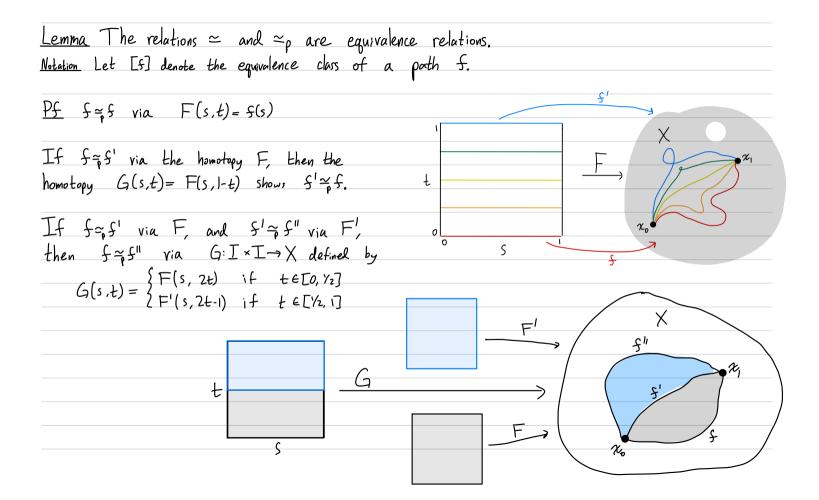


For now, the most relevant case is
when
$$f: I \rightarrow X$$
 is a path, and we
add a condition on endpoints.

$$\frac{De f}{S} Two paths f, f': I \rightarrow X are path homotopic (f = p f')}{if f(0) = x_0 = f'(0)}, f(0) = x_1 = f'(0),$$
and there is a continuous $F: I \times I \rightarrow X$ with
 $F(s, 0) = f(s) \quad F(s, 1) = f'(s) \quad \forall s \in I \text{ and}$
 $F(0, t) = x_0 \quad F(1, t) = x, \quad \forall t \in I.$

$$f'$$

$$f(0, t) = x_0 \quad F(1, t) = x, \quad \forall t \in I.$$

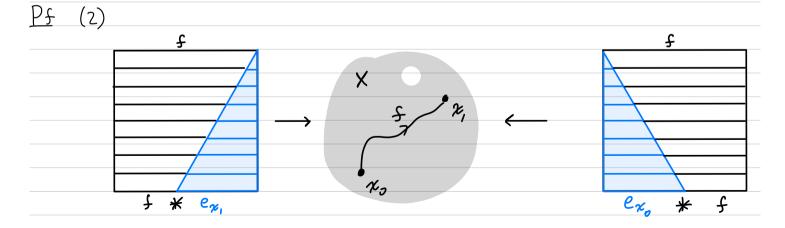


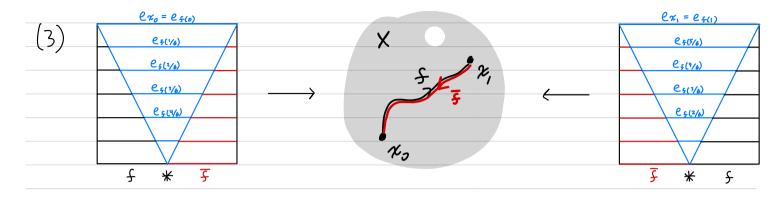
Ex If $C \subset \mathbb{R}^n$ is convex, then any two paths f, f' from xo to x, in C are path homotopic, via F(s,t) = (1-t)f(s) + t f'(s). Ex The paths $f,h: \mathbb{I} \longrightarrow \mathbb{R}^2 \setminus \{(0,0)\}$ defined by $f(s) = (\cos \pi s, \sin \pi s)$ and $h(s) = (\cos \pi s, -\sin \pi s)$ are not path-homotopic. But how to prove this? (Answer: We'll introduce algebra.) X, \varkappa_1

