
Chapter 2 : Topological spaces and continuous functions

Section 12 : Topological spaces

Many concepts in analysis (continuity
, convergence, compactness)

only require knowledge of the open sets
.

Def A topology on a set X is a collection [ of

subsets
,

called open sets
, satisfying

· ①
,

X =
.

· Arbitrary unions of on setsaropen
e

Not I FotI
· Finite intersections of open sets are open

:

U
, ...,

Une = U...... Une Y
.

We denote this topological space by (X, ) or X.

= Which of the following are topologies on X=Ea, b
,
c ?

I Yes
,

indiscrete I Yes
,
I = P(X) is

20⑧a b c or trivial a b C the discrete

topology topology
↓ ↓

0⑧a b c No a b C Yes

0 0
ab No a b c Yes②



Ex Every metric space is a topological space .

The open sets are unions of Copen) balls
.

Ex X is a set
.

3 = EUC X / U = 0 or X-U is finite3 .

Called the finite complement topology ·

For example,
if X=R ,

then a nonempty open set is IR with

at most a finite number of points removed :

E
↑

7

PS
· I

,

X = k

· Let PF Hoe T Feel . So X-Mo is finite
.

Note X-UoEIUo = MoeI(X-Uo) is finite
.

So WozIlo et
.

· Let &FU, . . .,
Unt4

.
So X-Ui is finite .

Note X-(U ,
u

.... Un) = (X-U . )U ... v(X-Mn) is finite
.

So U
, .... Un EY

:

Ruk There is also a countable complement topology

Def If I and I are two topologies on X with

=c y ,
then we say I is courser and I is finer

.



Section 1 : Basis for a topology

Instead of specifying all open sets in a topology I,

it is often convenient to specify a nice subset

that generates to

Def A basis for a topology on X is a collection B of

subsets of X such that

(1) FeEX IBE B with we B
.

(2) If We B1Be with B
,
Be B

,
then

Bi -
-

-i- B2
B35 By c B with < By <B

,
vBz . "" ...·

-

The topology I generated by B is :

U <X is open (U=5) if FreU ,
IBEB with weBcU ·

Equivalently ,
UCX is open if U is a union of sets in B

.

-

Ex X a metric space,
u

-

"..BB = E open balls 3
"
..... "· W

Ex X= R2 B =

open balls 3
I

Or B = Saxis-aligned open rectangles? ⑧

Ex X B= S one point sets] is a basis
Lfor the discrete -opology·

Ex Choosing B = I always gives a basis
,

but it is

more valuable to find bases BCI .



Prop The topology
I

generated by a basis B is

indeed a topology·

P · DE Y Since condition is vacuously true.

X = UBe by (1)
,

so Xt I
.

· EUOUEI With Hot Yo
B

x .If e Wozt No
,

then Zoe I with wello
,

so I BE B with eBc Ur <VozIUd
.

· U
.. ...,
Une To Let reU, .... Un

Claim : I Be B with =BCU ,
u .... Un .

Use induction on n. Uz
U , ·

Base case n=1 is clear
. B

, B3

For n=2
,

use (2) : x = H
,
112 B2

=> I B
, Bet B with EB

,
CU

,
NeBecUz

=> I B3 e B with eBz <B, +Be <U
, eUz .

The general inductive step actually quickly follows from the n=2 case :

Lemma 13
.
2 Let (X,

2) be a topological space .

Let 2 be a collection of open sets such that

if well for Uet
,
then 5 (2 with xe< < U

.

Then I is a basis for I
.

45 (1) Since XeI
,
Feex EC2 with eeCaX

.

w

(2) If reGrC for C
,
22ctcI

,
then C1Ce I

,

so IC
z
et with reCycC1Cz · ~

So I is a basis
.
Also

,
it is not hard to see that

& generates the topology I.



Lemma Let B
,
B' be bases for the topologies I

,
I'on X.

Then Y is finer than It < I' allowing equality)
> FBe B and Ne B

,
I B'EB' with we B'cB

.

