Chapter 8: Baire Spaces and Dimension Theory

For X compact, the space $C\left(X, \mathbb{R}^{n}\right)$ of continuous functions is complete in the sup (or uniform) metric, and hence is a Baire space.

Embedding theorem Every compact metrizable space X of topological dimension m can be embedded in $\mathbb{R}^{2 m+1}$.

$\binom{$ Baire spaces can be used to prove the existence of a continuous }{ nowhere-differential real-valued function, though we won't cover this. }

Section 48: Baire Spaces
Recall for X a topological space and $A \subset X$, the interior of A is the union of all open sets contained in A.

A has empty interior in X if the only open set contained in A is the empty set.
(Equivalently, if the only closed set containing $X-A$ is all of X,) ie. the complement of A is dense in $X: \overline{X-A}=X$.

Ex $\mathbb{Q} \subset \mathbb{R}$

$$
[0,1] \times\{0\} \subset \mathbb{R}^{2}
$$

$$
\mathbb{Q} \times \mathbb{R} \subset \mathbb{R}^{2}
$$

Non-Ex $\mathbb{Q} \subset \mathbb{Q}$
$[0,1] \subset \mathbb{R}$

Def A space X is a Baire space if given any countable collection $\left\{A_{n}\right\}$ of closed sets with empty interiors in X, their union $U_{n} A_{n}$ also has empty interior in X.

Non-Ex

$$
\mathbb{Q}=\bigcup_{q \in \mathbb{Q}}\{q\}
$$

Ex \mathbb{Z}_{+}, since only the empty set has empty interior.
Ex Any closed subset of \mathbb{R}^{n} (complete metric space).
Ex Any open subset of a Baire space (Lemma 48.4)

Ex $\mathbb{R} \backslash \mathbb{Q}$
Pic $\quad X=\mathbb{R}^{2}$
$\left\{A_{q}\right\} q \in Q$

$$
A_{q}=\{q\} \times \mathbb{R}
$$

We frequently use the following reformulation with dense open sets:
Lemma 48.1 X is a Baire space \Longleftrightarrow given any countable collection $\left\{U_{n}\right\}$ of dense open sets in X, their intersection $\Lambda_{n} U_{n}$ is also dense in X.

Pf Follows since (1) A closed in $X \Leftrightarrow X-A$ open in X
(2) A has empty interior in $X \Leftrightarrow X-A$ dense in X.

Baire category theorem If X is a compact Hausdorff space or a complete metric space, then X is a Bare space.

Pf Note X compact Hausdorff or metrizable $\Rightarrow X$ normal $\Rightarrow X$ regular.
Given a countable collection $\left\{A_{n}\right\}$ of closed sets with empty interiors, we must show $U_{n} A_{n}$ also has empty interior in X.
Given $U_{0} \neq \varnothing$ open in X, we must find $x \in U_{0}$ with $x \notin U_{n} A_{n}$, ie. $x \notin A_{n} \forall n$.

$$
u_{1} \cdot y
$$

A_{1} empty interior $\Rightarrow U_{0} \not \& A_{1}$.
Let $y \in U_{0}-A_{1}$, which is open.
X regular $\Rightarrow \exists$ open U_{1} with $y \in U_{1} \subset \bar{U}_{1} \subset U_{0}-A_{1}$
u_{n-1}
Inductively, have nonempty open U_{n-1} with $\overline{U_{n-1}} \subset U_{n-2}-A_{n-1}$. A_{n} empty interior $\Rightarrow U_{n-1} \not \& A_{n}$.
u_{n} X regular $\Rightarrow \exists$ open U_{n} with $\phi \neq U_{n} \subset \bar{U}_{n} \subset U_{n-1}-A_{n}$.

Well show $\cap_{n} \overline{U_{n}} \neq \varnothing$. This will complete the proof since then $x \in \bar{U}_{1} \subset U_{0}$ and $x \notin A_{n} \quad \forall n$ since $\overline{u_{n}}$ is disjoint from A_{n}.

Case X compact Hausdorff. The closed sets $\overline{u_{1}} \supset \bar{u}_{2} \supset \bar{u}_{3} \supset \ldots$ have the finite intersection property, and hence a nonempty intersection since X compact.

Case X a complete metric space. Furthermore choose U_{n} with $\operatorname{diam}\left(\bar{U}_{n}\right)<1 / n$. Apply Lemma 48.3 (or $\S 43$ Exercise $\# 4$) which says that if $C_{1}=C_{2}=C_{3}=\ldots$ is a nested sequence of closed sets with $\operatorname{diam}\left(C_{n}\right) \rightarrow 0$, then $\cap_{n} C_{n} \neq \varnothing . \square$

Remark The Baire category theorem implies that $[0,1]$ is uncountable.
Indeed, as a complete metric space, it is a Bare space.
Each singleton $\{x\}$ is closed with empty interior, and $[0,1]$ has nonempty interior.
So if the union $\bigcup_{x \in[0,1]}\{x\}=[0,1]$ were countable,
this would contradict the Baire category theorem.