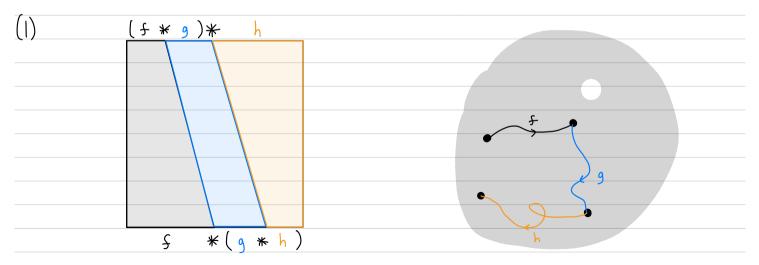
Def If f is a path in X from to to x1, and g is a path in X from x, to x2, No then the product f*g is given by $(f*g)(s) = \begin{cases} f(2s) & \text{if } s \in [0, \frac{1}{2}] \\ g(2s-1) & \text{if } s \in [\frac{1}{2}, 1]. \end{cases}$ γ,

We get a well-defined product on path-homotopy classes, defined by [f] * [g] = [f * g]. No Indeed, if f~pf' via F, and g~pg' via G, then \mathcal{X}_{L} $H(s,t) = \begin{cases} F(2s,t) & \text{if } s \in [0, \frac{1}{2}] \\ f(2s-1,t) & \text{if } s \in [\frac{1}{2}, \frac{1}{2}] \end{cases}$ G Shows $f * g \simeq_p f' * g'$. Ł

For xex, let ex be the constant path at x. X Let f be a path from xo to x,. Define path \overline{F} by $\overline{F}(s) = \overline{F}(1-s)$. Theorem The product * satisfies No (1) Associativity: If they are defined, then [f]*([g]*[h]) = ([f]*[g])*[h]. (2) Right and left identities: $[f] * [e_{x_i}] = [f]$ and $[e_{x_0}] * [f] = [f]$. (3) Inverse: $[f] * [\overline{f}] = [e_{x_0}]$ and $[\overline{f}] * [\overline{f}] = [e_{x_1}]$.







Section 52: The fundamental group Let X be a topological space and $x_0 \in X$. A loop based at xo is a path that begins No and ends at xo. Def The fundamental group Ti (X, 20) has as its elements the homotopy classes of loops in X based at x_o , with group operation *. Recall [5] * [q] := [5 * g]. The identity is $[e_{x_0}]$. The inverse of [f] is [f]. The fundamental group is also called the first homotopy group. Roughly speaking the <u>n-th</u> homotopy group Trn (X, x0) measures the n-dimensional holes in X via the homotopy classes of (based) maps $S^n \longrightarrow X$.

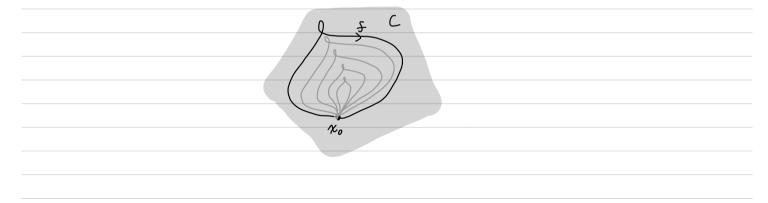
For X path connected, different basepoints yield isomorphic fundamental groups.

Def For a path in X from xo to x, we define $\widehat{\alpha} : \pi_1(X, x_o) \longrightarrow \pi_1(X, x_i) \quad b_{ij}$ $[s] \longmapsto [\overline{\alpha}] * [s] * [\alpha]$ 5 Thm & is an isomorphism χ_{o} <u>PS</u> To see that $\hat{\alpha}$ is a homomorphism, note $\hat{\alpha}([s]*[g]) = [\bar{\alpha}]*[s]*[g]*[\alpha]$ $= [\overline{\alpha}] * [\varsigma] * [\alpha] * [\overline{\alpha}] * [\alpha] * [\alpha]$ $= \hat{\alpha}(\lceil s \rceil) * \hat{\alpha}(\lceil a \rceil).$ Ъ To see that & is an isomorphism, note that its inverse is \$, since \mathcal{X}_{i} (\$ 0 \$)([5])= [\$]*([\$]*[5]*[\$])*[\$]=[5] ∀[5] ∈ \$\$\$\$",(X, \$\$\$\$\$), and similarly $(\hat{\alpha} \circ \hat{\sigma})([h]) = [h] \quad \forall [h] \in \pi, (X, \infty). \Box$

