
Chapter 3 : Connectedness and compactness

Let S : la,b] -R be continuous
.

-

ef(b) - ⑳

r = .

Intermediate value theorem (IVT) f(a) -

F f(x)= r =f(b) = ce[a, b) with f(c)= r
·

a b

f(z) -

Maximum value theorem

Ice[a
, b) S

.

t
. f(z) = f(c) Xxc[a

, b] .

+(3)-
f(a) -

a b

These properties are really due to the fact that

[a , b] is connected and compact , respectively .



Section 23 : Connected spaces
X

Def X a topological space . A separation of X is a pair
U

,
V of nonempty disjoint open sets whose union is X.

U

↓ is connected if it has no separation .

V

Rik Topological property .

If X=Y
,

then & connected Y connected .

Rik Equivalently,
X is connected if its only clopen subsets are % , X .

Ex [1
, 0)-(0 . 17 has a separation E E ↓ I 7

and is not connected -

1

Ex Ea,
b3 with the indiscrete topology

⑯
⑧

a
⑳

b

is connected

r irrational
Ex & is not connected : for r irrational

, [ (K >

(-
, r) - &

,
(r

,
w)19 gives a separation .



Thm If Six-Y is continuous and X is

connected
, then S(X) is connected .

# If UV is a separation of f(x)
, ⑰)

+

1then f-(U)
,
f(V) is a separation of X S'(V) V

Copen, nonempty , disjoint, union is X)
,

contradicting the fact X is connected.

Lemma If X has separation U
,
U and

XaX is connected
,
then YcU or YcV.

U x

V
Pf If both YU and YU were nonempty,

then these open sets in X would form a separation of X.

Thm If ACX is connected and AcBCA
, Athen B is connected.

** Adding in a subset of limit points preserves connectedness
.



Thm Unions of connected subspaces with a Yo Y
point in common are connected

.

Pf Let Y= VaYo with yeYr connected X Fo
.

Yo
Y

Assume Y has
Then Focu Fo

.

Separation ,
U .
V

.
Suppose ye.

V is

empty ,
a contradiction ,

Thm A finite product of connected spaces is connected

Pf sketch n=2 x x
Y Let(a ,

b) = XxX

For =ex
,

let Tw = ( x 3b3) - (3x3 xX) ·
( ,b)

·
(a ,

b)

XNote each To is connected by prior lemmon

Hence XxX= Ex To is connected by prior lemma

with (a
, b) as common point . X

The general case of an n-fold product then follows by induction.



Cor " is connected (assuming Ris).
Ex RW with box topology is not connected.

If Let U= Ebounded sequences) and V= Sunbounded sequences? .

They're nonempty, disjoint, and UrV=RW
. Open in box topology ?

Given a cIRY
,

note (a ,
-1

,
a , +1) = (a2-1 , ac + 1) + (as - 1

, az + 1) <
... ...is an open neighborhood of a that is contained in

Au

U (resp . v) if a is bounded (resp, unbounded) .

A5

Hence U and V are open in box topology
,

A6

and (RY
,
box topology is not connected.

⑧
Ex RN (with the product topology) is connected .

x
,

P/ Let R = SEERN/2: = 0 for isn . Connected since RER"
.

↑

↑

Let R
*

= Unzi R .
Connected since union of connected sets containing (0,

0
,
0
,

...) . n
We claim IR

*

<RW= Ro
, giving that RW is connected .

·

Indeed
,
for WEIR* and =Hill : a basic open set,

0 XN+
- I

FN with U-RR Vi>N
, meaning (2 , x2 , . . .,

XN
,

0
,

0
,

... ) ERP Hilli · OXN+2



Section 24 : Connected subspaces of IR

& is connected
,

and so are intervals and rays in R.

Rmk : This doesn't rely on the algebraic structure of R
,

only on its order properties. Indeed
,

see the theorem below
.

Def A simply ordered set 2 with more than one element is a linear continuum if

(1) L has the least upper bound property
(2) If key ,

then 52 with rezey .

Ex R
,

[0
,
1 - [0, 1 with dictionary order.

Def XCL is convex if a bex with a
= b = [a, b) <Y

.

Ex L
, intervals in L

, rays in Lo

Thm If L is a linear continuum with the order topology
and VCL is convex

,
then Y is connected.



That intervals in R are connected gives a sufficient
· D ⑧

condition for showing a space is connected :

Def A space X is path connected if every x
, y eX can I

be joined by a path ,
i . e .

a continuous map f: [a,b]+X
with f(a)= x and f(b)= y .

-> 2
· ILemma A path connected space X is connected

. a

PS Suppose U ,
V Separate X

.

