<u>Chapter 4</u>: Homotopy Theory • The higher homotopy groups The (X) generalize the fundamental group The (X). There are formal similarities with homology: $-\pi_n(x)$ abelian for $n \ge 2$. - Long exact sequence ... $\rightarrow \pi_n(A) \rightarrow \pi_n(X) \rightarrow \pi_n(X,A) \rightarrow \pi_{n-1}(A) \rightarrow \dots$ - The Hurewicz Theorem says if X is simply connected, then the first nonzero homotopy group Nn (X) is isomorphic to the first nonzero homology group Hn(X). Homotopy groups are much harder to compute than homology: no excision or Mayer-Vietoris.

<u>— Whitehead's theorem</u> says if a map $f: X \rightarrow Y$ between CW complexes induces isomorphisms $f_*: \pi_n(X) \rightarrow \pi_n(Y)$ $\forall n$, then f is a homotopy equivalence.

Careful: There must be a map F inducing the isomorphisms. S² × IRP³ and S³ × IRP² have isomorphic homotopy groups but are not homotopy equivalent.

- Fiber bundles
$$F \rightarrow F$$
 give long exact sequences

$$\dots \longrightarrow \Pi_n(F) \longrightarrow \Pi_n(E) \longrightarrow \Pi_n(B) \longrightarrow \Pi_{n-1}(F) \longrightarrow \dots$$

• The treatment in these notes is relatively informal and in reality, care needs to be taken with basepoints.

We see $\pi_3(S^2) \cong \mathbb{Z}$.

Section 4.1 Homotopy groups

More generally, the higher homotopy groups $\pi_i(S^n)$ for i > n are complicated, whereas $H_i(S^n) = 0$ for i > n.

$\pi_i(S^n)$															
		$i \rightarrow$													
		1	2	3	4	5	6	1	8	9	10	11	12		
n	1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0		
↓	2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$		
	3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$		
	4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}	\mathbb{Z}_2		
	5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}		
	6	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}	\mathbb{Z}_2		
	7	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0		
	8	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0		

Def Let X be a space and
$$x_o \in X$$
. For $n \ge 1$,
the n-th homotopy group $\pi_n(X)$ is the homotopy classes of
maps $(I^n, \partial I^n) \longrightarrow (X, x_o)$, with group operation given by

$$(f+g)(S_1, S_2, ..., S_n) = \{f(2s_1, s_2, ..., s_n) \text{ for } s_1 \in [0, \frac{1}{2}] \\ g(2s_1-1, s_2, ..., s_n) \text{ for } s_1 \in [\frac{1}{2}, 1].$$

<u>Proposition 4.1</u> A covering space projection $p: \tilde{X} \rightarrow X$ induces isomorphisms $\rho_*: \pi_n(\widetilde{X}) \longrightarrow \pi_n(X)$ for all n_*

Ex Since $(S')^n$ has a universal cover \mathbb{R}^n that is not only simply-connected but also contractible, we have $\pi_i((S')^n) = 0 \forall n \ge 2$.

(Spaces X with Ti(X)=O ∀n≥2 are called aspherical.)

By contrast, $H_i((s')^n) \cong \mathbb{Z}^{\binom{n}{2}}$ is nontrivial $\forall i \leq n$. Tori are generators of higher homology, not of higher homotopy groups.

<u>Pf 1</u> Surjectivity of p* is by the lifting criterion (Prop 1.33): S" simply-connected for $n \ge 2$ gives $f_*(\pi, (S^n)) \subseteq \rho_*(\pi, (\widetilde{X}))$.

Injectivity of p* is by the homotopy lifting property (Prop 1.30).

<u>Proposition 4.1</u> A covering space projection $p: \tilde{X} \rightarrow X$. induces isomorphisms $\rho_*: \pi_n(\tilde{X}) \longrightarrow \pi_n(X)$ for all n_* E_{x} Since $(S^{1})^{n}$ has a universal cover \mathbb{R}^{n} that is not only simply-connected but also •. • Contractible, we have $\Pi_i((S^{i})^n) = 0 \quad \forall n \ge 2$. (Spaces X with $\pi_i(X) = 0 \forall n \ge 2$ are called <u>aspherical</u>.) Ρ By contrast, $H_i((s')^n) \cong \mathbb{Z}^{\binom{n}{2}}$ is nontrivial $\forall i \leq n$. Tori are generators of higher homology, not of higher homotopy groups. $\frac{Pf 2}{F} \xrightarrow{F} x$ where F has the discrete topology, giving a long exact sequence $\cdots \to T_n(F) \to T_n(\tilde{X}) \xrightarrow{\cong} T_n(X) \to T_{n-1}(F) \to \cdots$ with $\Pi_n(F)$ trivial for $n \ge 1$ and hence p* an isomorphism for n≥2.

