Chapter 2: Topological spaces and continuous functions
Section 12: Topological spaces
Many concepts in analysis (continuity, convergence, compactness) only require knowledge of the open sets.

Def A topology on a set X is a collection τ of Subsets, called open sets, satisfying

- $\phi_{1} X \in \tau$.
- Arbitrary unions of open sets are open:
$U_{\alpha} \in \tau \quad \forall \alpha \in I \quad \Rightarrow \quad U_{\alpha} \in I U_{\alpha} \in \tau$.
- Finite intersections of open sets are open:
$u_{1}, \ldots, u_{n} \in \tau \quad \Longrightarrow \quad u_{1} \cap \ldots n u_{n} \in \tau$.
We denote this topological space by (X, τ) or X.
Ex Which of the following are topologies on $X=\{a, b, c\}$?

Ex Every metric space is a topological space.
The open sets are unions of (open) balls.
Ex X is a set.
$\tau=\{u \subset x \mid u=\phi$ or $x-u$ is finite $\}$.
Called the finite complement topology.
For example, if $X=\mathbb{R}$, then a nonempty open set is \mathbb{R} with at most a finite number of points removed:

Pf

- $\varnothing, X \in \tau$
- Let $\phi \neq U_{\alpha} \in \tau \quad \forall \alpha \in I$. So $X-U_{\alpha}$ is finite.

Note $X-U_{\alpha \in I} U_{\alpha}=\bigcap_{\alpha \in I}\left(X-U_{\alpha}\right)$ is finite.
So $U_{\alpha \in I} U_{\alpha} \in \tau$.

- Let $\phi \neq u_{1}, \ldots, u_{n} \in \tau$. So $x-u_{i}$ is finite.

Note $x-\left(u_{1} \cap \ldots, u_{n}\right)=\left(x-u_{1}\right) \cup \ldots v\left(x-u_{n}\right)$ is finite.
So $u_{1} \cap \ldots \cap u_{n} \in \tau$.
Rat There is also a countable complement topology.
Def If τ and τ^{\prime} are two topologies on X with $\tau \subset \tau^{\prime}$, then we say τ is coarser and τ^{\prime} is finer.

Section 13: Basis for a topology
Instead of specifying all open sets in a topology τ, it is often convenient to specify a nice subset that generates τ.

Def A basis for a topology on X is a collection B of subsets of X such that
(1) $\forall x \in X \quad \exists B \in B$ with $x \in B$.
(2) If $x \in B_{1} \cap B_{2}$ with $B_{1}, B_{2} \in B$, then $\exists B_{3} \in B$ with $x \in B_{3} \subset B_{1} \cap B_{2}$.

The topology τ generated by B is:
$U \subset X$ is open $(u \in \tau)$ if $\forall x \in U, \exists B \in B$ with $x \in B \subset U$.
Equivalently, $U \subset X$ is open if U is a union of sets in B.
Ex X a metric space, $B=\{$ open balls $\}$

Ex $X=\mathbb{R}^{2} \quad B=\{$ open balls $\}$
or $B^{\prime}=\{$ axis-aligned open rectangles $\}$

Ex $X \quad B=\{$ one point sets $\}$ is a basis for the discrete topology.

Ex Choosing $B=\tau$ always gives a basis, but it is more valuable to find bases $B \not \subset \tau$.

Prop The topology τ generated by a basis B is indeed a topology.

Pf - $\phi \in \tau$ since condition is vacuously true, $X=U_{B \in B} B$ by (1), so $X \in \tau$.

- $\left\{U_{\alpha}\right\} \alpha \in I$ with $U_{\alpha} \in \mathcal{Z}$.

If $x \in U_{\alpha \in I} U_{\alpha}$,
then $\exists \alpha \in I$ with $x \in U_{\alpha}$,
so $\exists B \in B$ with $x \in B \subset U_{\alpha} \subset U_{\alpha \in I} U_{\alpha}$.

- $U_{1}, \ldots, u_{n} \in \tau$. Let $x \in U_{1} \cap \ldots U_{n}$.

Claim: $\exists B \in B$ with $x \in B \subset U_{1} \cap \ldots \wedge U_{n}$.
Use induction on n.
Base case $n=1$ is clear.
For $n=2$, use (2): $x \in U_{1} \cap U_{2}$

$\Rightarrow \exists B_{1}, B_{2} \in B$ with $x \in B_{1} \subset U_{1}, x \in B_{2} \subset U_{2}$
$\Rightarrow \exists B_{3} \in B$ with $x \in B_{3} \subset B_{1} \cap B_{2} \subset U_{1} \cap U_{2}$.
The general inductive step actually quickly follows from the $n=2$ case!
Lemma 13.2 Let (X, τ) be a topological space.
Let C be a collection of open sets such that if $x \in U$ for $u \in \tau$, then $\exists c \in e$ with $x \in C c u$.
Then \mathcal{C} is a basis for τ.
Pf (1) Since $X \in \tau, \quad \forall x \in X \quad \exists C \in E$ with $x \in C \subset X$. V
(2) If $x \in c_{1} \cap c_{2}$ for $c_{1}, c_{2} \in e c \tau$, then $c_{1} \cap c_{2} \in \tau$, so $\exists C_{3} \in C$ with $x \in C_{3} \subset C_{1} \cap C_{2}$.
So C is a basis. Also, it is not hard to see that e generates the topology τ.