Let f : [a
, b] -> X be continuous with f(a)=U

,
f(b) =V.

U

But the continuous image of the connected set [a, b] is connected
, ·meaning f([a,b)) must be contained in U or in V

. W

Ex Ball B = SER") IE1=13 is connected

Sphere S"= SweR"+'1 IE1l=13 is connected for n21

⑧

& B2
--



Ex Topologist's sine curve is S = [(k, sin(()) (02x=13 r[10, 3)) - 12y213 .

Here S = E (2
,
sin()) / 022 =13 is path-connected => S connected .

Mr
Note S connected - 5 connected

.

But 5 is not path connected.



Section 25: Components and local connectedness

Def X topological space.

Declaring Ey when I connected subspace containing my gives
equivalence relation ; equivalence classes called components .

Declaring wy when I a path in X from ~ to
y gives

thequivalence relation ; equivalence classes called pa components .

One component- Two path components

Each path component is connected
,

hence contained in a single component .

When do components and path components coincide ?
& being "locally path connected" suffices .



U

Def A topological space X is locally (path) connected it U

⑧IVeex and nbhas UFx
,
I a (path) connected nbhd weVcU .

~

V

Locally path connected -> locally connected
,

since path connected - connected .

Ex Connected Not connected

Locally connected Internals in R Elo-10 . D=
Topologist's sine curve

Not locally connected or k
[0,1] = [03

...

[0,1



Thm A space X is locally (path) connected Ex [x[0,
=) F open UCX,

each (path) component P of U is open .

& & O * & a a

Pf Let's prove the path connected version . P U

(=>)0pen UCX has path component P .

For 2eP
,
let nbhd = =VaU be path connected; hence VaP

.
Non-Ex Qua

So P
is open .

(E) Given nbhd U=2
,
let P be the Copen) path ......

component of U containing to Note =eP < U
.

So X is locally path connected
,

Thi If X is locally path connected
,
then the P

components and path components coincide . Q

PS Let P be a path component contained in a component C .

If P I C
,

then let Q be the union of all other path components in C
.

X locally connected,
so prior theorem (connected version with n= x) says Copen .

Prior theorem (path connected version with U= C) then says P and Q are open.

Then =P - Q gives a separation of C.
So it must be that P= C

.



Section 26 : Compact spaces

Analogy :
(Sets

,
functions)

fut
(Topological spaces,

continuous functions)
U W

Finite sets Compact spaces

⑧A cover 21 of a topological space X is a collection 0
of subsets whose union is X .

If these sets are

open ,
then M is an open cover

.

Def A topological space X is compact if every
open cover I has a finite subcover

,

i
.
e .

a subcollection [U ,, ....
Un3<M with X=U

.
r

...

~Un
.

Ex IR not compact : ((n-1
,

n +13n = is an
I W I I I I ...

open cover with no finite subcover.

Ex A finite set X is compact (regardless of the topology)
·

(Given an open cover
,

for each &ex
,

choose an open set containing wro)



Ex 10
,

17 not compact
: the open cover

EL'
,

B3 nez+
has no finite subcover

.
↓ i !

Ex Stnext is not compact : the open cover 1 (.3.) (.) 1. ( 113

by singletons has no finite subcover
. 45 YYk 1

But [03vE}next is compact : Given an open cover
,
note

W

an open set containing O contains all but finitely many elements of Ennext
·

I........ I

Ex We'll see : XcIR" compact X closed and bounded
.



We say a collection of sets [Uoboes in X y C X
covers /CX if Ya VoUr

. I⑧Lemma XaX is compact & every cover of Y by open sets⑧
in X has a finite subcover

PS Y compact > every cover [UoY3 has a finite subcover
-

= every cover

open

no has a finite subcover

open in X

Thm A closed subset of a compact space X is compact.

X

Pf Let U be a cover of Y by open sets in X
.

Then MrSX-Y3 is an open cover of X.

↑
X compact -> I finite subcover [U .. ...,

Un
, X-Y3 of X

.

So SU .. .... Un3<U is a finite subcover of X
.



XThm Every compact subspace Y of a Hansdorff space is closed
.

Pf We'll show X-Y is open .

⑧DeLet xeX-Y
.

For each yet 7
⑧ nee

· y ,

disjoint opens Vyc-Y, Uy= z . A C
↑

compact -> X has finite subcover [Vy .. ...,
Vyn3.

Uyz Vyz

Note Y < Vy ,

U
.... ~Vyn is disjoint from ⑧⑧the open set Uy ,

... MynC x ·
Mys

·y3y
Hence X-Y is open .