<u>Prop 4.2</u> For a product $\Pi_{\alpha} X_{\alpha}$ of path-connected spaces X_{α} there are isomorphisms $\Pi_{\alpha} (\Pi_{\alpha} X_{\alpha}) \cong \Pi_{\alpha} \Pi_{\alpha} (X_{\alpha}) \forall n$.

$$\underbrace{\underline{F}_{X}}_{\pi_{i}} ((S')^{n}) \cong (\pi_{i}(S'))^{n} \cong \mathbb{Z}^{n} \quad \text{and} \\ \pi_{i}((S')^{n}) \cong (\pi_{i}(S'))^{n} \cong O \quad \forall n \ge 2.$$

Thm 4.3 For (X, A) a pair of spaces with basepoint $x_0 \in A \subseteq X$, we have a long exact sequence $\dots \to \Pi_n (A, x_o) \to \Pi_n (X, x_o) \to \Pi_n (X, A, x_o) \longrightarrow \Pi_{n-1} (A) \to \dots$ The relative homotopy groups $\pi_n(X, A, x_o)$ can be defined as homotopy classes of maps $(D^n, S^{n-1}, s_o) \longrightarrow (X, A, x_o)$ Element of set $\Pi_{1}(X, A, \chi_{p}).$ An element of Element of group $T_2(X, A, x_0)$. abelian group Hz(X,A) that is not an element of $T_{X}(X,A)$.

$$\frac{\text{Thm } 4.3}{\text{We have a long exact sequence}}$$

$$\frac{1}{\text{We have a long exac sequence}}$$

$$\frac{1}{\text{We have a long exac$$

<u>Thm 4.3</u> For (X, A) a pair of spaces with basepoint $x_o \in A \subseteq X$, we have a long exact sequence $\dots \to \Pi_n (A, x_0) \to \Pi_n (X, x_0) \to \Pi_n (X, A, x_0) \to \Pi_{n-1} (A) \to \dots$ The relative homotopy groups $\pi_n(X, A, x_o)$ can be defined as homotopy classes of maps $(D^n, S^{n-1}, s_o) \longrightarrow (X, A, x_o),$ Element of set $\Pi_{1}(X, A, \chi_{p}).$ with addition defined via the map $D^n \rightarrow D^n \lor D^n$ collapsing $D^{n-1} \subseteq D^n$ to a point. С Element of group \mathcal{G} $\Pi_2(X, A, \varkappa_0).$ $(D^{n}, S^{n}) \xrightarrow{c} (D^{n} \cdot D^{n}, S^{n-1} \cdot S^{n-1}) \xrightarrow{f \cdot g} (X, A)$

<u>Thm 4.3</u> For (X, A) a pair of spaces with basepoint $x_o \in A \subseteq X$, we have a long exact sequence $\dots \to \Pi_n (A, x_o) \longrightarrow \Pi_n (X, x_o) \longrightarrow \Pi_n (X, A, x_o) \xrightarrow{\partial} \Pi_{n-1} (A) \longrightarrow \dots$ The relative homotopy groups $\pi_n(X, A, x_o)$ can be defined as homotopy classes of maps $(D^n, S^{n-1}, s_o) \longrightarrow (X, A, x_o).$ Element of set $\Pi_1(X, A, x_o).$ The connecting homomorphism or boundary map 2 is defined by restricting maps $(D^n, S^{n-1}, s_o) \longrightarrow (X, A, x_o)$ to S^{n-1} . Kemark Trn (X, A, xo) is a Element of group set for n=1, • group for n=2, N2 (X, A, 20). abelian group for n≥3. This can best be seen in the definition using cubes.