Lemma Let B, B^{\prime} be bases for the topologies τ, τ^{\prime} on X. Then τ^{\prime} is finer than $\tau \quad\left(\tau \subset \tau^{\prime}\right.$ allowing equality $)$ $\Leftrightarrow \forall B \in B$ and $x \in B, \exists B^{\prime} \in B^{\prime}$ with $x \in B^{\prime} \subset B$.

Pf See book
Ex $X=\mathbb{R}^{2} \quad B=\{$ open balls $\}$ and $B^{\prime}=\{$ axis-aligned open rectangles\} generate the same topology.

Def $X=\mathbb{R}$
$B=\{(a, b) \mid a<b\}$ generates the standard topology $B^{\prime}=\{[a, b) \mid a<b\}$ generates the lower limit topology

Fact $\tau \not \subset \tau^{\prime} \quad\binom{$ Ie. τ^{\prime} is finer than $\tau}{$, and not vice-versa }
Pf sketch Apply the prior lemma. Consider $(a, b) \in B$ and $x \in(a, b)$. Note $[x, b) \in B^{\prime}$ satisfies $x \in[x, b) \subset(a, b)$, as required.

An imperfect analogy

Vector spaces	Topological spaces
\mathbb{R}^{n}	open sets in \mathbb{R}^{n}
vector spaces	topological spaces
basis	basis

Any vector is a sum of basis elements. Any open set is a union of bass elements.

This description is unique.
A vector space has many bases.
All bases have the same size.

Topological spaces
open sets in \mathbb{R}^{n} topological spaces basis

Nope.
A topological space has many bases. Nope.

Consider the definition of a topology. Can I start with a collection of sets, which I declare to be open, along with all unions and finite intersections thereof?
Def A subbasis S for X is a collection of sets whose union is X. The topology τ generated by subbasis S is the collection of all unions of finite intersections of elements in S

Ex $S=\{\{0,1\},\{0,2\}\}$ is a subbasis but not a basis. $\tau=\{\phi,\{0\},\{0,1\},\{0,2\},\{0,1,2\}\}$.
One basis is $\beta=\{\{0\},\{0,1\},\{0,2\}$

Lemma τ is indeed a topology
Pf sketch Show that the collection B of all finite intersections of elements in S is a basis.
(1) is easy.
(2) follows since if $B=S_{1} \cap \ldots \cap S_{m}$ and $B^{\prime}=S_{1}^{\prime} \cap \ldots \cdot S_{m}^{\prime}$ are two elements of B, then $B \cap B^{\prime}$ is also an element of B.

$$
\left.\rightarrow|=3|=|B|=\begin{gathered}
6 \text { if } \\
\text { include }
\end{gathered} \quad|S . \quad| \tau \right\rvert\,=2^{5}
$$

Section 14: The order topology
Let X be a set with total order \leq.
For $a, b \in X$, define

- $(a, b)=\{x \in X: a<x<b\}$
- $[a, b)=\{x \in X: a \leq x<b\}$
- $(a, b]=\{x \in X: a<x \leq b\}$

- $[a, b]=\{x \in X: a \leq x \leq b\}$.

Def Let β contain
(1) all intervals (a, b)
(2) all interunls $\left[a_{0}, b\right.$) where a_{0} is the smallest element (if any) in X
(3) all intervals $\left(a, b_{0}\right]$ where b_{0} is the largest element (if any) in X, The collection B forms a basis for the order topology on X.

Ex The order topology is the standard topology on \mathbb{R}.
Ex $\mathbb{R} \times \mathbb{R}$ with the lexicographic order: $a \times b<c \times d \Leftrightarrow a<c$ or $a=c, b<d$.
arb |||cred $T_{\text {ard }}^{\text {ard }}<$ These intervals actually form a basis on their own.

This is not the standard topology on \mathbb{R}^{2}.
Ex The order topology on \mathbb{Z}_{+}is the discrete topology Note $\{n\}=(n-1, n-1)$ for $n>1$, and $\{1\}=[1,2)$.

Ex The order topology on $\{1,2\} \times \mathbb{Z}_{+}$(lexicographic order) is not the discrete topology, since any basis element containing $2 x \mid$ must contain some $\mid x_{n}$.

Later: Note $|x n \xrightarrow[n \rightarrow \infty]{\longrightarrow} 2 x|$ is a convergent sequence in this $n \rightarrow \infty$ topology!

Ex Let X be an ordered set and $a \in X$.
Let $(a, \infty)=\{x \in X \mid x>a\}$
and $(-\infty, a)=\{x \in X \mid a<x\}$

be the open rays.
Show these are indeed open in the order topology.
Ans If X has a largest element b_{0}, then $(a, \infty)=\left(a, b_{0}\right]$ is a basis element, else $(a, \infty)=\bigcup_{x>a}(a, x)$ is a unis of basis elements.
Ex Do the open rays form a basis for \mathbb{R} ?
Ans No - consider $a<b$. No open ray is contained inside $(-\infty, b) \cap(a, \infty)=(a, b)$.

