on+SU fys as ~ 53



It is clear NcKer() since gE, (UIV),
=(vu(g)" iv(g)= (in(g))) (iv(g)

= I (in(g)" I (iv(g)
= ju(in(g)" ju(iv(g))

sinceHer= identity ↳
x commutes.

Aside Similary for conjugates :

Given any CE +
, (U) * # , (v) ,

we have < in(g) irly) <) (c)E(u(y)"ir(g) El
= identity .

It remains to show KerlN
,

i . e. if
two factorizations have the same image
= ([h .] ... [hn)) = ([n] ... [he]) ,

then one can be obtained from the other by regarding
[hiJE

, (UV) as lying in (U) or (v) and reducing ,

i

.e. by applying relations in N
.



Let F:xI+X be a homotopy from hohm to hi he
By compactness of IXI (and the Lebesque number lemmas

we can subdivide IxI into small squares, each mapped into U or V.
n ! n

---

To V V U U To
Es X

-

U V UJ V VU

U U v vuv
-

hi 2 43

At each vertex of the subdivision
,

choose a path in U
,

in V
,

or in UV to 0 .

Obtain the blue factorization from the red one by regarding the green loop
(including the paths to 20) as lying in V insead of in U, using a relation in N

.

Then homotope across the small square .

Continue until we obtain the factorization [n1] ... [ne]
from [h .] ... [hn) after applying relations in N

.



Thm (Seifert-ran Kampen) Let X= UrV with U,V open in X,
with U, V, UV path-connected, and oEUV. Then the homomorphism
:

,
(U,)* #

,
(V

,)- #,
(X,o)

is surjective, and its kernel N is the least normal subgroup containing
all words of the form in(g)"ir(g) for get (UV, No) ·
Hence #, (X)= (π, (4) x +

, (v) / N.

U

di ?
+

o
>

π
,
(U - V)

In s
(h) J

(A)r &

& ir
+(v) Ju

Be

Ex In the finitely presented case
,
if #

,
(l,) = La, ...,

m/r , ....
reY

#i (V,) = <B, ..., Bm1 Si
, ...,
Sn

#
, (U1, )= g , ...,gp1 t

, ..., tgY
then , ,ro) d

, ..., ni Bi..... Bm 1 ri
, ..., re

,
Si

, ...,
Sn

,
(girlg ...

I(pr (p)).

Aside In (9 ,92 iv (g ,g) = in(gz) in(g) " iv (g) ir(gz) = [u(gz)" in(g)
+

iv(g) in(gz) (n(92) iv (92).



Thm (Seifert-ran Kampen) Let X= UrV with U,V open in X,
with U, V, UV path-connected, and oEUV. Then the homomorphism
:

,
(U,)* #

,
(V

,)- #,
(X,o)

is surjective, and its kernel N is the least normal subgroup containing
all words of the form in(g)"ir(g) for get (UV, No) ·
Hence #, (X)= (π, (k) * +

, (v) / N. In
(h) ja

Corollary Given the hypotheses of the theorem,
π

,
(U - V)

I stil Sticif UnV is simply connected
,
then &

:
,
(U,)* #

,
(V

,)- #,
(X,o)

is an isomorphism.

U !
vDI· &

· Nzn -
torus graph



Thm (Seifert-ran Kampen) Let X= UrV with U,V open in X,
with U, V, UV path-connected, and oEUV. Then the homomorphism
:

,
(U,)* #

,
(V

,)- #,
(X,o)

is surjective, and its kernel N is the least normal subgroup containing
all words of the form in(g)"ir(g) for get (UV, No) ·
Hence #, (X)= (π, (k) * +

, (v) / N. In
(h) ja

Corollary Given the hypotheses of the theorem,
π

,
(U - V) π , (x)

if V is simply connected
,
then I induces an isomorphism >

&

#,
(k

,x)/N- π,
(X

,
xo)

↳ s π
,
(v) Ju

where N is the least normal subgroup of . (U,xo) containing
all words of the form in(g) for get, (UwV

, 0) · na
by V x b

7

a



>

Ex Let T= S'xS' be the torus
.

na
We already saw i

,
(T) = #

, (5) x +, (S)) = +L
. by V x b

Alternatively, apply SVK with
. (U)= a

S
b)

,
- I

π
, (v) = [i3

,
#, (UV)= (g), in(g)= a b a b+

a
to get
#

,
(T) = (a

,

blaba b
+

7 = +L
.

aEx Let #T be the double torus
.

by

Apply SVK with
, (k)= a

,
b
, an

,
ba 7, .......

#
, (v)= Eid3

,
#

,
(UV) = <g)

, in (g)= a.
b

. a,bi'abai" b
to get
# , (T+T) = (a

,
b
, an

,
be 1 abia,baba b >

.

Aside : In homework
, you determine It

, (THT) using ·SVK on a union using different pieces .

a
,

&bt
-

a
,



---------

Ex Let RP2 be real projective space :
2

R = 5/ ,
where -2 ES

· S2

We already saw it
,
(RP2)=/ since RP ↓P

has a simply connected 2-fold covering space (5) . R2

Alternatively, apply SVK with
. (U)= <a), -

π
, (v) = [i3

,
#, (UV)= (g), in(g)= a

Z a
C

to get
#

, (RP2 = (a(az) = 2/2
.

U

- V I

>

a



naEx Let K be the Klein bottle
.