Section 50: Introduction to dimension theory

Thm Every compact metric space X of topological dimension m can be embedded in $\mathbb{R}^{2 m+1}$.
Recall "Embedded" means a continuous injective map $X \hookrightarrow \mathbb{R}^{2 m+1}$ that is a homeomorphism onto its image (pg 105). Since X is compact and $\mathbb{R}^{2 n+1}$ is Hausdorff, any continuous infective map $X \hookrightarrow \mathbb{R}^{2 n+1}$ is furthermore an embedding (Thm 26.6).

Def The topological dimension of a space X is the smallest m such that for every open cover A of X, \exists an open cover B that refines it with order at most $m+1$.

$$
\forall B \in B \quad \exists A \in A \text { with } B C A
$$

The topological dimension of

- \mathbb{R}^{m} is m. A second-countable Hausdorff space sit. each point
- an m-dimensional manifold is m.
- a finite graph is 1 .

The graphs K_{s}
 and $K_{3,3}$
 can be embedded in $\mathbb{R}^{3}=\mathbb{R}^{2 m+1}$ but not \mathbb{R}^{2}, showing the theorem cannot be improved in general.

Whitney's theorem says any (smooth) m-manifold can furthermore be embedded in $\mathbb{R}^{2 m}$.

Thm Every compact metric space X of topological dimension m can be embedded in $\mathbb{R}^{2 m+1}$.
Pf Denote the square metric on $\mathbb{R}^{2 m+1}$ by $|v-w|=\max \left\{\left|v_{i}-w_{i}\right|: \mid \leq i \leq 2 m+1\right\}$.
(Other common notations are $\|v-w\|_{\infty}$ or $d_{\infty}(v, w)$.)
Since $\mathbb{R}^{2 m+1}$ is complete, $e\left(X, \mathbb{R}^{2 n+1}\right)$ is complete with the sup metric $\rho(f, g)=\sup _{x \in X}|f(x)-g(x)|$, and hence a Baire space.
Given $f \in E\left(X, \mathbb{R}^{2 m+1}\right)$, define $\Delta(f)=\sup _{z \in f(x)} \operatorname{diam} f^{-1}(z)$.
If $\Delta(f)=0$, then each set $f^{-1}(z)$ is a singleton, so f is injective.

For $\varepsilon>0$, let U_{ε} be the set of all $f \in \sum\left(X, \mathbb{R}^{2 m+1}\right)$ with $\Delta(f)<\varepsilon$. We will show U_{ε} is (1) open and (2) dense in the Baire space $e\left(X, \mathbb{R}^{2 m+1}\right)$. Hence the countable intersection $\cap_{n \in \mathbb{Z}_{+}} U_{1 / n}$ is dense, thus nonempty. And $f \in \Lambda_{n} U_{1 / n}$ satisfies $\Delta(f)=0$, so is injective.
(1) Why is U_{ε} open in $e\left(X, \mathbb{R}^{2 m+1}\right)$?

Given $f \in U_{\varepsilon}$, well find $\delta>0$ s.t. $\rho(f, g)<\delta \Rightarrow g \in U_{\varepsilon}$.
Fix b with $\Delta(f)<b<\varepsilon$.
Note $f(x)=f(y)=z \Rightarrow x, y \in f^{-1}(z) \Rightarrow d(x, y)<b$.
So $|f(x)-f(y)|$ is positive on $A=\{(x, y) \in X \times X \mid d(x, y) \geq b\}$.

A closed in the compact space $X \times X \Rightarrow A$ compact.
So this positive function attains its minimum;
let $\delta=\frac{1}{2} \min _{(x, y) \in A}\{|f(x)-f(y)|\}$.
Now, suppose $\rho(f, g)<\delta$.
If $(x, y) \in A$, then $|f(x) \cdot f(y)| \geq 2 \delta\left(\right.$ by $\left.\operatorname{def} f^{n}\right)$, giving $|g(x)-g(y)\rangle 0$.
Since $|g(x)-g(y)|$ is positive on A, if $g(x)=g(y)$, then necessarily $d(x, y)<b$.
Hence $\Delta g \leqslant b<\varepsilon$, so $g \in U_{\varepsilon}$.

(2) Why is U_{ε} dense in $e\left(X, \mathbb{R}^{2 m+1}\right)$?