Ex Do the open rays form a subbasis for the order topology on X ?
Ans Yes.
They're open in the order topology, so the topology they generate is contained in the order topology,

Also, every basis element for the order topology is a finite intersection of open rays:

$$
\begin{array}{ll}
(a, b)=(-\infty, b) \cap(a, \infty) \\
(a, b]=(a, \infty) & \text { for } b_{0} \text { largest } \\
{\left[a_{0}, b\right)=(-\infty, b)} & \text { for } a_{0} \text { smallest }
\end{array}
$$

So the reverse containment of topologies is also true.

Section 15: The product topology on $X \times Y$
Def For X and Y topological spaces, the product topology on $X \times Y$ is the topology generated by the basis B with all sets of the form $U \times V$, with U open in X and V open in Y.

Check Is this a basis?
Note $X \times Y \in B$,
Also, for $u_{1} \times V_{1}, u_{2} \times V_{2} \in B$,

$$
\left(u_{1} \times v_{1}\right) \cap\left(u_{2} \times v_{2}\right)=\left(u_{1} \cap u_{2}\right) \times\left(v_{1} \cap v_{2}\right) \in B
$$

Question Is B a topology?
No, the union above is not in B
Smaller bases are possible:
The If B is a basis for X and C is a basis for Y,
then $D=\{B \times C \mid B \in B, C \in C\}$ is a basis for $X \times Y$.

Pf Sketch

W open in $X \times Y$
$x \times y \in W$
By definition of product topology and definition of bases B, C :
$\exists B \in B$ with $x \in B$ and $\exists C \in C$ with $y \in C$ satisfying $x_{x} \in B \times C \subset W$.
By Lemma 13.2, this shows D is a basis generating the product topology on $X * Y$.

Section 16: The subspace topology
Def Let (X, τ) be a topological space. For $Y \leqslant x$, the collection

$$
\tau_{y}=\left\{u_{\wedge} y \mid u \in \tau\right\}
$$

is the subspace topology on Y.

Check it is a topology:

- $\phi=\phi \cap Y, \quad Y=X \cap Y \quad J$
- Arbitrary unions:

$$
U_{\alpha \in J}\left(u_{\alpha} \cap y\right)=\left(u_{\alpha \in J} u_{\alpha}\right) \cap y \quad J
$$

- Finite intersections:

$$
\left(u_{1} \wedge y\right) \cap \ldots\left(u_{m} \wedge y\right)=\left(u, n \ldots u_{n}\right) \wedge y \quad \checkmark
$$

Ex Though $[0,1)$ is not open in \mathbb{R}, it is open in the subspace topology on $[0,2] \subset \mathbb{R}$.

Lemma Let $Y \leq X$.
If U is open in $Y \quad\left(U \in \tau_{y}\right)$
and Y is open in $X \quad(y \in \tau)$,
then U is open in $X \quad(u \in \tau)$.
Pf U open in Y
$\Rightarrow \exists V \in \tau$ with $U=V \wedge Y$
$\Rightarrow U$ is the intersection of two sets in τ

$$
\Rightarrow u \in \tau
$$

Lemma If B is a basis for the topology on X, then $B_{y}=\{B \cap y \mid B \in B\}$ is a basis for the topology on Y.

Pf Given $U \cap Y$ open in Y (with U open in X) and $y \in U \cap y$, we can find $B \in B$ with $y \in B \subset U$.
Note $y \in B \cap Y \subset U \cap Y$.
It follows from Lemma 13.2 that B_{y} is a basis for the topology on Y.

Ohm If $A \subseteq X$ and $B \subseteq Y$, then the product topology on $A \times B$ the same as the subspace topology on $A \times B \subset X \times Y$.

Pf Consider first the product topology on the larger space $X_{*} Y$, which has as a basis all $U \times V$, U open in X, V open in Y.

So the subspace topology on $A \times B$ has as a basis all

$$
(U \times V) \cap(A \times B) \stackrel{(U \cap A) \times(V \cap Y), ~}{=}=(U \cap)
$$

which is a basis for the product topology on $A \times B$.
These topologies are the same since they have a common basis.

Rok The order and subspace topologies are not compatible in general.
For example, let $y=[0,1) \cup\{2\} \subset \mathbb{R}$.
In the subspace topology, $\{2\}$ is open in Y.

But in the order topology, any basis element containing 2 is of the form
$(a, 2]:=\{y \in Y \mid a<y \leq 2\}$ for some $a \in Y$ and it follows that $\{2\}$ is not open.

Def If X is totally ordered, a subset $Y \subset X$ is convex if $\forall a, b \in Y$ with $a<b$, the interval $(a, b)=\{x \in X \mid a<x<b\}$ is contained in Y.

Thm If X is an ordered set with the order topology and $Y \subset X$ is convex, then the order and subspace topologies on Y agree.

Section 17: Closed sets and limit points
Def A subset A of a topological space X is closed if $X-A$ is open.

Ex $[a, b]$ is closed in \mathbb{R} since $\mathbb{R}-[a, b]=(-\infty, a) \cup(b, \infty)$ is open.