PS See book
fit

Ex X= R2 B =

open balls 3
and B = Saxis-aligned open rectangles?
generate the same topology· ④

Def X= 1R
B = S(a , b) / a = b3 generates the standard topology
B = Gla , b) / a

= b3 generates the lower limit topology

E C I 7 =[ S 7

a b a b

I

Fact 4 = I' (I . e.,
I is finer than I

, Iand not vice-versa

Pf Sketch Apply the prior lemma .
Consider (a

,
b) = B

and we (a
, b) · Note I

,
b) eB' satisfies

x = [
,
b) < Ca,b) ,

as required .

2 a · I >

x



An imperfect analogy

Vector spaces Topological spaces

R" open sets in R"
10vector spaces topo gical spaces

basis basis

Any vector is a sum of basis elements
. Any open set is a union of basis elements

.

This description is unique . Nope .

A vector space has many bases
. A topological space has

many
bases

.

All bases have the same size
. Nope.



Consider the definition of a topology·
Can I start with a collection of sets

,

which I declare to be open,

along with all unions and finite intersections thereof ?

Def A subbasis & for X is a collection of sets

whose union is X.
The topology I generated by subbasis &

is the collection of all unions of finite intersections of

elements in 3

Ex 9 = E90, 13
,
90 , 233 is a subbasis but not a basis

.

- = [0
,

903
,

50,
1

,
90, 23

,
90,

1
,
233 .

⑧
I

One basis is B = 9303
,

90, 13
,

20, 23
⑧Os⑧· z

Lemma t is indeed a topology

Pf sketch Show that the collection B of all finite intersections

of elements in 9 is a basis
.

Di is easy.

2) follows since if B= S
,

1
... ~Sm and B = S!...... S'm are

two elements of B
,
then BeB' is also an

element of B.

191 = 3 IB1= : (2) =2



Section 14 : The order topology

Let X be a set with total order 1
.

For a
,
bex

,
define

⑧ (a
, b) = (xeX : a = x = b3

· [a
, b) = [xeX : a = xeb3 E [ S 7

· (a , b] = ExeX : a = xeb3 a b

· [a ,
b] = 3 xeX : a = x = b3

.

Def Let B contain

(1) all intervals (a,
b)

2) all intervals [ao,
b) where no is the smallest element (if any) in X

(3) all intervals (a,
bo] where bo is the largest element (if any) in X.

The collection B forms a basis for the order topology on X.

Ex the order topology is the standard topology on R .

Ex RAR with the lexicographic order :

a + b < crd > acc or a= c
,

bed
.

axb

-exd
-and

5 These intervals actually form
~a

a basis on their own .

This is not the standard topology on R2
.

Ex The order topology on It is the discrete topology
Note En3= (n-1 , n+1) for >I

,
and E13= [1 , 2) .



Ex the order topology on E1
,
23xR+ (lexicographic order)

is not the discrete topology, since any basis element

containing 22I must contain some In
.

2x1 24⑧ O ⑧

↓ I d

·
A e

|x| 1x7

Later : Note In -> 2x1 a

in this
n=c

topology
convergent sequence



Ex Let X be an ordered set and aEX
,

Let (a
,
c) = [x=X(x > a} E 7

and (-x
, a) = 2x = X/aex3 !

be the open rays ·

Show these are indeed open in the order topology·

A If X has a largest element bo
,

then

(a , 1) = (a , b0] is a basis element
,
else

(a , x) = a (a , z) is a union of basic elements
.

Ex Do the open rays form a basis for R ?

As No-consider a b
.
No open ray is

contained inside (-0 , b) -(a ,) = (a , b) -

Ex Do the open rays form a subbasis for the

order topology on X ?

Ans Yes .

they're open in the order topology, so the topology
they generate is contained in the order topology,

Also
, ever basis element for the order topology is a finite

intersection of open rays :

(a
, b) = (- x

, b) - (a
, c)

(a
,b) = (a

,
x) for bo largest

[a0
, b) = (- x

, b) for do smallest
So the reverse containment of topologies is also true

.



Section 15 : The product topology on XxX $
Def For X and Y topological spaces, the product
topology on XxY is the topology generated by
the basis B with all sets of the form

UxV
,
with U open in X and V

open in Y
.

