Chapter 12: Classification of surfaces

Thy Any compact surface is homeomorphic to either
T\#T\#T

- the 2-sphere S^{2},
- the n-fold connected sum of tori $\underbrace{T \# \ldots \# T}_{n \text { times }}$, or
- the m-fold connected sum of projective planes $\frac{\mathbb{R P}^{2} \# \ldots \mathbb{R} \mathbb{P}^{2}}{m \text { times }}$.

Using SVK, we can compute the fundamental groups of these surfaces (and their abelianizations) to show no two surfaces on this list are homeomorphic.
$\pi_{1}(\underbrace{T \# \ldots T}_{n \text { times }}) \cong\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}\right\rangle$ with abelianization $\oplus_{i=1}^{2 n} \mathbb{Z}$.
$\pi_{1}\left({\underset{m}{ } \mathbb{R}^{2} \# \ldots+\mathbb{R}^{2} P^{2}}_{m \text { times }}\right) \cong\left\langle a_{1}, \ldots, a_{m} \mid a_{1}^{2} a_{2}^{2} \cdots a_{m}^{2}\right\rangle$ with abelianization $\left(\oplus_{i=1}^{m-1} \mathbb{Z}\right) \oplus \mathbb{Z} / 2$.

Section 74: Fundamental groups of surfaces
Chm $\pi_{1}(\underbrace{T \# \ldots \# T}_{n \text { times }}) \cong\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}\right\rangle$

Thm $\pi_{1}(\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R}^{2}}_{m \text { times }}) \cong\left\langle a_{1}, \ldots, a_{m} \mid a_{1}^{2} a_{2}^{2} \cdots a_{m}^{2}\right\rangle$

$\operatorname{Thm} \pi_{1}(\underbrace{\mathbb{R}^{2} \# \ldots+\mathbb{R} \mathbb{R}^{2}}_{m \text { times }}) \cong\left\langle a_{1}, \ldots, a_{m} \mid a_{1}^{2} a_{2}^{2} \ldots a_{m}^{2}\right\rangle$

Image from Wikipedia

Klein bottle K
"standard form"

$$
\pi_{1}(K) \cong\left\langle a, b \mid a b a^{-1} b\right\rangle
$$

$$
\pi_{1}(k) \cong\left\langle a, c \mid a^{2} c^{2}\right\rangle
$$

Section 75: Homology of surfaces
Let G be a group.
The commutator of $x, y \in G$ is $[x, y]=x y x^{-1} y^{-1}$.
Def The commutator subgroup of G, denoted $[G, G]$, is generated by all commutators. It is a normal subgroup.

Def The abelianization of G is the quotient group $G /[G, G]$. It is abelian.

In the finitely presented case, the abelianization of $\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ is isomorphic to $\left\langle g_{1}, \ldots, g_{n} \mid r_{1}, \ldots, r_{m}, g_{i} g_{j} g_{i}^{-1} g_{j}^{-1} \forall i<j\right\rangle$
$\binom{n}{2}$ more relations

Def Let X be a path-connected space.
The first homology group of X is the abelianization of the fundamental group:

$$
H_{1}(x)=\pi_{1}(x) /\left[\pi_{1}(x), \pi_{1}(x)\right] .
$$

Remark This is not the typical definition.
For $n \geq 2$, the n-th homology group $H_{n}(X)$ is not the abelianization of the n-th homotopy group $\pi_{n}(x)$ (which is already abelian).

Remark Interestingly,
$\pi_{n}(X)$ is easy to define but hard to compute, whereas $H_{n}(X)$ is harder to define but much easier to compute.
$\operatorname{Thm} H_{1}(\underbrace{(\# \ldots \# T}_{n \text { times }}) \cong \oplus_{i=1}^{2 n} \mathbb{Z}$.
Pf The abelianization of

$$
\pi_{1}(\underbrace{T \# \ldots T}_{n \text { times }}) \cong\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \ldots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}\right\rangle
$$

is isomorphic to

$$
\begin{aligned}
& \left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}, a_{i} a_{j} a_{i}^{-1} a_{j}, b_{i} b_{j} b_{i}^{-1} b_{j}^{-1}, a_{i} b_{j} a_{i}^{-1} b_{j}^{-1} \forall_{i, j}\right\rangle \\
& \cong\left\langle g_{1}, \ldots, g_{2 n} \mid g_{i} g_{j} j_{i}^{-1} g_{j}^{-1} \forall i<j\right\rangle \\
& \cong \oplus_{i=1}^{2 \ldots} .
\end{aligned}
$$

$\operatorname{Thm} H_{1}(\underbrace{\mathbb{R}^{2} \# \ldots+\mathbb{R}^{2}}_{m \text { times }}) \cong\left(\oplus_{i=1}^{m-1} \mathbb{Z}\right) \oplus \mathbb{Z} / 2$.
Pf The abelianization of

$$
\pi_{1}\left({\left.\underset{m}{\mathbb{R}} P^{2} \# \ldots+\mathbb{R} \mathbb{R}^{2}\right)}_{m \text { times }}\right)<\left\langle a_{1}, \ldots, a_{m} \mid a_{1}^{2} a_{2}^{2} \ldots a_{m}^{2}\right\rangle
$$

is isomorphic to

$$
\left\langle a_{1}, \ldots, a_{m} \mid a_{1}^{2} a_{2}^{2} \cdots a_{m}^{2}, a_{i} a_{j} a_{i}^{-1} a_{j}^{-1} \quad \forall i<j\right\rangle .
$$