Def A space X is simply connected if it is path connected and $\pi_1(X, x_0) = O$ for some (onl hence all) $x_0 \in X$.

(Here O denotes the trivial group {e3.)

Ex IF CCR" is convex, then C is simply connected.

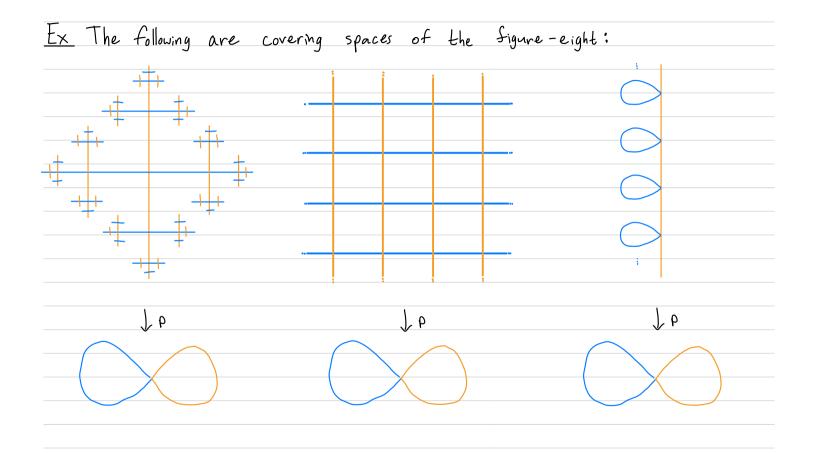


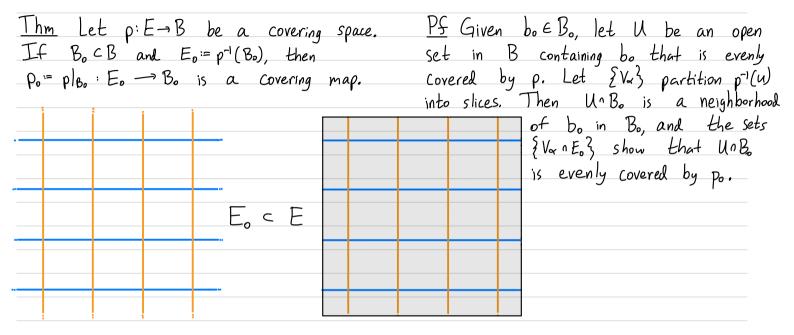
Def If $h: X \rightarrow Y$ is a continuous map between topological spaces, then the homomorphism induced by h is $h_{\mathbf{x}} : \pi_{\mathbf{x}}(\mathbf{X}, \pi_{\mathbf{z}}) \longrightarrow \pi_{\mathbf{x}}(\mathbf{Y}, h(\mathbf{x})) \quad \text{via} \quad h_{\mathbf{x}}(\mathbf{x}) = [h \circ \mathbf{x}].$ Well-defined: If faps' via F. then hof = o hos' via hoF. h(xo) Homomorphism: Follows since ho(f*g) = (hof)*(hog). Thm The fundamental group is a functor from the category of pointed spaces to the category of groups, $\pi_{1}(\chi) \xrightarrow{h_{*}} \pi_{1}(\chi)$ meaning that $(k \cdot h)_{*} = k_{*} \cdot h_{*}$ and $(id_{*})_{*} = id_{\pi(*)}$. $\langle \overline{[s]} [g] \rangle$ $X \xrightarrow{id_{X}} X$ $X \xrightarrow{h} Y \xrightarrow{k} Z$ boh $\pi_{i}(X, z_{o}) \xrightarrow{h_{*}} \pi_{i}(Y, h(z_{o})) \xrightarrow{k_{*}} \pi_{i}(Z, k(h(z_{o})))$ $\mathbb{P}_{I}(X, \mathcal{T}_{0}) \xrightarrow{} \mathbb{P}_{I}(X, \mathcal{T}_{0})$ $(\mathcal{Y}_{X})_{K} = i \mathcal{O}_{\mathbb{P}_{I}(X, \mathcal{T}_{0})}$

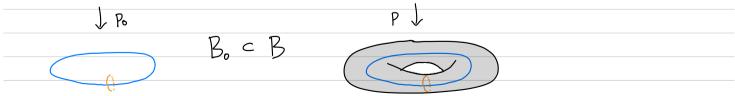
Algebra terminology Let G, G' be groups.
A homomorphism
$$f: G \rightarrow G'$$
 satisfies $f(x \cdot y) = f(x) \cdot f(y)$ $\forall x, y \in G$.
Its kernel is $f^{-1}(e^{i})$, where e^{i} is the identity in G' .
A homomorphism is an isomorphism if it is bijective.
A subgroup H of G is normal if $xhx^{-1} \in H$ $\forall x \in G$ and $\forall h \in H$,
or equivalently, if $xH = Hx$ $\forall x \in G$.
If so, the quotient group G/H has elements the cosets xH $\forall x \in G$,
with group operation $(xH) \cdot (yH) = (x \cdot y)H$.
Note $f: G \rightarrow G/H$ is a surjective homomorphism with kernel H.
 $x \mapsto xH$
Conversely, if homomorphism $f: G \rightarrow G'$ is surjective, then its kernel N is normal
in G, and the induced map $G/N \rightarrow G'$ is an isomorphism.
 $xN \mapsto f(x)$

Section 53: Covering spaces p (4) Let p: E→B be a continuous surjection between topological spaces. Suppose each $b \in B$ has a <u>neighborhood</u> U s.t. $p^{-1}(u)$ is a union of disjoint sets $V_{\alpha} \subset E$ with $p|_{V_{\alpha}} : V_{\alpha} \rightarrow U$ a homeomorphism $\forall \alpha$. | P Then p is a covering map and E is a covering space of B. · h IJ We say U is evenly covered. → E=R $p(x) = (c \otimes 2\pi x, \sin 2\pi x)$ ρ B=51

<u>Thm</u> The map $p: |\mathbb{R} \to S^1$ given by $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is a covering map.

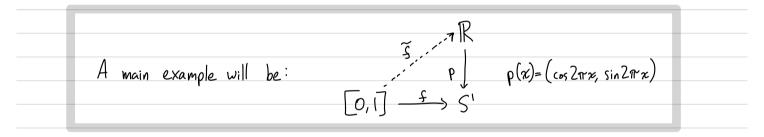


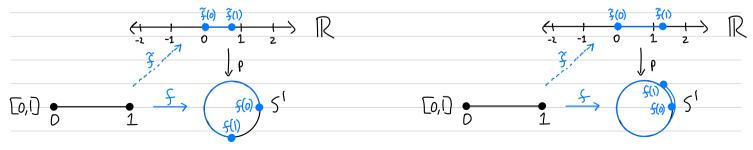


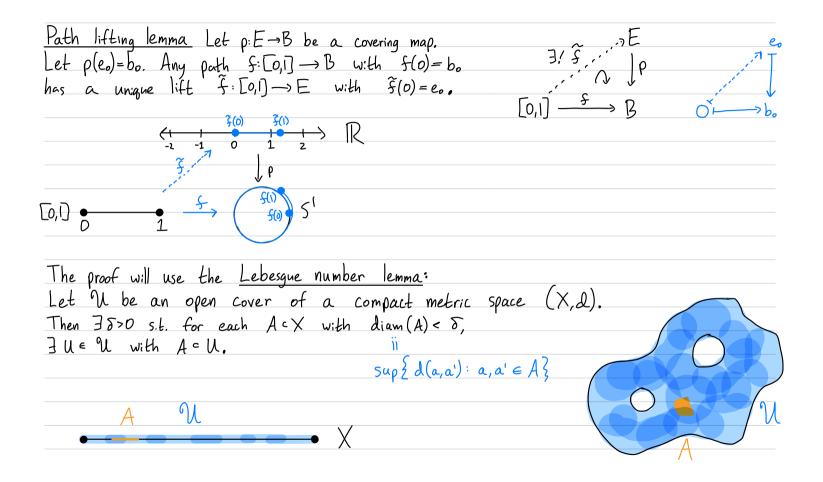


Ex The n-sphere
$$S^{n}$$
 is $S^{n} = \{x \in \mathbb{R}^{n + 1} : \|x\| = 1\}$.
Real projective space $\mathbb{R}P^{n}$ is $\mathbb{R}^{n} = S^{n}/\sim$, where $x \sim -\infty \quad \forall x \in S^{n}$.
The map $\rho: S^{n} \longrightarrow \mathbb{R}P^{n}$ via
 $x \longmapsto \{x, -x\}$ is a covering map.
-1 1
 S^{2} S^{1} S^{2} S^{3}
 $\downarrow \rho$ $\downarrow \rho$ $\downarrow \rho$ $\downarrow \rho$ $\downarrow \rho$
 $\mathbb{R}P^{0}$ $\mathbb{R}P^{1}$ $\mathbb{R}P^{2}$ $\mathbb{R}P^{3}$
 $\{1, -1\}$ $\{x, -x\}$

Section 54: The fundamental group of the circle To prove $\pi_i(S') \cong \mathbb{Z}$, we will first need some properties about lifting paths to covering spaces. Def Let $p: E \rightarrow B$ be a map. Given a map $f: X \rightarrow B$, a <u>lifting of f</u> is a map $\widehat{F}: X \to E$ such that $p \circ \widehat{F} = f$.







Proof of path lifting lemma Let U be an open cover of B by sets evenly covered by p. Apply the Lebesgue number lemma to $\{5^{-1}(W): U \in \mathcal{W}\}$ ξ(si) p (4) to get a subdivision $D = s_0 < s_1 < \dots < s_{n-1} < s_n = 1$ of [0,1] s.t. each f([s:, s:+1]) is contained in some UE M. $f(s_{i+1})$ f(s;) Let $\hat{\varsigma}(0) = e_0$. Assume $\hat{\varsigma}$ is defined on $[0, s_i]$. To define \tilde{S} on $[S_{i}, S_{i+1}]$, suppose $\tilde{S}(S_{i}) \in V_{\alpha}$ with Is & unique? ply: Vy→U a homeomorphism, and let $\widehat{f}(t) = (\rho|_{V_{w}})^{-1} (f(t)) \quad \forall t \in [s_{i}, s_{i+1}].$ Assume unique on [0, si]. Suppose & were a different Then $\tilde{f}:[0,1] \rightarrow E$ is continuous (by the pasting lemma) and $\rho \circ \tilde{f} = f$ by definition of \tilde{f} .):ft on [si, si+1]. Note \$([[si,si+1])) is connected, and hence contained in one Va. But treu 3.1 point in p-1 (2) n Var, So $\tilde{\xi} = \tilde{\xi}$ on $[s_i, s_{i+1}]$ two.

Path homotopy lifting lemma Let p:E-B be a covering map with $p(e_0) = b_0$. Let $F: I \times I \rightarrow B$ be continuous with $F(0,0) = b_0$. Then ∃! lift F: I×I→E with F(0,0)=e. If F is a path homotopy, so is F. ∃!Ê,...?E

<u>Pf</u> Use path lifting lemma to extend \tilde{F} to $203 \times I$ and $I \times 203$. Using Lebesgue number lemma, subdivide IXI into small squares so that each F(small square) is contained in some open UCB evenly covered by p. Extend F lexicographically to each new small square. If $\widetilde{F}(\mathbf{L}) \subset V_{\mathbf{x}}$ then define $\widetilde{F}(s,t) = (\rho|_{V_{\mathbf{x}}})^{-1} (F(s,t)) \quad \forall (s,t) \in [S_{i}, S_{i+1}] \times [t_{i}, t_{i+1}].$ connected & discrete topology If F is a path homotopy, then $F(\frac{1}{2}o3 \times I) = b_0$ and $\widetilde{F}(\frac{1}{2}o3 \times I) \subset \rho^{-1}(b_0)$,

so $\tilde{F}(\{\sigma\} \times I) = e_{\sigma}$. Similarly for the right edge $\{1\} \times I$.

 $T \times T \xrightarrow{F} B$

The Let $\rho: E \to B$ be a covering map with $\rho(e_0) = b_0$. Let f,g: I > B be paths from bo to b. Let $\tilde{f}, \tilde{g}: \mathbb{I} \to \mathbb{E}$ be lifts starting at eo. If fig are path homotopic, then so are fig, and hence $\widehat{F}(I) = \widehat{q}(I)$. <u>Pf</u> Let $F: I \times I \rightarrow B$ be a path homotopy from f to g. By the path homotopy lifting lemma, we have a lift $\widetilde{F}: \mathbb{I} \times \mathbb{I} \rightarrow \mathbb{E}$ that is also a path homotopy. Note Floothom edge is a lift of f, which by uniqueness of path lifting is f. Hence F is a path homotopy from f to g.

<u>Def</u> Let $\rho: E \rightarrow B$ be a covering map with $\rho(e_o) = b_o$. Then $\phi: \pi_1(B, b_0) \rightarrow \rho^{-1}(b_0)$ defined by $\phi(\Sigma f] = \tilde{f}(I)$ where \tilde{f} is the lift of f with $\tilde{f}(O) = e_0$ is a well-defined set map, called the lifting correspondence. (Note & depends on the choice of eo.) Ihm If E is path connected, then \$\$ is surjective. b. If E is simply connected, then ϕ is bijective. <u>Pf</u> Let $e_i \in \rho^{-1}(b_0)$. Since E is path connected, let \tilde{s} be a path in E from e_0 to e_1 . Then $f = \rho_0 \tilde{f}$ is a loop in B with $\phi([f]) = \tilde{f}(I) = e_1$. Let $[f], [g] \in \pi_1(B, b_0)$ with $\phi([f]) = \phi([g])$. So the lifts \tilde{S}, \tilde{g} starting at e_0 satisfy $\tilde{S}(i) = \tilde{g}(i)$. E simply connected $\Rightarrow \tilde{J}$ path homotopy \tilde{F} between \tilde{S} and \tilde{g} . The path homotopy poF shows [5]=[g].

 $_{\mathrm{M}}(\mathrm{S}^{\mathrm{I}})\cong\mathbb{Z}$ Thm Since E is simply connected, the lifting correspondence $\phi: \pi_1(S', b_0) \to \mathbb{Z}$ is a bijection. It remains to show \$\$ is a group homomorphism. Let [f], [q] & T, (B, b_) have lifts S, g starting at O. Let $\phi([f]) = \overline{f}(1) = n$ and $\phi([g]) = \widetilde{q}(1) = m$. Define $\tilde{g}: I \rightarrow R$ by $\tilde{g}(s) = n + \tilde{g}(s)$. Note $\tilde{F} * \tilde{g}$ is a well-defined path (since $\tilde{F}(I) = n = \tilde{g}(0)$) that lifts f * g (since $p \circ \tilde{f} = s$ and $p \circ \tilde{g} = g$), beginning at 0 and ending at $(\tilde{f} * \tilde{g})(1) = \tilde{g}(1) = n + m$. Hence $\phi([f]*[g]) = \phi([f*g]) = (\tilde{f}*\tilde{g})(1) = n+m = \phi([f]) + \phi([g]),$ as desired.