Alternatively, the relative homotopy groups $Tn(X, A, x_0)$ can be defined as homotopy classes of maps $(I^n, \partial I^n, J^{n-1}) \rightarrow (X, A, x_o)$ where $J^{n-1} = \partial I^n \setminus \{ \text{face with last coordinate zero} \}$ Remark This again makes the definition of 2 convenient. Remark Mr. (X, A, xo) is a Set for n=1. • group for n=2, • abelian group for n≥3. This can best be seen in the definition using cubes.

Whitehead's theorem. Thm 4.5 If a map $f: X \rightarrow Y$ between CW complexes induces isomorphisms $f_*: \pi_n(X) \rightarrow \pi_n(Y)$ $\forall n$, then f is a homotopy equivalence.

Since CW complexes are built using attaching maps whose domains are spheres perhaps it is not surprising homotopy groups say much about them.

Careful: There must be a map f inducing the isomorphisms. S² × IRP³ and S³ × IRP² have isomorphic homotopy groups but are not homotopy equivalent.

How do we see $\pi_i(S^n) = 0$ for i < n? An appealing proof would homotope $f: S^{i} \longrightarrow S^{n}$ to miss some $\rho \in S^{n}$, since $S^{n} \setminus \{p\} \simeq *$. (One can find surjective such maps) $(f: S^{i} \rightarrow S^{n}$ using space-filling curves.)

This follows from cellular approximation.

<u>Cellular Approximation, Thm 4.8</u> Every map $f: X \rightarrow Y$ between CW complexes is homotopic to a cellular map, meaning $f(X^n) \in Y^n$ Vn.

Aside	Thm 2C.1 (Simplicial Approximation)
For comparison, recall	If K,L are simplicial complexes with K finite,
	then any map f: K-IL is homotopic to a
	Simplicial map $g: sd^m(K) \longrightarrow L$ for some m.
	iterated barycentric subdivision

Section 4.2 Elementary methods of calculation

Def A space X is n-connected if
$$\pi_i(X) = 0$$
 $\forall i \leq n$.
• O-connected means path-connected.

• 1-connected means simply-connected.

Freudenthal suspension theorem, Corollary 4.24
If X is an (n-1)-connected CW complex, then the suspension map

$$\pi_i(X) \longrightarrow \pi_{i+1}(SX)$$
 is an isomorphism $\forall i < 2n-1$.
 $(5:S^{G} \rightarrow X) \longmapsto (S_{F}:S^{GH} \rightarrow SX)$
 $f \longrightarrow S_{F} \longrightarrow S_{F} \longrightarrow S_{F}$
 $\pi_i(X) \cong \pi_{i+1}(C_{+}X, X) \xrightarrow{\cong} \pi_{i+1}(SX, C_{-}X) \cong \pi_{i+1}(SX)$
A version of excision holds
for X sufficiently connected
Corollary 4.25 $\pi_n(S^n) \cong \mathbb{Z}$ $\forall n \ge 1$.
Pf Consider $\mathbb{Z} \cong \pi_2(S^3) \rightarrow \pi_4(S^4) \rightarrow \dots$
Isomorphism by Hopf fiber bundle Isomorphisms by Cor. 4.24
 $\dots \rightarrow \pi_2(S^3) \rightarrow \pi_2(S^3) \rightarrow \pi_1(S^3) \rightarrow \dots$

Stable homotopy groups
Freudenthal suspension theorem, Corollary 4.24
If X is an (n-1)-connected CW complex, then the suspension map

$$r_i(X) \longrightarrow r_{i+1}(SX)$$
 is an isomorphism $\forall i < 2n-1$.
 $(5:S^i \rightarrow X) \longmapsto (S_{5:S^{1+1}} \rightarrow SX)$
 $f \longrightarrow S_{5} \longrightarrow S_{5}$

In particular, for
$$n \ge 1$$
 we have $i < n \implies i < 2n-1$, so $X (n-1)$ -connected $\implies SX$ n-connected.