VzCheck Is this a basis ? ~"Note XxY =B "m&

Also
,
for U

, =U
,
UxV2 = B

,
Wi

A(U , xV) -(uz =2) = (u, 142)x(V , cV2) = B

Question Is B a topology ?
No

,
the union above is not in B

Smaller bases are possible :

Thm If B is a basis for X

and I is a basis for X
S

then 7 = 3Bx C / BeB
,
Ce23 is a basis for XxY

PS Sketch W
open in Xxx

xxy =W

⑪ By definition of product topology
and definition of bases B

,
C :

I BeB with zeB and I <et with ye C

satisfying WxyeBrC : We

By Lemma B.

2
,

this shows D is a basis

generating the product topology on X xX.



Section 16 : The subspace topology ↳i

Def Let (X
,
i) be a topological space .

↑
For YIX

,
the collection 2

:

re

7

2x = EUX IUE 23 ......
is the subspace topology on Y

.

Y < R2
W

Check it is a topo 8

· y = 0 - Y
,

x =
43k

· Arbitrary unious :

"
Uz

Woes (U0 Y) = (Vrzs Ye) eX
· Finite intersections :

(4 ,
xX) - .... [UnrY) = (U .

u ....UndeX Ul

-
......

x2x

Ex Though [0, 1) is not open in R
,
it is open in the

subspace topology on I0, 2] <R
.

2 [ I ! >

Lemma Let Y =X .

If U is open in / (UE2)
and Y is open in X (Y=t)

,

then U is open in x (U= 2) ·

If U open in Y
=> I VeI with U = Vex
=> U is the intersection of two sets in
=> Uc Y

.



Lemma If B is a basis for the topology on X
,

then By = < Bux / B = B3
is a basis for the topology on Y

.

...
U

Pf Given UnX open in Y
(with U open in x)

and ye UrY we can find
/ xcx

Be B with ye B c U .

Note y = BrY < UrY
.

It follows from Lemma 13
.

2

that By is a basis for

the topology on Y.

Thm If A2X and BeX
,
then the product topology

on AxB the same as the subspace topology on

AxB c XxX
⑧

45 Consider first the product betopology on the larger space XxX,
which has as a basis all UXV

,

U open in X
,
V open in Yo A =X

So the subspace topology on AxB has as a basis all

[UxV) - (AxB) = (UvA) = (VoYS
,

which is a basis for the product topology on AxB
.

These topologies are the same since they have a common basis
.



Rik The order and subspace topologies are not

compatible in general .

For example, let Y= [0 ,
1) ~[23 <R .

In the subspace topology ,

E23 is open in Y
.

2 ! >

But in the order topology, any basis element containing
2 is of the form

(a ,2] : = EyeY/ a cy = z3 for some atX

and it follows that [23 is not open.

Def If X is totally ordered, a subset XcX

is convex if Fa
,
beX with a b

,
the interval

(a
, b) = 3 =EX/a = xxb3 is contained in Y.

Thm If X is an ordered set with the order topology
and YCX is conver

,

then the order and subspace
topologies on Y agree.



Section 17 : Closed sets and limit points

Def A subset A of a topological space X is closed

if X- A is open.

Ex In
,
b] is closed in I since R-Za, b] = ( -w

,
a) v (b

,
u) is open.

L I B -

Ex [a , b] x [2 , d] is closed in R2
.

[Complement is union of four basic open sets
. )

Ex In the finite complement topology on a set X
,
the

closed sets are X
, %

,
and all finite subsets of X.

Ex In the discrete topology, every set is closed
.

Rik closed # not open

Ex [0
,
2) is neither open nor closed in IR .

Ex Let Y= [0 , 2) -343 I have the subspace topology·
Is [0, 2) open in Y Yes ,

Is 343 open in I ? Yes ,

Is [0,
2) closed in Y ? Yes

,

Is 343 closed in Y ? Yes
.



Thm For X a topological space,
· o and X are closed
· arbitrary intersections of closed sets are closed
· finite unions of closed sets are closed

.

