## <u>Chapter 7:</u> Complete metric spaces and function spaces

When do Cauchy sequences converge?

Completeness is a <u>metric property</u>, but related to <u>topological properties</u> like compactness Question: Is this metrizable space X complete? Answer: With respect to which metric?

(A metric space is compact = it is complete and totally bounded.)

When does a sequence of continuous or bounded functions converge to a continuous or bounded function? Space - filling curves

X N2 Section 43: Complete metric spaces Nz · Ky Def (X,d) a metric space. A sequence (Xn) in X is a 0 /-<u>Cauchy sequence</u> if  $\forall \Sigma > 0$ ,  $\exists N \text{ s.t. } d(x_n, x_m) < \Sigma$  whenever  $n, m \ge N$ . (X,d) is <u>complete</u> if every Cauchy sequence converges (to a point in X). <u>Rmk</u> Every convergent sequence is Cauchy. Lx Q is not complete: 3, 3.1, 3.14, 3.141, 3.1415, 3.14159, is Cauchy but does not converge to a point in  $\mathbb{R}$  (note  $\pi \notin \mathbb{R}$ ). Ex We'll see that IR is complete. But (0,1) is not. Not a topological property. Rmk A closed subset of a complete metric space is complete.  $B_{2/3}(z)$  ,  $B_1(z)$ B<sub>1/2</sub>(2) Recall (from HW #4) the standard bounded metric Byg (x)  $\overline{d}: X \times X \rightarrow \mathbb{R}$  defined by  $\overline{d}(x_{iy}) = \min \{ d(x_{iy}), 1 \}$ . A sequence is Cauchy in  $(X, d) \iff$  it is Cauchy in (X, d), and  $(X, \overline{d})$  is complete  $\iff (X, d)$  is.

Lemma IF every Cauchy sequence has a · 2000 convergent subsequence, then (X,d) is complete.  $\underline{Pf}$  Let  $(x_n)$  be Cauchy with  $x_{n_k} \rightarrow x_{\cdot}$ Let 2>0. Choose N s.t.  $d(x_n, x_m) < \frac{\varepsilon}{2}$   $\forall n, m \ge N$ , Choose K with  $n_{K} \ge N$  s.t.  $d(x_{n_{K}}, x) < \frac{2}{2}$ Then  $\forall n \ge N$ ,  $d(x_n, x) \le d(x_n, x_{n_K}) + d(x_{n_K}, x) < \frac{2}{2} + \frac{2}{2} = \varepsilon$ <u>Thm</u>  $(\mathbb{R}^{k}, d_{p})$  is complete  $\forall | \leq p \leq \infty$ .  $\underline{PF}$  Let  $(x_n)$  be a Cauchy sequence. So 3 N s.t.  $d_p(x_n, x_m) \in I$   $\forall n, m \ge N.$  $[-M,M]^2$ · Ky • Y. Let  $M = \max \{ d_p(x_1, 0), \dots, d_p(x_{N-1}, 0), d_p(x_N, 0) + 1 \}$ N. Sequence  $(x_n)$  contained in  $B_M(0) \subset [-M,M]^R$ , which Na .x3 is compact, hence sequentially compact (we're in a metric space). NN So (xn) has a convergent subsequence, and (Rt, dp) is complete.

## What about $\mathbb{R}^{\omega}$ ?

Thm There is a metric D for 
$$\mathbb{R}^{\omega}$$
 so that  $(\mathbb{R}^{\omega}, D)$  is complete,  
namely  $D(x,y) = \sup_{i} \left\{ \frac{\overline{d}(\pi_{i}(x), \pi_{i}(y))}{i} \right\}$  where  $\overline{d}(a,b) = \min_{i} \left\{ |a-b|, 1 \right\}$ .

Recall (Section 20, HW#4) D metrizes the product topology.

$$\begin{array}{cccc} \underline{Re\,call} & (E \times am \ 2, \ HW \# 4) & & & \\ Let & (\chi_n) \ be \ a \ sequence \ in \ \mathbb{R}^{\mathcal{W}}, & & \\ Then & (\chi_n) \rightarrow \chi \iff \mathcal{T}_i(\chi_n) \rightarrow \mathcal{T}_i(\chi) \quad \forall i. \end{array}$$

1

Trick question: Is  $\mathbb{R}^J$  complete in general? No, not even metrizable for J uncountable.

Recall from Section 21, for  $\mathcal{J}$  uncountable, we found  $A \subset \mathbb{R}^{\mathcal{J}}$  and  $x \in \mathbb{R}^{\mathcal{J}}$ with  $y \in \mathcal{A}$ , but no sequence in A converges to y.  $A = \begin{cases} (x_q) & x_q = 0 \text{ for finitely many } q \end{cases} \qquad y = (y_q) \text{ with } y_q = 0 \text{ for } q \end{cases}$ 

Let 
$$(Y,d)$$
 be a metric space and let  $\overline{J}$  be a set.  
Then  $Y^{\overline{J}}$  can be equipped with the uniform metric  
 $\overline{g}(x,y) = \sup_{x \in \overline{J}} \overline{d}(x_x,y_x)$  (which may not metrize the praduct topology).

Notation: Instead of tuple notation 
$$\chi \in Y^{\mathcal{T}}$$
 with  $\chi = (\chi_{\chi})_{\chi \in \mathcal{T}}$ ,  
let's use functional notation  $f \in Y^{\mathcal{T}}$  with  $f: \mathcal{J} \longrightarrow Y$   
 $\chi \longmapsto f(\chi) = \chi_{\chi}$   
So  $\overline{g}(f,g) = \sup_{\chi \in \mathcal{J}} \overline{d}(f(\chi), g(\chi))$ .