Vy3

Thm If fix-X is continuous and X is compact, then f(x) is compact .

Pf Let U be a cover of f(x) by open sets in Y =-(U)

Then Sf(U) /U=U3 is an open cover of X
.

5-(z) 5⑧ ⑨↑ compact -> I finite subcover 5 "(U)
, ....

5 "(Mn) of X
.

R -> Uz
U3

So U
.. ....

Un is a finite subcover of f(X) . f-[Uz)



Thm If fix-Y is a continuous bijection I

with X compact and Y Hausdorff
,

A closed
->

f(A)= (s-1)
-

(A)
f -1

then 5 is a homeomorphism .

I⑧
X compact

45 To see that St : Y-X is continuous
,
note X = f(x) Hausdorff

A closed in X = A compact -> f(A) compact -> S(A)=(f-)) (A) closed
.

since X compact Since Y Hausdorff



Thi Finite products of compact spaces are compact .

Tychonoff theorem : Arbitrary products of compact spaces are compact .IOne proof in Munkres uses Zorn's lemma
,
another the well-ordering theorem .

I
Tubelemma X space,

X compact .
Let NoxX a Noen XxX.

N

Then INocW a Not :

open
with WxX < N

. ↑
PF Cover

act

with basic opens [UAV3, each UxVN.
↑ =

I finite subcover H
, xV,, ....

UnxUn with NoEU : Fi .

Let W = n
, ... Une

to W X

Pf theorem For X
, Y compact

,
let a be open cover of XxX

.
(General case is by induction

.)
For each EX

, compact xxx covered by As
, ....

An EA .

Apply lemma with N= A
,
r

...
~An :

Get xeWend S . t
.
WexY is covered by finitely many sets in A

.

X compact -

open cover [W23 of X has finite subcover W
....,

Wr
.

So WixY
, ....

WrxY cover XxX and are each covered by finitely many sets in A.



y A

--

X ReWegen



Def A collection 2 of subsets of X has the finite intersection property (f .
:

. p.)
if VEC ,

. . .
. [u}c2 ,

Cu
... . CnF4.

Ex Nested sequence 2
, C C

...

(n = I
,
In] <E1 , 1) compact (n = In,) cR not compact

Thm & topological space .
Then X compact

every collection of closed sets with f. i
. p.

has nonempty intersection
.

Pf X compact >

For every collection of open sets
,

no finite subcover implies not a cover.

complementI I #
closed sets fir

. P. nonempty intersection
Picture X=E1

,1
Open sets 1 = &El ,-"n)u(' , 13nee+ -

Closed Sets 2 = SE' , in]}next
- I I



Section 27 Compact subspaces of RR

Every closed interval [a , b) in IR is compact .
More generally,

Thi Let X be a totally ordered set with the least upper bound property.

Then in the order topology,
each closed interval [a , b) is

compappt see book)
Recall AcIRM is bounded if AcBnC8) = SERM) HalleM3 for some M .

(Equivalently,
da,a) =N for some NER.

Heine - Borel Thi AcRM is compact E it is closed and bounded
.

Pf (=) A compact means A closed (Since IRM is Hansdorff) ·
Also

,
the open cover [Br(8)3rco of A has a finite subcover

,
so A bounded . Br(0)

(E) A bounded means Ac Bu(8) < EM
, MJM ,

which is compact as a finite product
of the compact space EM,M] . So A is a closed subset of a compact space, hence compact.

BuCO) EM
,MI



Extreme value theorem
&

Has
* R

If 5 :X-R is continuous and X is compact,
then I <

,
deX with f(c)=f(x) = f(d) Xxc X. Es

- -

Pf X compact, f continuous -> f(x) compact E=> f(x) closed and bounded (Heine -Borel)
.

The least upper bound of f(x) must be in f(x) :

if not
,

it would then be a limit point of f(x)
,

⑧ 5(c) I

but closed sets contain their limit points .

Similarly for the greatest lower bound
.



Section 28 : Limit point compactness

Def Topological space X is limit point compact Recall t is a limit point of AcX if

if every infinite set has a limit point . every nbhd of a intersects A at some

(Also called Bolzano-Weierstrass property .) point other than X.

Thm & compact -> X limit point compact.
& -

la X
Pf If AcX has no limit points, we'll show A finite

.

...
A -

A is closed [contains all its limit points) and hence compact.

FazA
,
I nbhd UaFa s.

t
. UaA= Sa

Lotherwise a is a limit point of A) .

The open cover [UaBacA of A has a finite subcover -> A finite &

Ex Converse not true
.