PS See book
. (X-1(= (X-(0))

Rik Topological spaces could have instead been defined via closed sets
.

The For YCX with the subspace topology, a set
AcX is closed in YE> A = BuY for some closed set

B in X

"
...

B

A-S X = 12

X

Pf See book
.



Def For X a topological space and AcX,

· the interior of A
,
denoted IntA

,
is the union of all

open sets contained in A
· the closure of A

,
denoted CIA or A

,
is the intersection

of all closed sets containing A.

Int A c A c
↑ ↑

·P closed
set

-
Int A C A C....... C ⑰
# For X=IR and A = [0

, 2)
,

IntA = (0
, 2) and E = [0

,
2]

.

Thm X topological space with basis B
,

A CX.

(a) x=E ( every open set containing a intersects A.

(b) x=A >
every BEB containing & intersects A.

G
Rik An open set containg t is called a neighborhood of X

.

P(a) (=>) U a nbhdl of a that doesn't intersect A
=> X-U is a closed set containing A
=> Acx - u = x A

(E) E C A means X-A is a nbhd of ~ not intersecting A
.



(b) ( Basis elements are open
(E) A nbhol containing x contains a basis element containing to

= A = [0, 2) <R,
E = [0, 2] , A is set of limit points .

Ex B = 2=/nt1 +3 < 1
,
B = Br303 O is onlyI

limit point.
Ex Q cRR

,
R = R

,
all points in RR are limit points .

Def X topological space ,
ACX . A point weX is a limit point

of A if every bed of a contains a point in A

other than 2 .

(A may or may not be in Al

Thi X topological space,
AcX.

Let Albe the set of limit points of A .

Then A = AUA' .

Cor A subset of a topological space is closed
=> it contains all its limit points ,



Def A topological space X is a Hansdorff space if

↑ distinct x
,yeX,

5 (open) neighborhoods U of e

and V of y with UeV = 0
g · I

Thm In a Hansdorff space X
,
finite sets

U W

are closed
.

Pf If suffices to show that [x3 is closed Feex
,

since finite unions of closed sets are closed .

So
,
let yeor in X. By the Harsdorff assumption

,

7 (open) neighborhood Very with # V
.

g · Y So ye E3 F yF x in X.

U

So E = 323
, meaning S23 is closed

,

R Af sequence pens ensor,converges Ente
such that EnEU FRIN,

=
, , , ....

-> 0 in R

-u · ⑲ ·



!0Ex In the topological space C
note that [bY is not closed

,

and note that the sequence b
,
b

,
b

,
b

,
b

, ...

converges not only to b
,
but also to a or to cf

Thm In a Hansdorff space, sequences converge
to at most one point .

If If In -> 1 and yFr, then let USX and

vy be disjoint nbhds
.
Note U contains all but finitely

many elements of the sequence,
·N and hence V cannot.

~ · I

· UXN W

NN+2

Thm A subspace of a Hansdorff space is Hansdorff
.

the product of two Hansdorff spaces is Hansdorff
.



Section 18 : Continuous functions

Def X
,
Y topological spaces.

A function fix-Y is continuous

if I open U in Y
,
f-(U) is open in X .

f) ->&
X

S

&u) U

Ruk It suffices to check this condition on basis elements
of X :

U = Y +

Br f(u) = f - ( -
Br)

=
Ruk It suffices to check this condition on subbasis
elements of X :

B = S
,

n
.
... Sn 5 -(B) = f

-

(S...... Sn) = f
- (S) u

.. -

~ f"(Sn)



Ex SiR-RR cont
.

as defined above
E) I is cont

.
with the E-d condition .

Pf (=) Let zoeIR and E>O
.

Note U = (f(x) - E
,
f(x)+ 2) is open

=> 5 "(u) is open .

So I a basic open set No -(a , b) < f - (u) ·
Let = min (woa ,

b -xo) .

Then X within o of No-> f(z) within [ of f(x)
.

A 5 -(u) X U
E

- b ⑧ f(x)
& o E
- a

W N

# See book

Ex Id : Re-R (defined by Id(a)= x kwelel
is continuous since Id " ((a ,)) = (a, b) is open in Re

.