Ex $[a, b] \times[c, d]$ is closed in \mathbb{R}^{2}.
(Complement is union of four basic open sets.)

Ex In the finite complement topology on a set X, the closed sets are X, \varnothing, and all finite subsets of X.

Ex In the discrete topology, every set is closed.
Rok closed \neq not open
Ex $[0,2)$ is neither open nor closed in \mathbb{R}.
Ex Let $Y=[0,2) \cup\{4\} \subset \mathbb{R}$ have the subspace topology.
Is $[0,2)$ open in Y Yes.
Is $\{4\}$ open in y ? Yes,
Is $[0,2)$ closed in Y ? Yes,
Is $\{4\}$ closed in Y ? Yes.

The For X a topological space,

- ϕ and X are closed
- arbitrary intersections of closed sets are closed
- finite unions of closed sets are closed.

Pf See book. $\quad\left(X-\bigcap_{\alpha \in J} C_{\alpha}=\bigcup_{\alpha \in J}\left(X-C_{\alpha}\right)\right)$
Rok Topological spaces could have instead been defined via closed sets,
Thu For $Y \subset X$ with the subspace topology, a set $A \subset Y$ is closed in $Y \Leftrightarrow A=B n Y$ for some closed set
 B in X

$$
X=\mathbb{R}^{2}
$$

Pf See book.

Def For X a topological space and $A \subset X$,

- the interior of A, denoted Int A, is the union of all open sets contained in A
- the closure of A, denoted $C \mid A$ or \bar{A}, is the intersection of all closed sets containing A.

Ex For $X=\mathbb{R}$ and $A=[0,2)$,

$$
\text { Int } \hat{A}=(0,2) \quad \text { and } \quad \bar{A}=[0,2] \text {. }
$$

Thm X topological space with basis $B, A \subset X$.
(a) $x \in \bar{A} \Leftrightarrow$ every open set containing x intersects A.
(b) $x \in \bar{A} \Leftrightarrow$ every $B \in B$ containing x intersects A.

Rok An open set containg x is called a neighborhood of x.
Pf (a) $(\Rightarrow U$ a unbid of x that doesn't intersect A $\Rightarrow X-U$ is a closed set containing A

$$
\Rightarrow \bar{A} \subset x-u \Rightarrow x \notin \bar{A}
$$

$(\Leftarrow) \bar{x} \notin \bar{A}$ means $X-\bar{A}$ is a nhl of x not intersecting A.
(b) (\Rightarrow) Basis elements are open
(\Leftarrow) A ibid containing x contains a basis element containing x.
Ex $A=[0,2) \subset \mathbb{R}, \bar{A}=[0,2], \quad \bar{A}$ is set of limit points.
Ex $\quad B=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}+\right\} \subset \mathbb{R}, \quad \bar{B}=B \cup\{0\}, 0$ is only limit point.
Ex $\mathbb{Q} \subset \mathbb{R}, \overline{\mathbb{Q}}=\mathbb{R}$, all points in \mathbb{R} are limit points.
Def X topological space, $A \subset X$. A point $x \in X$ is a limit point of A if every nobel of x contains a point in A other than x.
(x may or may not be in A)
The X topological space, $A \subset X$.
Let A^{\prime} be the set of limit points of A.
Then $\bar{A}=A \cup A^{\prime}$.
Cor A subset of a topological space is closed \Longleftrightarrow it contains all its limit points.

Def A topological space X is a Hausdorff space if \forall distinct $x, y \in X, \exists$ (open) neighborhoods U of x and V of y with $u \cap v=\varnothing$

Ihm In a Hausdorff space X, finite sets are closed.

Pf If suffices to show that $\{x\}$ is closed $\forall x \in X$, since finite unions of closed sets are closed.

So, let $y \neq x$ in X. By the Hausdorff assumption, \exists (open) neighborhood Way with $x \notin V$.
$\begin{array}{ll}x & . y \\ u\end{array} \quad$ So $y \notin \overline{\{x\}} \quad \forall y \neq x$ in X.
So $\overline{\{x\}}=\{x\}$, meaning $\{x\}$ is closed.
Def A sequence $x_{1}, x_{2}, x_{3}, \ldots$ converges to a point $x \in X$ if \forall (open) neighborhoods U of $x, \exists N \in \mathbb{Z}_{+}$ such that $x_{n} \in U \quad \forall n \geq N$.

Ex $\quad \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rightarrow 0$ in \mathbb{R}

Ex In the topological space
note that $\{b\}$ is not closed, and note that the sequence b, b, b, b, b, \ldots converges not only to b, but also to a or to c !

Thm In a Hausdorff space, sequences converge to at most one point.

Pf If $x_{n} \rightarrow x$ and $y \neq x$, then let $U \ni x$ and $V \ni y$ be disjoint nbhds. Note u contains all but finitely many elements of the sequence,
 and hence V cannot.

Thy A subspace of a Hausdorff space is Hausdorff. The product of two Hausdorff spaces is Hausdorff.

Section 18: Continuous functions
Def X, Y topological spaces. A function $f: X \rightarrow Y$ is continuous if \forall open U in $Y, \quad f^{-1}(U)$ is open in X.