Let $f \in e\left(X, \mathbb{R}^{2 m+1}\right)$. Given $\delta>0$, we must find $g \in U_{\varepsilon}$ with $\rho(f, g)<\delta$.
Cover X by finitely many open sets $\left\{V_{1}, \ldots, V_{n}\right\}$ s.t.
(1) $\operatorname{diam} V_{i}<\varepsilon / 2$ in X
(2) diam $f\left(V_{i}\right)<\delta / 2$ in $\mathbb{R}^{2 m+1}$
(3) $\left\{V_{1}, \ldots, V_{n}\right\}$ has order $\leq m+1$

This is possible since f is continuous, X has topological dimension m, and X is compact.
Let $\left\{\phi_{i}\right\}$ be a partition of unity dominated by $\left\{V_{1}, \ldots, V_{n}\right\}$.
These are continuous functions $\phi_{i}: X \rightarrow[0,1]$ with

- $\operatorname{supp}\left(\phi_{i}\right) \subset V_{i} \forall i$, and $\quad \sum_{i=1}^{n} \phi_{i}(x)=1 \quad \forall x \in X$.

For each i, pick $x_{i} \in V_{i}$.
Though $\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}$ may not $^{2 m+1}$ be in general position in $\mathbb{R}^{2 m+1}$, we can pick $z_{i} \in \mathbb{R}^{2 m+1}$ with $\left|z_{i}-f\left(x_{i}\right)\right|<\delta / 2 \quad \forall i$ such that $\left\{z_{1}, \ldots, z_{n}\right\}$ is in general position.
Define $g: X \rightarrow \mathbb{R}^{2 m+1}$ by $g(x)=\sum_{i=1}^{n} \phi_{i} z_{i}$.

To see $\rho(f, g)<\delta$, note

$$
\begin{aligned}
& g(x)-f(x)=\sum_{i=1}^{n} \phi_{i}(x) z_{i}-\sum_{i=1}^{n} \phi_{i}(x) f(x) \\
& \begin{aligned}
=\sum_{i=1}^{n} \sum_{i=1}^{n}(x)\left(z_{i}-f\left(z_{i}\right)\right) \\
<\delta / 2
\end{aligned}+\sum_{i=1}^{n} \phi_{i}(x)\left(\underline{f}\left(x_{i}\right)-f(x)\right) . \\
& <\delta \text {. }
\end{aligned}
$$

To show $g \in U_{\varepsilon}$, we will prove if $x, y \in X$ with $g(x)=g(y)$, then $\exists i$ with $x, y \in V_{i}$, so $d(x, y) \leqslant \operatorname{diam} V_{i}<\varepsilon / 2$. Hence $\Delta(g) \leqslant \varepsilon / 2<\varepsilon$, as desired.

Indeed, if $g(x)=g(y)$, then $\sum_{i=1}^{n}\left(\phi_{i}(x)-\phi_{i}(y)\right) z_{i}=\overrightarrow{0}$. At most $m+1$ of the $\phi_{i}(x)$ (resp, $\phi_{i}(y)$) terms are nonzero, since $\left\{V_{i}\right\}$ has order $\leq m_{+}$l.
So at most $2 m+2$ terms $\left(\phi_{i}(x)-\phi_{i}(y)\right)$ in the sum are nonzero.
 And the coefficients sum to zero.
Since the z_{i} points are in general position in $\mathbb{R}^{2 m+1},\left(\phi_{i}(x)-\phi_{i}(y)\right)=0 \quad \forall i$, so $\phi_{i}(x)=\phi_{i}(y) \forall i$. And $\phi_{i}(x)>0$ for some i, meaning $x \in V_{i}$ and $y \in V_{i}$ also.

General position in \mathbb{R}^{N}
In part (2) of the embedding theorem proof, we used properties of general position in \mathbb{R}^{N} (where $N=2 m+1)$. Which properties?

Def A set $\left\{x_{0}, \ldots, x_{k}\right\} \subset \mathbb{R}^{N}$ is affinely independent if $\sum_{i=0}^{k} a_{i} x_{i}=\overrightarrow{0}$ and $\sum_{i=0}^{k} a_{i}=0 \quad$ imply $a_{i}=0 \quad \forall i$. equivalent to $\sum_{i=1}^{k} a_{i}\left(x_{i}-x_{0}\right)=\overrightarrow{0}$

So $\left\{x_{0}, \ldots, x_{k}\right\}$ affinely independent $\Longleftrightarrow\left\{x_{1}-x_{0}, \ldots, x_{k}-x_{0}\right\}$ linearly independent.
Def A finite set $S \subset \mathbb{R}^{N}$ is in general position if every subset of S of size at most $N+1$ is affinely independent.

Lemma Given $\left\{x_{0}, \ldots, x_{k}\right\} \subset \mathbb{R}^{N}$ and $\delta>0$,
$\exists\left\{y_{0}, \ldots, y_{n}\right\} \subset \mathbb{R}^{N}$ in general position with $\left|x_{i}-y_{i}\right|<\delta \forall i$