Section 55: Retractions and fixed points

$$\begin{array}{c}
\underline{De\$} \ For \ AcX, \ a \ retraction \ r: X \rightarrow A \ is \\
a \ Continuous \ map \ with \ r(a) = a \ \forall a \in A. \\
\hline Let \ i:A \rightarrow X \ be \ the \ inclusion \\
defined \ by \ i(a) = a \ \forall a \in A. \\
\hline Let \ i:A \rightarrow X \ be \ the \ inclusion \\
defined \ by \ i(a) = a \ \forall a \in A. \\
\hline Let \ r, (X, a_0) \rightarrow \pi, (A, a_0) \ is \ surjective \ and \\
\hline i_{*}: \pi, (X, a_0) \rightarrow \pi, (X, a_0) \ is \ injective. \\
\hline
\underline{Proof} \ A \xrightarrow{i} X \xrightarrow{r} A \ \pi, (A) \ \underbrace{i*}_{K_0} \pi, (X) \xrightarrow{V_{\Phi}} \pi, (A) \\
\hline r_{K_0}: u_A \ fince \ r \ is \ a \ retraction, \ r \circ i = uA. \\
\hline Since \ r, \ is \ a \ retraction, \ r \circ i = iuA. \\
\hline Since \ T, \ is \ a \ functor \ (Thm \ 52.4), \ we \ get \\
r_{K_0}: u_{K} = (r \circ i)_{K} = (iuA)_{K} = id \ \pi, (A). \\
\hline Hence \ r_{K} \ is \ surjective \ and \ i_{K_0}: njective. \\
\end{array}$$

Recall
$$B^{n+1} = \{z \in \mathbb{R}^{n+1} : ||z|| \le l^2\}$$
 and $S^n = \{z \in \mathbb{R}^{n+1} : ||z|| = l^2\}$
The There is no retraction $r: B^2 \longrightarrow S^1$.
 $P_{\overline{s}} = S^1 \stackrel{i}{\longrightarrow} B^2 \stackrel{r}{\longrightarrow} S^1$ Apply π_1 $Z \stackrel{i}{\longrightarrow} O \stackrel{r_{\overline{s}}}{\longrightarrow} Z$
 $r_{\overline{s}} = uls$ id_Z

This would contradict the fact there is no surjection
$$r_*: \mathcal{O} \rightarrow \mathbb{Z}$$

(or that there is no injection $i_*: \mathbb{Z} \rightarrow \mathcal{O}$,
or that $id_{\mathbb{Z}}$ does not factor through the trivial group \mathcal{O} .)

Aside: It is more generally true that there is no retraction Bⁿ⁺¹ -> Sⁿ. Indeed, to Sⁿ is Bⁿ⁺¹ rowsⁿ apply Tr_n to get Z it O res Z roi=idsⁿ and the same contradictions, Here, Tr_n is the "n-th homotopy group".

I hm (Brouwer fixed point theorem for the disk) If $f: B^2 \rightarrow B^2$ is continuous, then there is a fixed point $x \in B^2$ satisfying f(x) = x. <u>Pf</u> Suppose $f(x) \neq x \quad \forall x \in B^2$. Then we can define $r: B^2 \rightarrow S'$ by letting r(x)be the unique point of S' on the ray from f(x) through x. Using the fact that f is continuous, (12) x with work one can show that 5(x) $\gamma = r(\alpha)$ r is continuous. for RES To see that r is a retraction, flac) note that if $x \in S^1$, then r(x) = xSince there is no retraction $r: B^2 \rightarrow S'$, there must be some $x \in B^2$ with f(x) = x. Aside: The same proof shows any continuous f: B"+" -> B"+" has a fixed point.

Corollary Let A be a 3×3 matrix with positive real entries. Then A has a positive real eigenvalue (characteristic value).

Section 56: The fundamental theorem of algebra

Covered by Prof. Philip Boyland