Rok It suffices to check this condition on basis elements of y :

$$
U=\bigcup_{\alpha \in J} B_{\alpha} \quad f^{-1}(u)=f^{-1}\left(\underset{\alpha \in J}{\bigcup_{\alpha}} B_{\alpha}\right)=\underbrace{\bigcup_{\alpha \in J} \underbrace{f^{-1}\left(B_{\alpha}\right)}_{\text {open }}}_{\text {open }}
$$

Rok It suffices to check this condition on subbasis elements of Y :

$$
B=S_{1} \cap \ldots \cap S_{n} \quad f^{-1}(B)=f^{-1}\left(S_{1} \cap \ldots \cap S_{n}\right)=f^{-1}\left(S_{1}\right) \cap \ldots f^{-1}\left(S_{n}\right)
$$

Ex $f: \mathbb{R} \rightarrow \mathbb{R}$ cont, as defined above $\Leftrightarrow f$ is cont. with the $\varepsilon-\delta$ condition.

Pf (\Rightarrow) Let $x_{0} \in \mathbb{R}$ and $\varepsilon>0$.
Note $U=\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ is open
$\Rightarrow f^{-1}(u)$ is open.
So \exists a basic open set $x_{0} \in(a, b) \subset f^{-1}(u)$.
Let $\delta=\min \left(x_{0}-a, b-x_{0}\right)$.
Then x within δ of $x_{0} \Rightarrow f(x)$ within ε of $f\left(x_{0}\right)$.

\Longleftrightarrow) See book
Ex $\operatorname{Id}: \mathbb{R}_{l} \rightarrow \mathbb{R} \quad\left(\right.$ defined by $\left.I d(x)=x \quad \forall x \in \mathbb{R}_{l}\right)$ is continuous since $\operatorname{Id^{-1}}((a, b))=(a, b)$ is open in \mathbb{R}_{ℓ}.
Id: $\mathbb{R} \rightarrow \mathbb{R}_{l}$ is not continuous since $I d^{-1}([a, b))=[a, b)$ is not open in \mathbb{R}.

Thm Let X and Y be topological spaces, and let $f: X \rightarrow Y$. The following are equivalent:
(1) f is continuous
(2) \forall closed sets B in $Y, f^{-1}(B)$ is closed in X.
(3) $\forall A \subset X, \quad f(\bar{A}) \subset \overline{f(A)}$
(4) $\forall x \in X$ and nbhds V of $f(x)$, \exists nibhd U of x with $f(u) \subset V$.

Rok If (4) holds at $x_{0} \in X$ but not necessarily at all points in X, then we say f is continuous at x_{0}

Pf See book.
Picture of $(1) \Longleftrightarrow(2)$:

Note $X=f^{-1}(X-B) \| f^{-1}(B)$

Def A homeomorphism is a continuous bijection $f: X \rightarrow Y$ such that $f^{-1}: Y \rightarrow X$ is also continuous.

We say " X is homeomorphic to Y " and write $X \cong Y$.

Ex $f:(-1,1) \rightarrow \mathbb{R}$ defined by $f(x)=\frac{x}{1-x^{2}}$ is a homeomorphism with inverse $f^{-1}: \mathbb{R} \longrightarrow(-1,1)$ defined by $\quad f^{-1}(y)=\frac{2 y}{1+\sqrt{1+4 y^{2}}}$.

So homeomorphisms need not preserve boundedness.
Non-Ex $f:[0,2 \pi) \rightarrow S^{\prime}$ defined by $f(t)=(\cos t, \sin t)$ is a continuous bijection that is not a homeomorphism.

Rok A homeomorphism gives a bijection b / w the open sets of X and Y. So it preserves all topological properties.

The (Constructing continuous functions)
(a) Constant functions are cont.

(b) The inclusion of a subspace is cont.

(c) Compositions are continuous: If $f: X \rightarrow Y, g: Y \rightarrow z$ are cont., then so is $g \circ f: X \rightarrow Z$.
$X \longrightarrow Y \longrightarrow Z$
(d) $f: X \rightarrow Y$ cont. and $A \subset X \Rightarrow f l_{A}$ cont.

(e)

$$
\begin{aligned}
f: x \rightarrow y \text { cont. } & f: x \rightarrow z \text { cont. for } y \subset z \\
\Rightarrow & f: x \rightarrow W \text { cont. for } f(x) \subset W
\end{aligned}
$$

(f) $f: X \rightarrow Y, \quad X=\bigcup_{\alpha}^{U_{\hat{\alpha}}} u_{\text {open }}, \quad f l_{u_{\alpha} \text { cont }} \forall \alpha \Longrightarrow f$ cont.

(g) (Pasting lemma) $X=A \cup B, \quad A, B$ closed in X. $f: A \rightarrow Y$ and $g: B \rightarrow Y$ cont. and $f(x)=g(x) \quad \forall x \in A \cap B$. Then the function $h: X \rightarrow Y$ defined via

$$
h(x)=\left\{\begin{array}{cc}
f(x) & x \in A \\
g(x) & x \in B
\end{array}\right\}
$$

is Continuous.

Ex Why is $f: \mathbb{R} \rightarrow \mathbb{R}$ not continuous?

Thm Let $f: A \rightarrow X \times Y$ be given by $f(a)=\left(f_{1}(a), f_{2}(a)\right)$. Then f is continuous $\Longleftrightarrow f_{1}, f_{2}$ are continuous.

Pf Let $\pi_{1}: X \times Y \rightarrow X$ and

$$
\mathbb{K}_{2}: \underset{(x, y)}{X} \times Y \longrightarrow Y .
$$

Note π, is continuous since if U is open in X, then $\pi_{1}^{-1}(u)=U \times X$ is open in $X \times Y$. And similarly for π_{2}.
$(\Rightarrow) f$ cont. implies

$$
\pi_{1} \circ f=f_{1} \text { and } \pi_{2} \circ f=f_{2}
$$ are continuous.

(\Leftarrow) For $U \times V$ a basic open set in $X \times Y$ (meaning U open in X, V open in Y), note $f^{-1}(u \times v)=f_{1}^{-1}(u) \cap f_{1}^{-1}(v)$ is open in A
 open in A
since f_{1} cont. open in A
since f_{2} cont

Section 19 Product topology
Def Given $\left\{X_{\alpha}\right\} \alpha \in J$, the cartesian product $\Pi_{\alpha \in J} X_{\alpha}$ is the set of all J-tuples $\left(x_{\alpha}\right)_{\alpha \in J}$ which are maps $x: J \rightarrow \bigcup_{\alpha \in J} X_{\alpha}$ with $x_{\alpha}:=x(\alpha) \in X_{\alpha}$.

Def The (less-important) box topology on $\Pi_{\alpha \in J} X_{\alpha}$ has as its basis all sets $\left\{\Pi_{\alpha \in J} U_{\alpha} \mid U_{\alpha}\right.$ open in $\left.X_{\alpha} \not \forall \alpha\right\}$

Def The (more-important) product topology on $\Pi_{\alpha \in S} X_{\alpha}$ has as its basis all sets

$$
\left\{\prod_{\alpha \in T} U_{\alpha} \left\lvert\, \begin{array}{l}
U_{\alpha} \text { open in } X_{\alpha} \\
U_{\alpha}=X_{\alpha} \text { for all but finitely many } \alpha
\end{array}\right.\right\}
$$

Rok These topologies agree if J is finite.

Ihm Let $f_{\alpha}: A \rightarrow X_{\alpha} \quad \forall \alpha \in J$
Define $f: A \longrightarrow \prod_{\alpha \in J} X_{\alpha}$ by $a \longmapsto\left(f_{\alpha}(a)\right)_{\alpha \in J}$.
Let ΠX_{α} have ${ }^{\alpha \in s}$ the product topology.
Then f is continuous $\Longleftrightarrow f_{\alpha}$ is continuous $\forall \alpha$.
Pf Note each projection $\pi_{\beta}: \prod_{\alpha \in T} X_{\alpha} \rightarrow X_{\beta}$ is continuous.
$(\Longrightarrow) f$ cont. $\Rightarrow f_{\alpha}=\pi_{\alpha} \circ f$ cont. $\forall \alpha$
(\Leftarrow) A basis element for the product topology can be written as

$$
\prod_{\alpha \in J} U_{\alpha}=\pi_{\beta_{1}}^{-1}\left(U_{\beta_{1}}\right) \cap \ldots \cap \pi_{\beta_{n}}^{-1}\left(U_{\beta_{n}}\right)
$$

where $U_{\alpha}=X_{\alpha}$ for $\alpha \neq \beta_{1}, \ldots \beta_{n}$. Note

$$
\begin{aligned}
f^{-1}\left(\prod_{\alpha \in J} U_{\alpha}\right) & =f^{-1}\left(\pi_{\beta_{1}}^{-1}\left(U_{\beta_{1}}\right) \cap \ldots \cap \pi_{\beta_{n}}^{-1}\left(U_{\beta_{n}}\right)\right) \\
& =\bigcap_{i=1}^{n} \underbrace{f_{\beta_{i}}^{-1}\left(U_{\beta_{i}}\right)}_{\text {open in } A} \text { since } f_{\beta_{i}} \text { cont. is open in } X .
\end{aligned}
$$

Rok (\Leftarrow) need not be true if πx_{α} has the box topology, Let $\mathbb{R}^{\omega}=\Pi_{n \in \mathbb{Z}}+X_{n}$ with $X_{n}=\mathbb{R} \quad \forall n$.
Define $f: \mathbb{R} \longrightarrow \mathbb{R}^{\omega}$ by $f(t)=(t, t, t, \ldots)$
Each coordinate function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{n}(t)=t$ is continuous. But, f is not continuous if \mathbb{R}^{ω} has the box topology, since $B=(-1,1) \times\left(\frac{-1}{2}, \frac{1}{2}\right) \times\left(-\frac{1}{3}, \frac{1}{3}\right) \times \ldots$ is open in the box topology, but $f^{-1}(B)=\{0\}$ is not open in \mathbb{R}.