IdiR-Re is not continuous since Id "([a ,b)) = [a ,
b)

is not open in R .



Thm Let X and Y be topological spaces,
and let fix+Y

The following are equivalent :

(1) f is continuous

(2) X closed sets B in Y
,

f (B) is closed in X.

(3) V AcX
,
-(A) < FTA) A - W(4) F xex and nbhds V of S(z)

, U E

I nbhd U of e with S(U)cV
. ⑧ E

⑧ f(x)

W

Rak If (4) holds at to EX but not necessarily Nat all
points in X

,
than we say f is continuous at No

PS See book
.

Picture of (1) =) (2) :

X y

⑰ B

Note X = f-(X-B) H 5 - (B)



Def A homeomorphism is a continuous bijection fix+/
such that : YeX is also continuous

.

We say "X is homeomorphic to Y" and write X=X
.

Ex Ex
-

-

Ex f : H ,
1) -R defined by f(z) = F is a

homeomorphism with inverse 5+
: R -> (-1 , 1) defined

by 5 "(y) = 1 +It -

So homeomorphisms need not preserve boundedness
.

Non-Ex 5 : [0
,2)-S' defined by f(t) = /cost

,

sint) is a

continuous bijection that is not a homeomorphism .

· 3 -f
- o

⑧

Rm Tethomomorphism gives a bijection ,b
the

preserves
all topological properties .



Thm (Constructing continuous functions)
(a) Constant functions are cont

. ->
(b) The inclusion of a subspace is cont .

->

(c) Compositions are continuous : If fi x +Y
, gix+z

are cont
.,
then so is yot : X -> Z

.

x -+ - z

-(d) fix- Y cont
.

and AcX => GA cont
.

X

1
-> My-

-

(e)
fix -> cont

,

*
fixtE cont

·
for XCZ

--> fixtW cont
, for S(X)CW

(5) fixtY
,
X = VN ,

flue cont For >f cont
.

open Uz
U

,

-> ⑧
Us

(g) (Pasting Lemma) X = ArB
,

A, B closed in X .

5: A - X and giB-Y cont . and f(x)=g(z) KreAnB.

Then the function hix-Y defined via

h(z) =E is continuous
,

AB -

·
e

Ex Why is fiR-R not continuous ?

~



Thm Let f : A -XxY be given by f(a) = (f: (a)
,
fi(a)

.

Then f is continuous ) S
, fe are continuous

.

PS Let i: Xxx-eX and A(x,y) ↳I
M2 : Xxx -> Y

. Y(x , y) + y ↳x
Note #

,
is continuous since if

t
,

U is open in X
,
then fz

↑
,
(U) = UxX is open in XxX

.

81-
-

And similarly for itz . 8 RR2 R

(E) f conto implies ! I

↑
,
of = 5

,
and * of = fz

f n()

+
i

,

are continuous
. R

U

(E) For UAV a basic open set in Xxx

(meaning U open in X
/

V open in X
,

note f\U=V) = fi(u) - f ,"(V) is open in A
↑ *

open in A open in A

S-(u+1) A
since fi cont

.
Since 52 cont.

52"(V) 52

-
5

, "(u) W RR2

=) a

?
v

+



Section 19 Product topology

Def Given [Xo30e5
,

the cartesian product
Tres Xo is the set of all J-tuples (No)ues
which are maps 2 : 5- VoxTX :

With == (0) eXr .

Def The Cless-important) box topology on Tres Xa
has as its basis all sets

3 Hors Go 1 Go open in Xo Fo3

Def The (more-important) product topology on Tres Xe
has as its basis all sets

StretUa = Fr a but finitely many a
Rik These topologies agree if I is finite .

U! xRxU!
U

,
x4z xUs



Thm Let So : A +Xo Fres
Define 5 : A- Xa by a t (fo(a)) oc5 ·

Let To have the product topology
Then f is continuous > fo is continuous Fo.

Pf Note each projection
: ItXo -> XB

is continuous
.

(=>) f cont
.