Recall the standard bounded metric  $\overline{d}: Y \times Y \rightarrow \mathbb{R}$  is defined by  $\overline{d}(y,y') = \min \{ 2d(y,y'), 1\} \quad \forall y,y' \in Y.$ We use this metric when defining  $\overline{g}$  so that necessarily  $\overline{g}(f,g) < \infty$ .

Y=IR  $\underline{Thm}(Y,d)$  complete  $\Rightarrow (Y^{J}, \overline{p})$  complete.  $\eta_{\alpha} = f(\alpha)$  $\frac{PS}{\forall x \in J, \ \overline{d}(f_n(x), f_n(x)) \leq \overline{g}(f_n, g_n)} = \overline{g}(f_n, g_n)$ So  $(f_n(x))$  is a Cauchy sequence in Y. Y complete  $\implies \exists y_x \in Y$  with  $f_n(x) \longrightarrow y_x$ .  $\forall x$ . f1(4) Define  $f: J \rightarrow Y$  by  $f(\alpha) = y_{\alpha}$ . アニル We claim fn->f. Let E>O. Choose N large enough so that  $\overline{p}(f_n, f_m) < \frac{\varepsilon}{2}$  when  $n, m \ge N$ . So  $\overline{d}(f_n(\alpha), f_m(\alpha)) < \frac{\varepsilon}{2}$  for  $n, m \ge N$  and  $\alpha \in J$ . Fix  $\alpha$  and  $n\ge N$  momentarily, and note  $f_m(\alpha) \rightarrow f(\alpha)$  implies  $d(f_n(x), f(x)) \leq \frac{2}{2}$  for  $n \geq N$ . Since this holds for all  $\alpha$  and  $n \ge N$ , we get  $\overline{p}(f_n, f) \leq \frac{\varepsilon}{2} < \frac{\varepsilon}{2}$  for  $n \geq N$ , as desired,

<u>I hm</u> X topological space, (Y, d) metric space. The sets  $\dot{C}(X, Y)$  of all continuous functions  $X \rightarrow Y$ and B(X, Y) of all bounded functions X->Y are closed in  $(Y^{\times}, \overline{p})$ , and hence complete if Y is complete. Kemark For bounded functions, we can replace the uniform metric P with the sup metric  $g(f,g) = \sup_{\alpha \in J} d(f(\alpha), g(\alpha))$ . Thm A metric space (X,d) has an isometric embedding into a complete metric space. <u>Pf sketch</u> Let  $\chi_0 \in X$ . Define  $X \longrightarrow \mathcal{B}(X, \mathbb{R})$  by  $a \mapsto \phi_a(x) = d(x,a) - d(x_0,a)$ . Check this is an isometric embedding.

Hence 
$$f(z) = f(\lim_{n \to \infty} f'(x)) = \lim_{n \to \infty} f''(x) = z$$
, as desired.  
Since  $f$  continuous  
And  $z$  must be the only fixed point, since if  $z' \in X$  also satisfied  $f(z') = z'$ ,  
then we'd have  
 $d(z,z') = d(f(z), f(z')) \le c d(z,z')$   
 $\Rightarrow d(z,z') = 0$   
 $\Rightarrow z = z'$ .

## <u>Section 44:</u> The Peano space-filling curve

Let I = [0,1].

<u>Thm</u> There exists a continuous surjective function  $f: I \rightarrow I^2$ 

 $\underline{PS}$  ( $\mathbb{I}^2$ , dos) is complete as a closed subset of the complete space ( $\mathbb{R}^2$ , dos), where  $d_{\infty}((x,y), (x',y)) = \max \frac{1}{2} |x-x'|, |y-y'| \frac{1}{2}$ .

Since  $I^2$  is bounded (or alternatively, since I is compact), the space of continuous functions  $C(I, I^2)$  is complete under the sup metric  $g(f,g) = \sup_{t \in T} d_{\infty}(f(t),g(t))$ .

Construct a sequence of piecewise linear curves



Function 
$$f_n$$
 consists of  $4^n$  "triangular paths" each in a square  
of side length  $\frac{1}{2^n}$ .  
Obtain  $f_{n+1}$  by applying the construction  $f_0 \rightarrow f_1$  to each such square.  
To see that  $(f_n)$  is a Cauchy sequence, note  $f_n(t)$  and  $f_{n+1}(t)$  are in the  
same square of side length  $\frac{1}{2^n}$ , for all  $t$ .  
Hence  $g(f_n, f_{n+1}) = \sup_{t \in T} d_{\infty}(f_n(t), f_{n+1}(t)) \leq \frac{1}{2^n}$ .  
So  $\forall n < m$ ,  $g(f_n, f_m) \leq g(f_n, f_{n+1}) + g(f_{n+1}, f_{n+2}) + ... + g(f_{m-1}, f_m)$   
 $\leq \frac{1}{2^n} + \frac{1}{2^{n+1}} + ... + \frac{1}{2^{m-1}}$ 

Therefore  $f_n \longrightarrow f \in C(I, I^2)$ .

To see that  $f: I \rightarrow I^2$  is surjective, let  $x \in I^2$ .  $\forall z > 0 \exists N \text{ s.t. } / 2^N < \xi$ . Divide  $I^2$  into squares of side length  $1/2^N$ . Note  $f_N(I)$  and therefore f(I)intersect each such square, so  $B(x, \varepsilon)$  intersects f(I). Hence  $x \in \overline{f(I)}$ . I compact, f continuous  $\Rightarrow$  f(I) compact  $\Rightarrow$  f(I) closed. So  $x \in f(I)$ .