Section 20: The metric topology
Def A metric on a set X is a function $d: X \times X \rightarrow \mathbb{R}$ s.t.
(1) $d(x, y) \geq 0, \quad d(x, y)=0 \Leftrightarrow x=y$
(2) $d(x, y)=d(y, x)$
(3) $d(x, z) \leq d(x, y)+d(y, z)$ triangle inequality
$\operatorname{Br}(x)=\{y \in X \mid d(x, y)<r\}$ is the r-ball centered at x.

Def Given a metric space $(X, d), \quad\left\{B_{r}(x) \mid x \in X, r>0\right\}$ is a basis for a metric topology on X.

Check its a basis (2)

Rink U is open in (X, d)

$$
\begin{array}{ll}
\Leftrightarrow \forall x \in U & \exists x \in B_{s}(y)<U \\
\Leftrightarrow & \forall x \in U \quad \\
\exists x \in B_{r}(x) \subset U
\end{array}
$$

Def A topological space X is metrizable if \exists a metric on X that induces the topology on X.

Important Question Is a given topological space metrizable?

Ex For X a set, defining $d(x, y)= \begin{cases}1 & x \neq y \\ 0 & x=y\end{cases}$ gives a metric inducing the discrete topology.

Ex Metrics on \mathbb{R}^{n}
For $1 \leqslant p \leqslant \infty$, let $\quad d p(x, y)=\|x-y\|_{p}$, where
where $\|x\|_{2}=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}$

$$
\|x\|_{1}^{2}=\left|x_{1}\right|+\ldots+\left|x_{n}\right|
$$

$$
\|x\|_{\infty}=\max \left\{\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right\}
$$

$\square<$ "taxicab" metric"sup" metric
$\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p}$ for all $\quad 1 \leq p<\infty$.
Note $B_{1}^{d_{\infty}}(\overrightarrow{0}) \supset B_{1}^{d_{2}}(\overrightarrow{0}) \supset B_{1}^{d_{1}}(\overrightarrow{0}) \supset B_{1 / 2}^{d_{\infty}}(\overrightarrow{0})$.
Hence the following lemma shows that all of these metrics induce the same topology on \mathbb{R}^{n} :

(and, moreover, this topology is the product topology)

Lemma Let X have metrics d, d^{\prime} generating the topologies τ, τ^{\prime}. Then τ^{\prime} is finer than τ (i.e. $\tau<\tau^{\prime}$) if $\forall B_{r}^{d}(x), \exists B_{s}^{d^{\prime}}(x) \subset B_{r}^{d}(x)$.

Pf See book.

Def Given a metric space (X, d), define $\bar{d}(x, y)=\min (d(x, y), 1)$. This is the standard bounded metric.

The \bar{d} is metric on X and induces the same topology as d.
Pf See book.
Ibm The product topology on \mathbb{R}^{ω} is induced by the metric $D(x, y)=\sup \left\{\frac{\bar{d}\left(x_{i}, y_{i}\right)}{i}\right\}$
Pf See book.
Rok Metric $\sup \left\{\bar{d}\left(x_{i}, y_{i}\right)\right\}$ gives a topology that is too fine, for example containing $(-1,1)^{\omega}$ as an open set.

R uk $\sup \left\{d\left(x_{i}, y_{i}\right)\right\}$ is not a metric (it gives a function from $X \times X$ into $[0, \infty]$, not into $[0, \infty)$).

Rank More generally, countable products of metric spaces are metrizable.

Section 21: Metric topology (contimed)
Rok Metric spaces are Hausdorff: If $x \neq y$, then $B_{\varepsilon}(x)$ and $B_{\varepsilon}(y)$ are disjoint for $0<\varepsilon<\frac{1}{2} d(x, y)$ by the triangle inequality.

The $f:\left(x, d_{k}\right) \rightarrow\left(y, d_{y}\right)$ continuous
Given $x \in X, \varepsilon>0, \exists \delta>0$ st.

$$
d_{x}\left(x, x^{\prime}\right)<\delta \Rightarrow d_{y}\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon .
$$

Lemma (Sequence Lemma) X topological space, $A \subset X$.
If a sequence in A converges to x, then $x \in \bar{A}$. Converse holds if X metrizable.

Pf $\left(\Rightarrow x_{n} \rightarrow x\right.$ implies every unbid of x contains a point in A,
 so $x \in \bar{A}$.

Pf (\Leftarrow) Let d be a metric giving the topology on X. $\forall n \in \mathbb{Z}_{+}$, choose $x_{n} \in B_{1 / n}(x) \cap A$. Note $x_{n} \rightarrow x$.

Rok For the converse of this (and the next) lemma, assumption "X metrizable" can be relaxed to X first countable, which means:
$\forall x \in X, \exists$ countable collection of nbhds $\left\{u_{n}\right\}_{n \in \mathbb{Z}_{+}}$such that $\forall n$ hd $U \ni x, \quad \exists n \in \mathbb{Z}_{+}$with $x \in U_{n} c U$.