Switching to additive notation (and using Corollary 75.2), this is

- the quotient of the free abelian group generated by $a_{1}, a_{2}, \ldots, a_{m-1}, a_{m}$ by the subgroup generated by $2 a_{1}+2 a_{2}+\ldots+2 a_{m}$, ie.
- the quotient of the free abelian group generated by $a_{1}, a_{2}, \ldots, a_{m-1}, a_{1}+a_{2}+\ldots+a_{m}$ by the subgroup generated by $2 a_{1}+2 a_{2}+\ldots+2 a_{m}$.
Hence $\quad H_{1}\left(\frac{\mathbb{R P}^{2} \# \ldots+\mathbb{R} \mathbb{P}^{2}}{m \text { times }}\right) \cong\left(\oplus_{i=1}^{m-1} \mathbb{Z}\right) \oplus \mathbb{Z} / 2$.

For completeness (but without emphasizing it), here is Corollary 75.2 that we used:

Theorem 75.1. Let F be a group; let N be a normal subgroup of F; let $q: F \rightarrow F / N$ be the projection. The projection homomorphism

$$
p: F \rightarrow F /[F, F]
$$

induces an isomorphism

$$
\phi: q(F) /[q(F), q(F)] \rightarrow p(F) / p(N)
$$

Corollary 75.2. Let F be a free group with free generators $\alpha_{1}, \ldots, \alpha_{n}$; let N be the least normal subgroup of F containing the element x of F; let $G=F / N$. Let $p: F \rightarrow F /[F, F]$ be projection. Then $G /[G, G]$ is isomorphic to the quotient of $F /[F, F]$, which is free abelian with basis $p\left(\alpha_{1}\right), \ldots, p\left(\alpha_{n}\right)$, by the subgroup generated by $p(x)$.

Section 76: Cutting and pasting
Section 77: The classification theorem
Thm Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}$.

Our proof follows Justin Huang's REU paper "Classification of Surfaces".

$$
T \# T \# T
$$

CLASSIFICATION OF SURFACES

JUSTIN HUANG

Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes.

Ihm Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}$.

Step 1/6: Any compact surface can be obtained from a planar polygonal region by identifying its edges in pairs.

The strategy for steps 2-6 will be to cut and paste to put the planar polygon in a recognizable standard form, such as $a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1}$ or $a_{1}^{2} a_{2}^{2} a_{3}^{2}$.

The Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \mathbb{R} P^{2}}_{m \text { times }}$.

Step 2/6: Remove adjacent opposing edges $a a^{-1}$.

If all edges are of this form, then the surface is a 2 -sphere S^{2}.

Ihm Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}$.

Step $3 / 6$: Reduce to one vertex.

Note we reduced the \# of Q labels.
Once only a single Q label remains, remove it as in Step 2 . Continuing as such, we can reduce to a single vertex.

Ihm Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}$.

Step 4/6: Collect twisted edge pairs ...a...a... $\leadsto \ldots b^{2} \ldots$

The Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \mathbb{T}}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \mathbb{R} P^{2}}_{m \text { times }}$.

Step $4 / 6:$ Collect twisted edge pairs $\ldots a \ldots a \ldots \leadsto \ldots b^{2} \ldots$

We continue by induction, and if the only remaining edges are twisted pairs, then the surface is homeomorphic to $\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}$.

The Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}$.

Step $5 / 6:$ Collect pairs of opposing edge pairs $\ldots a \ldots b \ldots a^{-1} \ldots b^{-1} \ldots \leadsto \ldots c d^{-1} d^{-1} \ldots$
First, we argue that we can't have a $f_{1}^{2} f_{2}^{2} \cdots f_{n}^{2} a^{-1}$, since that would contradict Step 2 (one vertex):

Indeed, if the head of edge a was labeled P, then each f_{i} would have tail and head labeled P.

The vertex labels are induced from edge pairings, meaning the tail of edge a would have label Q.

So, we have interleaved opposing edge pairs ... a...b... $a^{-1} \ldots b . .$. , which we collect as follows:

Ihm Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}$.

Step 5/6: Collect pairs of opposing edge pairs $\ldots a \ldots b \ldots a^{-1} \ldots b^{-1} \ldots \leadsto \ldots c d^{-1} d^{-1} \ldots$

Ihm Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}$.

Step 5/6: Collect pairs of opposing edge pairs $\ldots a \ldots b \ldots a^{-1} \ldots b^{-1} \ldots \leadsto \ldots c d^{-1} d^{-1} \ldots$

By induction, what remains are
If only (i), the surface is $\mathbb{R} P^{2} \# \ldots \mathbb{R} P^{2}$.
(i) twisted edge pairs ... $f^{2} \ldots$, and
(ii) pairs of opposing edge pairs

If only (ii), the surface is $T \# \ldots \# T$.
$\ldots c d c^{-1} d^{-1} \ldots$.
If both, the surface is $\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}$, as we see from Step 6:

Ihm Any compact surface is homeomorphic to $S^{2}, \underbrace{T \# \ldots \# T}_{n \text { times }}$, or $\underbrace{\mathbb{R} P^{2} \# \ldots \# \mathbb{R} P^{2}}_{m \text { times }}$.

Step 6/6:
Show $T \# \mathbb{R P}^{2} \cong \mathbb{R} P^{2} \# \mathbb{R P}^{2} \# \mathbb{R P}^{2}$.