-> Fr = Roof cont
.
Fo

IE) A basis element for the product topology can be
written as

Ue=π ,

"

(U.) u
...

~ n (4)

where Un = Xo for
,

... n .
Note

f -(I-4r) = f
-

(π,(4) -
. . .

~ b. (un))

& i
=

Spen? since to
:

cont
.

is open in X
.

n

Rik (E) need not be true if i Xo has the

box topology· Let RW= Tnex+Xn with Xn=R Un
.

Define S: R - RY by f(t) = (t, t,
t
,
0.)

Each coordinate function failRtI by falt)= t is continuous
.

But ,
f is not continuous if RW has the box topology

,

Since B = (-1
, 1) = ( -

,
z) = ( -5

,
5)x ... is open in the

box topology
,

but -(B) = 303 is not open in R
.



Section 20 : The metric topology

Def A metric on a set X is a function diXxXtR s
. t

.

(1) d(x
,y) = 0

, d(x
, y) = 0 ( x =

y

(2)d(x
,y) = d(y ,

z)
(3) d(x

,
z) = d(x,y) + d(y , z) triangle inequality

-I

Br(z) =EyeX/dIxy)er3 is the ·-Z

r-ball centered at
.

...

Def Given a metric space (X,
d)

,
[Br(z) /xeX

,
r>O3

is a basis for a metric topology on X
.

Check its a basis (2) Bi

By
.
z

Bz

Ruk U is open in (x
,
d)

Feel I xeB, (y)cU
> FreU 7 x = Br(z) <U

Def A topological space X is metrizable if I a

metric on & that induces the topology on Xo

Important Question Is a given topological space metrizable ?



=> For X a set
, defining d(x,y) =G1 xty0x=

y

gives a metric inducing the discrete topology·

Ex Metrics on IR"

For I=p=CO
,
let dp(x,y) = la-ellp ,

where

2where Harle = it We

Dall
,

= (e
, 1 +

...

+ lan "taxicab" metric

Hello = max9 (2, 1
,

.
. .

,
Inl3 "Sup" metric

1 Elp = (12, + ...

+ (2n]Y for all Epecs .

Note B4(8) > B48) > BY(8) > BC8)
.

Hence the following lemma
shows that all of these

metrics induce the same

topology on Rn :

(and
,

moreover
,
this topology is the product topology)

Lemma Let X have metrics d,
d' generating the

topologies I
,
2'

. Then 2 is finer than I

(i
. e .
[c) if F BY(z)

,

7 B, (2) < Br(z).

If See book
.



a(x,
)= 2

d(x,)
= 13 & (x,) = 1

*

Def Given a metric space (X ,
d)

,
define

a(x, y) = min(d(z,g) ,
1) . This is the standard bounded metric

.

Thi & is metric on X and induces the same topology as do

Pf See book .

Thi The product topology on R* is induced by the

metric D(z
, y) = sup [ T(xyy

Pf See book .

Rik Metric Sup[d(Xi , y :33 gives a topolog that is tooI
fine

,
for example containing H

, 1)" as an open set
.

Rik sup[d(z , y :)3 is not a metric

(it gives a function from X-X into [0, M] , not into [0
,
03) .

Rik More generally, countable products of metric spaces

are metrizable .



Section 21 : Metric topology (continued)

Rik Metric spaces are Hansdorff : If vy ,
then

B > (2) and Bsly) are disjoint for 0192td(x,) by the
⑳⑧triangle inequality .

...........
⑨

e
·y

A X
Thm 5: (X ,dx)+ (Y

,
dy) continuous E

-

-) ⑧ z
E

· f(x)

Given NeX
,

O
,
75>0 s.t

.

-

dx(z
,
x)= & = dy(f(x), f(x))2 E

.
W N

Lemma (Sequence Lemma) X topological space,
AcX

.

If a sequence in A converges to x
,
then xeA
-

-
Converse holds if X metrizable.

2

·

.
&

80
⑳

-PS (=) &n->X implies every 1
nbhel of a contains a point in 1

2.
...

so x c Fo

Pf (E) Let & be a metric giving the topology on X.