Rok \mathbb{R}^{J} not metrizable for J uncountable. Indeed, let $A=\left\{x=\left(x_{\alpha}\right) \in \mathbb{R}^{J} \mid x_{\alpha}=1\right.$ for all but finitely many $\left.\alpha \in J\right\}$.
Define $\overrightarrow{0} \in \mathbb{R}^{J}$ to be the point x with $x_{\alpha}=0 \quad \forall \alpha \in J$.
Then $\vec{O} \in \bar{A}$ since any basic open set about \vec{O} is \mathbb{R} in all but finitely many coordinates, hence intersects A.
But for any sequence $x^{1}, x^{2}, x^{3}, \ldots \in A$,
\exists some $\beta \in J$ with $x_{\beta}^{n}=1 \quad \forall n$ ($\left.\begin{array}{l}\text { since a countable union of } \\ \text { finite sets is countable }\end{array}\right)$, hence $\pi_{\beta}^{-1}((-1 / 2,1 / 2))$ is a nbhd about \vec{O} containing no x^{n}, So no sequence in A can converge to $\overrightarrow{0}$.

The X, Y topological spaces, $f: X \rightarrow Y$. If f is continuous, then $\forall x_{n} \rightarrow x$, we have $f\left(x_{n}\right) \rightarrow f(x)$. Converse holds if X is a metric space.
Pf (\Rightarrow) Given nbhd $V \ni f(x)$, note $f^{-1}(V)$ is a ubhd of x, so x_{n} eventually in $f^{-1}(v)$ implies that $f\left(x_{n}\right)$ is eventually in V.

(\rightleftharpoons) Suffices to show $f(\bar{A}) \subset \overline{f(A)}$ for any $A \subset X$. If $x \in \bar{A}$, then by prior lemma (since X metrizable), $\exists x_{n} \in A$ with $x_{n} \rightarrow x_{\text {. }}$. By assumption, $f\left(x_{n}\right) \rightarrow f(x)$. Since $f\left(x_{n}\right) \in f(A) \quad \forall n$, the prior lemma gives $f(x) \in \overline{f(A)}$. Hence $f(\bar{A}) \subset \overline{f(A)}$ as desired.

Section 22: The quotient topology
Let X be a topological space, and let X^{*} be a partition of X, namely a collection of disjoint subsets whose union is X.
(In other words, suppose we have an equivalence relation on X.)

Ex $[0,1] \times[0,1] / \sim$

torus
$[0,1] \times[0,1] / \sim$

Klein bottle
D^{2} / s^{1}

sphere

From the topology on X, how do we get a topology on X^{*} ? Give X^{*} the finest topology such that $p: X \longrightarrow X^{*}$ is continuous. $\quad x \longmapsto[x]$

Def Let X be a topological space, Y be a set, $p: X \rightarrow Y$ be surjective. In the quotient topology on Y,
U open in $Y \Leftrightarrow p^{-1}(U)$ open in X.

Check This is a topology.
$p^{-1}(Y)=X$ open in $X \Rightarrow \quad Y$ open in Y.
$p^{-1}(\phi)=\varnothing$ open in $X \Rightarrow \phi$ open in Y.
$p^{-1}\left(U_{\alpha}, U_{\alpha}\right)=U_{\alpha} p^{-1}\left(U_{\alpha}\right)$ open in $X \Rightarrow U_{\alpha} U_{\alpha}$ open in Y.
opening \Rightarrow open in X
$p^{-1}\left(\cap_{i=1}^{n} U_{i}\right)=\bigcap_{i=1}^{n} p^{-1}\left(U_{i}\right)$ open in $X \Rightarrow \bigcap_{i=1}^{n} U_{i}$ open in Y.
Ex

torus

sphere

Ex $p: \mathbb{R} \rightarrow\{-1,0,1\}$ by $p(x)=\left\{\begin{array}{cl}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{array}\right.$
The induced quotient topology on $\{-1,0,1\}$ is

Let $p: X \rightarrow Y$ be surjective, X a topological space.
What if Y already has a topology?
Def For X, Y topological spaces and $p: X \rightarrow Y$ surjective, p is a quotient map if U open in $Y \Longleftrightarrow p^{-1}(u)$ open in X.

Ex All the examples above, where Y has quotient topology.
Non-Ex

$$
X=\left\{(x, y) \in \mathbb{R}^{2} \mid x y=1\right\} \cup\{(0,0)\}
$$

$$
Y=\mathbb{R}
$$

Note $p: X \rightarrow Y$ is continuous and surjective, bat not a quotient map since $P^{-1}(\{0\})=\{(0,0)\}$ is open in X, but $\{0\}$ is not open in $Y_{\text {。 }}$

Ihm (Continuars maps out of quotient spaces) X, Y, Z topological spaces, $p: X \rightarrow Y$ a quotient map. Let $g: X \rightarrow Z$ be constant on each $p^{-1}(\{y\})$,
hence inducing a function $f: y \rightarrow z$ with $f \circ p=g$.
Then f continuous $\Longleftrightarrow g$ continuous.
Pf $(\Rightarrow) f$ cont. implies fop $=g$ cont.

(\Leftarrow) Given V open in $Z, g_{11}^{-1}(V)$ open in X since g is continuous.

$$
p^{-1}\left(f^{-1}(v)\right)
$$

Now, p a quotient map implies $f^{-1}(v)$ open in Y, so f is contimuals.