>

Apply SVK with
, (U)= a

,
b)

,
b & V x b

↑, (v) = [iR3
,

#, (UV)= <g), in(g)= abab
to get
#

,
(k) = (a

,

b) aba b)
.

7

a

Later
,

we will see that any compact surface is homeomorphic to either
the I-sphere S2

,
the n-fold connected sum of tori T

,
or

the m-fold connected sum of projective planes ... #RP? n times

m times

Using SUK
,

we can compute the fundamental groups of these surfaces

(and their abelianizations) to show no two surfaces on this list are homeomorphico

#
, ,, ... anbu abababanbn) with ablianization 2

.

# . RP7= (a,
...,
am/a ... am) with ablianization ( )/2

.

m times



Note the Klein bottle K is homeomorphic to RP#RP2 :

A C

> & a

............ · C 7

E ab= =& ya = &..by Xb & ⑳

2 a Y 7 y

a a

Klein bottle K "Standard form" RPHRP2

#
,
(k)=(a

,
b)aba b) π, (k)= (a,

c(a c)



Section 71 : The fundamental group of a wedge of circles

Let E(56
,
poBoes be a collection of circles

·

each with a chosen

basepoint pr E Sc
.

Their wedge sum is S= St)/(porp Fae5) .

The topology is such that a set U is open in the wedge sum

# each intersection U1Sd is open in St .
Thm (5)

&



Be careful with the topology!

Ex The Hawaiian earnings space is XCn
where (n = E( ,e) EIR2/(x-=)+y= =3

.
C3 C2 C1

with the subspace topology fromR2
.

(This is not the wedge sum topology.)

The loop g : [0
,
1 -X that wraps around Cn

over [n.h] is continuous.
Note [g) does not belon to the subgroup of [i(X)

generated by [S.J
.
[Fz],

...

En) for any n

where fo wraps around Ci
.

Aside : Interestingly ,

To see this
,
for Nun consider the map while the abelianization of

hiX-Cr which is the identity on C #, (VE , S') =* is

and , I
,
the ablianizationS

Note MapsCtothebasepointforu e

, ..., no
I of

, (X) is

Hence
, (X) * * < [f: ) · ↑

↑
elements are words of finite length
(in an infinite alphabet)



Section 72 : Adjoining a two-cell

If desired
, you can be more careful with basepoints.

Let KoeUwV
,
let you ,

let & be a path in U from yo to 200

A

Apply SVK with >

#, (4 , yo) = <[a]
,
[b]

π
,
(U

,
20) = (5[a]

,
[b]) Recall 8[0] :=[** X]

π ,
(V

,
x0) = Eid3 by

π
, (UrV,

20)= < [g]) O
(([g)) = [5 *a* b+ a * 5+ 2) = j[a]*[b]* [a]* [b]

+

Youto get
77

#
,
(T, 20)= ([a] , [b] /[a]*[b]* [a]* [b]) a

= (a
,
b |a ba

+ b)
.

=
WL ....



Aside : Compact Hansdorff

Thm (See Munkres Thm 72.
) and $72 Exercise #2) spaces are normal

.

Let A be a normal space and fiS'-A be continuous
.
S'C B?

I

Consider the adjunction space ArfB= (A (B2)/(f(z)~ XxES')
.

Then A-> AufB2 induces a surjection it, (A) -> #, (Auf B2)
whose Kernel N is the least normal subgroup ofI, (A) containing [7] .

B2 c Si
a

- E be x b

C Aus B2
a

#
, (T) = (a ,

b) aba+ by



Section 73 : The fundamental group of the torns and dunce cap

Def The n-fold dunce cap is the quotient space al ja

B2/(z- r(z) +zeS)
, - ~

where : Sl-> S' is a rotation by 2/ . ~i(0+ 2+/n) T aeit ,-e
a

- T
-

Equivalently, EDef The n-fold dunce cap is the adjunction space &S'uf B2:= (S (B2)/(f(z) z)
where F : S'-S' via -> e

: no
.

"

↓
- St

The n-fold dunce cap is

a ball B2 for n = 1, .......the projective plane RP3 for n=2, ------

not a manifold for 23
.



alu ja

Thm #
.
(n-fold dunce cap) = /n = (a)a - V ~

ar
.

La

Ex Find a space X with
,
(X)= 1/3 x /9

,

Ans X = (3-fold dunce cap) x /9-fold dunce cap).

Ex Find a space X with
,
(X)= 1/3 * / * I

.

Ans X = (3-fold dunce cap) v /9-fold dunce cap) v S'
.

Ex Find a space X with i,
(X)= (*) < ( * L) .

Ans X = (S'vS)x(S'rS)
.

More generally, ...



Fact For
any finitely presented group (See also $73 Exercise #2)

G = g , ..., gn/r., ...,
rmY

there is a space X with
,
(X)= Go

Indeed
,
let X be the adjunction space obtained

from A = VS' (so
, (A) = (g, ..., gnY)

by attaching m balls B2 along their boundary circles,
where the jth attaching map

S'- A for jf,, ..., m

is given by the juth relation rjo

Ex G = (g1 , 92, 93 , 94/ 91 , ge93] Ex G = (91
, 92 ,
93/93, gi939g7g3 ,

gag3)

x=

9
X- hard to visualize,

but not hard to understand abstractly.

gy

This is a theme in algebraic topology :

many algebraic objects
Cor morphisms) have topological analogues . ("Eilenberg-MacLane spaces")