One t
,

choose One Bin (2) - A .
Note xn + x-

Rik For the converse of this (and the next) lemma
, assumption "X metrizable"

can be relaxed to X first countable
,

which means :

FreX
,
5 countable collection of abhds [Un3nex+

such that

↓ nbhds UEx,
IntIt with ecUn CU ..U



Rmk R5 not metrizable for J uncountable
. Indeed

,
let

A = Ex = (x))eRT) wo = 1 for all but finitely many 0253.

Define OcR5 to be the point x with 2 = 0 WO=5.

Then Ot A since any basic open set about ⑧ is

R in all but finitely many coordinates
,
hence intersects A

.

But for any sequence X ,
x

, ....
A

S

I some BET with = = 1 n C since a countable union ofCfinite sets is countable
⑨

hence its " (5K, k)) is a nbld about 8 containing no

"

,

so no sequence in A can converge to 0
.

Thi X
.
Y topological spaces,

fix- X
.
If f is continuous

,

then F xn-o
,

we have f(xn) - f(z).
Converse holds if X is a metric space .

f-(V)
Pf (E) Given nbhdl V=-f(x)

, ⑧ I

y

note f-(U) is a nbhd of X
,

-f(z)

so an eventually in 5-(V)

implies that f(zn) is eventually in V .

1) Suffices to show f(A) < f(A) for any AcX.

If x c A
,
then by prior lemma (since X metrizable)

,

JaneA with An-2 By assumption,
f(xn) -> f(x)

·-

Since f(en) =f(A) Un
,
the prior lemma gives f(z)GSCA) .

Hence S(A)<f(A) as desired
.



Section 22 : The quotient topology

Let X be a topological space,
and let X

* be a partition
of X

, namely a collection of disjoint subsets whose unron is X .

(In other words
, suppose we have an equivalence relation on Xo)

= [0
, 1] [0,/ [0, 1 < [0, 1/w DYs

⑧ ⑧ ⑧

R i R

>

Y "Di⑧

7

⑧ it #,

-

⑭ ⑳ ...

----

torus Klein bottle sphere

From the topology on X
,
how do we get a topology on X*?

Give ** the ist topology such that p: X -> x
*

is continuous
,

x [N]

Coarsest such topology would

LU open in x
* => p(U) open in X . (give only the open sets &,

X*)

Def Let X be a topological space,
Y be a set

, pix-x
ybe surjective .

In the quotient topology on
,

U open in> p(u) open in X
.



Check This is a topolog .

p(X) = X open in X => y open in Yo

p(0)) = 0 Open in x => & open in X .

pV)=V open in X => Volle open in X.

open in > open in X

p-(r= , Ui) = ME , p(Ui) open in X => Mills open in X.

>Ex uin........

I I

⑭

xR * X t
....... , silN⑧7

↓ P

torus Y sphere - y

Ex
p : R -> 5-1 ,

0
,
13 by p(a) = -1 if we 0

E 0 if x
= 0

if >O

The induced quotient topology on
24

,
0
, 13 is

- I0 !⑧

⑱

⑱⑯. .



Let pix-xbe surjective, X a topological space .

What if I already has a topology ?

Def For X
,
Y topological spaces and pix-X surjective,

p is a quotient map if

U open in> p(u) open in Xo

Ex All the examples above
,
where I has quotient topology

Non-Ex X = E(x ,y)e(R2) xy = 13v[(0, 03

- X= R

p((,y)= x

Note p
:X-Y is continuous and surjective ,

but not a quotient
map since p"(907) = 310,

03 is open in X
/

but S03 is not open in Yo



Thm (Continuous maps out of quotient spaces) x-X
,
Y

,
Z topological spaces, pix-X a quotient map.

PI
7 S

-Let g : x+Z be constant on each p([y3), ........, 2

hence inducing a function fix- z with fop=g .

Then 5 continuous > & continuous . ⑭
If ()) + cont

, implies top-g cont
. ·

(E) Given V open in z
, g-CV) open in X since g is continuous

.

1

p- (f - (V))
Now

, p a quotient map implies f-(V) open in Y, so o is continuous
.