For Y a (W complex,
$$S^n Y$$
 is $(n-1)$ -connected,
so in the sequence of iterated suspensions
 $Ti(Y) \longrightarrow Ti_{i+1}(SY) \longrightarrow Ti_{i+2}(S^2Y) \longrightarrow \dots \longrightarrow Ti_{i+n}(S^nY) \xrightarrow{\cong} Ti_{i+n+1}(S^{n+i}Y) \xrightarrow{\cong} \dots$
all maps are eventually isomorphisms (eventually $i+n < 2n-1$).
This group is the stable homotopy group, denoted $Ti_i^s(Y)$.

$\pi_i(S^n)$													
		i	$i \rightarrow$										
		1	2	3	4	5	6	7	8	9	10	11	12
n	1	\mathbb{Z}	0	0	0	0	0	0	0	0	0	0	0
↓	2	0	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	3	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{12}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_{15}	\mathbb{Z}_2	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	4	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	$\mathbb{Z} \times \mathbb{Z}_{12}$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_2 \times \mathbb{Z}_2$	$\mathbb{Z}_{24} \times \mathbb{Z}_3$	\mathbb{Z}_{15}	\mathbb{Z}_2
	5	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{30}
	6	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	\mathbb{Z}	\mathbb{Z}_2
	7	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0	0
	8	0	0	0	0	0	0	0	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_{24}	0

For Y a CW complex, SⁿY is (n-1)-connected, So in the sequence of iterated suspensions $\pi_{i}(Y) \longrightarrow \pi_{i+1}(SY) \longrightarrow \pi_{i+2}(S^{2}Y) \longrightarrow \dots \longrightarrow \pi_{i+n}(S^{n}Y) \xrightarrow{\cong} \pi_{i+n+1}(S^{n+1}Y) \xrightarrow{\cong} \dots$ all maps are eventually isomorphisms (eventually i+n < 2n-1). This group is the stable homotopy group, denoted Tis (Y).

$\pi_i(S^n)$													
	<i>i</i> 1	\rightarrow 2	3	4	5	6	7	8	9	10	11	12	
$n 1 \\ \downarrow 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 8$	Z 0 0 0 0 0 0 0 0 0	0 Z 0 0 0 0 0 0 0	0 Z 0 0 0 0 0 0 0	$\begin{array}{c} 0\\ \mathbb{Z}_2\\ \mathbb{Z}_2\\ \mathbb{Z}\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}$	$\begin{array}{c} 0\\ \mathbb{Z}_2\\ \mathbb{Z}_2\\ \mathbb{Z}_2\\ \mathbb{Z}\\ 0\\ 0\\ 0\\ 0 \end{array}$	$\begin{array}{c} 0\\ \mathbb{Z}_{12}\\ \mathbb{Z}_{12}\\ \mathbb{Z}_{2}\\ \mathbb{Z}_{2}\\ \mathbb{Z}\\ 0\\ 0 \end{array}$	$\begin{array}{c} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z} \times \mathbb{Z}_{12} \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z} \\ 0 \end{array}$	$\begin{array}{c} 0 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \mathbb{Z}_{24} \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \\ \mathbb{Z}_2 \end{array}$	$\begin{array}{c} 0\\ \mathbb{Z}_3\\ \mathbb{Z}_3\\ \mathbb{Z}_2 \times \mathbb{Z}_2\\ \mathbb{Z}_2\\ \mathbb{Z}_{24}\\ \mathbb{Z}_2\\ \mathbb{Z}_2\\ \mathbb{Z}_2 \end{array}$	$\begin{array}{c} 0\\ \mathbb{Z}_{15}\\ \mathbb{Z}_{15}\\ \mathbb{Z}_{24} \times \mathbb{Z}_{3}\\ \mathbb{Z}_{2}\\ 0\\ \mathbb{Z}_{24}\\ \mathbb{Z}_{2} \end{array}$	$\begin{array}{c} 0\\ \mathbb{Z}_2\\ \mathbb{Z}_2\\ \mathbb{Z}_{15}\\ \mathbb{Z}_2\\ \mathbb{Z}\\ 0\\ \mathbb{Z}_{24} \end{array}$	0 $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ \mathbb{Z}_{30} \mathbb{Z}_{2} 0 0	

The stable homotopy groups of spheres, $\Pi_i^s := \Pi_i^s (S^o) = \Pi_{i+n}(S^n)$ for n > i+1are fundamental objects, and known up to $i \approx 60$ or so: