<u>Chapter 8:</u> Baire Spaces and Dimension Theory

For X compact, the space $C(X, \mathbb{R}^n)$ of continuous functions is complete in the sup (or uniform) metric, and hence is a Baire space.

Embedding theorem. Every compact metrizable space X of topological dimension m can be embedded in \mathbb{R}^{2m+1} . Baire spaces can be used to prove the existence of a continuous nowhere - differential real-valued function, though we won't cover this.

Section 48: Baire Spaces Recall for X a topological space and ACX, int(A) the interior of A is the union of all open sets contained in A. A has <u>empty interior in X</u> if the only open set contained in A is the empty set. (Equivalently, if the only closed set containing X-A is all of X, (i.e. the complement of A is dense in $X: \overline{X-A} = X$.) Ex QCR Non-Ex QCQ $[0,1] \times \{0\} \subset \mathbb{R}^2$ [oil c R $\Omega \times \mathbb{R} \subset \mathbb{R}^2$

Baire category theorem
$$IF X$$
 is a compact Hausdorff space or a complete metric space,
then X is a Baire space.

<u>Pf</u> Note X compact Hausdorff or metrizable \Rightarrow X normal \Rightarrow X regular.

Given a countable collection
$$\{A_n\}$$
 of closed sets with empty interiors,
we must show $V_n A_n$ also has empty interior in X.
Given $U_0 \neq \emptyset$ open in X, we must find $x \in U_0$ with $x \notin U_n A_n$, i.e. $x \notin A_n \quad \forall n$.
 $U_0 \qquad A_i$ empty interior $\Rightarrow U_0 \notin A_i$.
 $U_1 \quad g \qquad A_i$ Let $g \in U_0 - A_i$, which is open.
X regular $\Rightarrow \exists$ open U_i with $g \in U_i \subset U_i \subset U_0 - A_i$.
An A_{n-1} Inductively, have nonempty open U_{n-1} with $\overline{U_{n-1}} \subset U_{n-2} - A_{n-1}$.
 $A_n \quad empty$ interior $\Rightarrow U_{n-1} \notin A_n$.
 $U_{n-1} \qquad X \quad regular \Rightarrow \exists open \quad U_n \quad with \quad \overline{\varphi} \neq U_n \subset \overline{U_n} \subset U_{n-1} - A_n$.

We'll show $\bigcap_n \overline{U_n} \neq \emptyset$. This will complete the proof since then $\chi \in U_1 \subset U_0$ and $\chi \notin A_n$ $\forall n$ since U_n is disjoint from A_n .

Case X compact Hausdorff. The closed sets $\overline{U}_1 \supset \overline{U}_2 \supset \overline{U}_3 \supset \dots$ have the finite intersection property, and hence a nonempty intersection since X compact.

Case X a complete metric space. Furthermore choose Un with diam $(\overline{U_n}) < \gamma_n$. Apply Lemma 48.3 (or \$43 Exercise #4) which says that if $C_1 = C_2 = C_3 = ...$ is a nested sequence of closed sets with diam (Cn) $\rightarrow 0$, then $n_n C_n \neq \emptyset$.

Kemark The Baire category theorem implies that [0,1] is uncountable. Indeed, as a complete metric space, it is a Baire space. Each singleton $\{a\}$ is closed with empty interior, and [0,1] has nonempty interior. So if the Union $\bigcup_{\alpha \in [0,1]} \{\alpha\} = [0,1]$ were countable, this would contradict the Baire category theorem.

Def The topological dimension of a space X is the smallest m such that for every open cover A of X, I an open cover B that refines it with order at most m+1. VBEB JACA with BCA No more than m+1 sets intersect at a point.

<u>Thm</u> Every compact metric space X of topological dimension m can be embedded in \mathbb{R}^{2m+1} .

 $\frac{P_{f}}{(Other common notations are <math>\|v - w\|_{\infty} = \max\{|v_{i} - w_{i}| \le i \le 2m+1\}$

Since
$$\mathbb{R}^{2m+1}$$
 is complete, $\mathbb{C}(X, \mathbb{R}^{2m+1})$ is complete with the sup metric
 $g(f,g) = \sup_{x \in X} |f(x) - g(x)|$, and hence a Baire space.
Given $f \in \mathbb{C}(X, \mathbb{R}^{2m+1})$, define $\Delta(f) = \sup_{z \in f(X)} diam f^{-1}(z)$.
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton,
 $f(x) = 0$, then each set $f(x) = 0$, then each set $f^{-1}(z)$ is a singleton.

For $\Sigma > 0$, let U_{Σ} be the set of all $S \in \mathcal{C}(X, \mathbb{R}^{2m+1})$ with $\Delta(S) < \mathcal{E}$. We will show U_{Σ} is (1) open and (2) dense in the Baire space $C(X, \mathbb{R}^{2^{m+1}})$. Hence the countable intersection nez, Uyn is dense, thus nonempty. And $f \in \bigcap_n U_{Yn}$ satisfies $\Delta(f) = \overline{O}$, so is injective.

(X, d)(1) Why is $U_{\mathcal{E}}$ open in $\mathbb{C}(X, \mathbb{R}^{2m+1})$? Given felle, we'll find S>O st. p(f,g)= 5 → gelle. χ×χ Fix b with $\Lambda(f) < b < \epsilon$. la.r Note $f(x) = f(y) = z \implies x, y \in S^{-1}(z) \implies d(x, y) < b$. So |f(x) - f(y)| is positive on $A = \{(x,y) \in X \times X \mid d(x,y) \ge b\}$. A closed in the compact space $X \times X \implies A$ compact. So this positive function attains its minimum; $let \ \delta = \pm \min_{(x,y) \in A} \{ |f(x) - f(y)| \}.$

R^{2m+1} Now, suppose p(f,g) < S. If $(x,y) \in A$, then $|f(x)-f(y)| \ge 2\delta$ (by defⁿ), giving |g(x)-g(y)| > O. 순(X) Since |g(x)-g(y)| is positive on A, if g(x)=g(y), then necessarily d(x,y) < b. Hence Ag≤b< E, so q∈Uz.

(2) Why is U_{ξ} dense in $C(X, \mathbb{R}^{2m+1})$? Let $f \in C(X, \mathbb{R}^{2m+1})$. Given $\delta > D$, we must find $g \in U_{\xi}$ with $p(f,g) < \delta$. R2m+1 8/4-ball E/4-ball ५(x) (over X by finitely many open sets {V1,..., Vn} s.t. (1) diam Vi < ²/2 in X (2) diam $f(v_i) < \delta/2$ in \mathbb{R}^{2m+1} (3) $\{V_1, \ldots, V_n\}$ has order $\leq m+1$ This is possible since f is continuous, X has topological dimension m, and X is compact. Let { \$\$\$ be a partition of unity dominated by {V1, ..., Vn }. These are continuous functions $\phi_i: X \rightarrow [0,1]$ with Øi∶X→R • $Supp(\phi_i) \subset V_i \quad \forall i, and \quad \bullet \geq \sum_{i=1}^{n} \phi_i(x) = 1 \quad \forall x \in X.$ For each i, pick $x_i \in V_i$. \mathbb{R}^{2m+1} Though $\{f(x_i), \dots, f(x_n)\}$ may not be in general position in R^{2m+1} f(x2) we can pick $z_i \in \mathbb{R}^{2m+1}$ with $|z_i - f(x_i)| < \delta/2$ $\forall i$ 12. f(xn) such that {z₁,..., z_nz is in general position. f(26) 2 ·2/5(x1) Define $g: X \to \mathbb{R}^{2m+1}$ by $g(x) = \sum_{i=1}^{n} \phi_i Z_i$. 28 f(x_-)

To see $g(f,q) < \delta$, note $g(x) - f(x) = \sum_{n=1}^{n} \phi_i(x) z_i - \sum_{i=1}^{n} \phi_i(x) f(x)$ $= \sum_{i=1}^{n} \phi_i(\mathbf{x}) \left(\mathbf{z}_{i-1} \mathbf{f}(\mathbf{x}_i) \right) + \sum_{i=1}^{n} \phi_i(\mathbf{x}) \left(\mathbf{f}(\mathbf{x}_i) - \mathbf{f}(\mathbf{x}) \right)$ ¢i:X→R < 8/2 if $\phi_i(x) \neq 0$, then $x \in V_i$, hence by choice of zi term is at most diam f(Vi) < 5/2 < 8. , 9 To show $q \in U_{\Sigma}$, we will prove if $x, y \in X$ with q(x) = q(y), R^{2m+1} then $\exists i$ with $x, y \in V_i$, so $d(x, y) \neq diam V_i < \frac{\varepsilon}{2}$. f(x2) 25 5(205) Hence $\Delta(q) \leq \frac{2}{2} < \frac{2}{2}$, as desired. $f_{z}^{*} f(\pi_n)$ Indeed, if g(x)=g(y), then $\sum_{i=1}^{n} (\phi_i(x)-\phi_i(y)) \ge_i = \vec{O}$. f(x6) 2 → (*x*₁) At most m+1 of the $\phi_i(x)$ (resp. $\phi_i(y)$) terms are nonzero, 20 5(x3) 23 5(x8) since {Vi} has order ≤ m+1. flan So at most 2m+2 terms (di(a)-di(y)) in the sum are nonzero. And the coefficients sum to zero. Since the Zi points are in general position in \mathbb{R}^{2m+1} , $(\phi_i(x)-\phi_i(y))=0$ $\forall i$, so $\phi_i(x)=\phi_i(y)$ $\forall i$. And $\phi_i(x) > 0$ for some i, meaning $x \in V_i$ and $y \in V_i$ also. \Box

General position in
$$\mathbb{R}^{N}$$

In part (2) of the embedding theorem prof, we used properties of general position in \mathbb{R}^{N}
(where N=2m+1). Which properties?
Def A set $\{x_{0},...,x_{h}\} \in \mathbb{R}^{N}$ is affinely independent if
 $\Sigma_{i=0}^{k}$ aix $= \overline{O}$ and $\Sigma_{i=0}^{k}$ aix $= O$ imply $a_{i} = O$ $\forall i$.
equivalent to $\Sigma_{i=1}^{k}$ ai $(x_{i}-x_{0}) = \overline{O}$
So $\{x_{0},...,x_{h}\}$ affinely independent $\iff \{x_{1}-x_{0},...,x_{h}-x_{0}\}$ linearly independent.
Def A finite set $S \in \mathbb{R}^{N}$ is in general position if every
subset of S of size at most N+1 is affinely independent.
Lemma Given $\{x_{0},...,x_{h}\} \in \mathbb{R}^{N}$ and $S > O$.
 $\exists \{y_{0},...,y_{h}\} \in \mathbb{R}^{N}$ in general position with $|x_{i}-y_{i}| < \overline{S}$ $\forall i$

 \mathbb{R}^3