·
. I

LX= 7 (discrete topology) · Y= 30, 13 with indiscrete topology·t

Xxx is limit point compact since every nonempty subset has a limit point . 8888.0....XxX is not compact since the open cover EnxX3next has no finite subcover
.



⑧

2⑧
se an

sequence
·

We
aBet points sequentiallycompact onferee subsequence .

X ⑧
Do

...· or

Thm If X is metrizable
,
then TFAE :

(1) X compact

entiy matt
Pf (1) = (2) above

.

(2) = (3)
.
Let (an)next be a sequence in X

.

Let A= Ex, x2
,
x

,
..

If A finite
,

then I constant (hence convergent) subsequence .

If A infinite
,

then I limit point ac A .

Hence FreX+
,
Bin(a) intersects A in infinitely many points .

(since X metrizable ; see Thm 17. 9)
[An with wun eBYn(a) Xk

*
Hence we can choose a convergent subsequence I

-

(3) = (1) hardest part , see book
.



Section 29 : Local compactness (and one-point compactification)

Particularly nice topological spaces include -
- metric spaces

Any subspace of a metric space is a metric space.

-

compact Hansdorff spaces . :When is a topological space a subspace of a compact Hansdorff space ?

Def A topological space X is locally compact if
Feex

,
I nbhd Use and compact Ci with UCCIX

.

I Rik If X is Hansdorff
,
then this definition looks more familiar (see Thm 29

.2) : IX is locally compact > FreX and nbhd Us-x
,
I nbhe weWeU with I compact .

~U
Ex R is locally compact. REIR H = (x - 1

,
x + 1) < [x - 1

,
z + 1) = C ⑨ X

Ex R" is locally compact. xe("U = (x ,
- 1

,
x ,

+ 1) x
...
x(kn -1

, xn+1) <[x,
- 1

,
x, +1) x ... x [an-1

, an + 1) = C!

Non-Ex RN not locally compact - basic open sets are not contained in compact sets.



⑧
Thm Let X be a topological space.

X is locally compact Hausdorff
= I a topological space Y s .

t
. Y= S

(1) XcY

(2) X-X is a single point
(3) Y is compact Hansdorff

.

Furthermore
,

for any two such spaces Y,
Y ! I 7

I homeomorphism hi x- Y with hix = idx . X= R

Ex X= 1 = (0 , 1) ⑧
·

Y= S' =
[0B/o

Ex X= 1
"

Y= S
------------------=S

Special case X = K
,

Y=S2 Riemann sphere -

⑧

X= IR2



Recall A closed subspace of a compact space is compact
A compact subspace of a Hansdorff space is closed

Thus for a subspace of a compact Hansdorff space,
closedI compact.

·

Pf of thm (=>) Let Y= X-[ 3
.

↑Let topology [ for Y consist of :
Y- C

(a) U
, open in X -----------------Y=S

(b) Y-C
,

C compact in X
.

-

To see that I is a topology ,
note :

· O open in X
,
Y= X- ↓ with o compact in X U ⑧ C 2

X= R
· Wiede open in X

(X-C ,]u(Y - (2)= Y - ( , v(z) finite union of compact sets is compact
ne(X- ) = 4-(X) open in X closed in X Since X Hansdorff

We Uo=: H open in X

VB(Y- (B) = Y-1 arbitrary intersection of compact spaces of Hansdorff space is compact
"C

WoUorVp(X-C) = Ur(X-C) = Y- (C-u) closed subspace of compact C is compact



⑧
·

Y- C

To see that Y is compact, note if U is an open cover
------------------ Y=S

-

of Y
,

then U has an element X-CCX
,

C compact in X
.

-

7 finite subcover of C
,

and adding in Y-C gives a C

finite subcover of Ye

Y- C
⑧ C

To see that Y is Hansdorff
,

note for x
,
x'eX

,
can use Hansdorff property of X

. y = ⑧
·

Remaining case is xeX
, y

= 20
.

Since X is locally compact , Y- C

choose compact set C containing a nbhd U=x
.

------------------ Y=S
-

Then U
,
X-C are disjoint opens .

-
N

* Eas
·X U C

Y- C
· zU ⑧ C



y
=

0
·

(=) Xcy = Xu(w)
Note Y Hansdorff -> X Hausdorff

.

V

Remains to show & locally compact . ------------------
-
Y=S

For ex
,
choose disjoint opens U=X

,
VE

.
-

Let C= X-V
.

C closed in x=> C compact ,
·X U C

with HcCcX
.

· zU ⑧ C

It remains to show that Y is unique up to
F

.

Define hiYY' by h(0) = 00'
,
h(= FreX

.

One can show his a homeomorphism (see book).


