

<u>Thm</u> (Borsuk-Ulam) Given a continuous $f: S^2 \rightarrow \mathbb{R}^2$, there is some $x \in S^2$ with f(x) = f(-x). Pf Suppose $f(x) \neq f(-x) \quad \forall x \in S^2$. Then $g(x) = \frac{f(x) - f(-x)}{\|f(x) - f(-x)\|}$ is a continuous map $g: S^2 \rightarrow S'$ with $g(-x) = -g(x) \forall x \in S^2$, Contradicting the prior theorem. £(x) f(-x) q(x)

Section 58: Deformation retracts and homotopy type Let X, Y be topological spaces and $f: X \rightarrow Y, g: Y \rightarrow X$ be continuous maps. Recall f, g are homeomorphisms if $1 \frac{1}{9}$ qof=idx and fog=idy. We say X and Y are homeomorphic, denoted $X \cong Y$ Def The maps f, g are homotopy equivalences if $q \cdot f \simeq id_{\chi}$ and $f \cdot q \simeq id_{\chi}$. We say X and Y are homotopy equivalent, denoted $X \simeq Y$. In this example, we have qof = idxand fog~idy via a homotopy H: Y*I->Y with H(,0)=idy and $H(,1)=f\circ g$. <u>Rmk</u> Showing \simeq is an equivalence relation is fun. $\chi \stackrel{f}{\longrightarrow} \chi \stackrel{g'}{\longrightarrow} Z$

The prior example is furthermore a deformation retract.
Def Let
$$A \in X$$
 with $i:A \rightarrow X$ the inclusion.
Then A is a deformation retract of X is
3 a retraction $r: X \rightarrow A$ (meaning $r \circ i = id_A$) and
a homotopy $H: X \times I \rightarrow X$ with $H(-,0) = id_X$.
 $H(-,1) = i \circ r$, and $H(a,t) = a$ VacA and VteI.
Note that deformation retracts are special cases of
homotopy equivalences and special cases of retracts.
 E_X
 $Fuchs$ showed $X \simeq Y \Leftrightarrow \exists$ a third space Z .
that deformation retracts onto both X and Y .

Now we show that homotopy equivalent spaces have isomorphic fundamental groups. This is easiest for deformation retracts, where the homotopy H fixes basepoints. Thm If A is a deformation retract of X, then $i:A \rightarrow X$ induces an isomorphism $i_*: \pi_1(A, x_0) \longrightarrow \pi_1(X, x_0) \quad \forall x_0 \in A.$ <u>Pf</u> Since roi = ida, we have $\xrightarrow{i} X \xrightarrow{r} A$ $\Gamma_* \circ i_* = (r \circ i)_* = (i d_A)_* = i d_{\Pi,(A)},$ so injective. $\pi_{I}(A) \xrightarrow{i_{*}} \pi_{I}(X) \xrightarrow{r_{*}} \pi_{I}(A)$ And given a loop $f: I \rightarrow X$ based at $x_0 \in A$, idπ.(A) the composition I×I -fxid X×I -H X gives a path homotopy from H(f(s), D) = f(s)to a loop H(f(s),1) in A, H(S(s),1 Showing that is surjective.

$$\begin{array}{c|c} \underline{lemma} & Let h, k: X \rightarrow Y & be continuous with \\ h(x_0) = y_0, k(x_0) = y_1. \quad If h \cong k, then \exists a path \\ x & in Y & from y_0 & to y_1 & with \\ k_* = \hat{\alpha} \circ h_* & & & & & & & \\ as maps & \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0). & & & & & \\ \hline Indeed, if H: X \times I \rightarrow Y & is a homotopy with \\ H(-, 0) = h & and & H(-, 1) = k, & then & x = H(x_0, -). \\ \hline Pf & Let & [S] \in \pi_1(X, x_0). & We & must show \\ k_*(If) = \hat{\alpha}(h_*(If)) \\ i.e. & [k \cdot 5] = [x] * [h \cdot 5] * [x], & & & \\ \hline which can be seen in the \\ figure on the right. & & & & \\ \hline x_0 & & & & \\ \hline X \times I & & & \\ \hline \end{array}$$

<u>Thm</u> Let $X = U \circ V$ with U, V open, $U \circ V$ path connected, $x_o \in U \circ V$, and $i: U \hookrightarrow X$, $j: V \hookrightarrow X$ the inclusion maps. Then the images of $i_*: \pi_1(U, x_0) \longrightarrow \pi_1(X, x_0)$ and $j_*: \pi_1(V, x_0) \longrightarrow \pi_1(X, x_0)$ generate $\pi_1(X, x_0)$.

Here, "generates $\pi_1(X, x_0)$ " means any loop f in X based at x_0 is path homotopic to one of the form $g_1 * g_2 * ... * g_n$, with each g_i a loop based at x_0 lying entirely in U or in V.

The Let X=U.V with U,V open, U.V path connected, xo ∈ U.V, and i: U => X, j: V => X the inclusion maps. Then the images of $i_*: \pi_1(U, x_0) \longrightarrow \pi_1(X, x_0)$ and $j_*: \pi_1(V, x_0) \longrightarrow \pi_1(X, x_0)$ generate $\pi_1(X, x_0)$.

Since $U \cap V$ is path connected, pick paths x_i in $U \cap V$ from x_o to a_i , letting x_o and x_n be constant paths at x_o . Define $g_i = x_{i-1} * f_i * \overline{x_i}$. Note each g_i is a loop based at x_0 lying entirely in U or in V, with $[g_i] * ... * [g_n] = [f_i] * ... * [f_n] = [f_i].$

Corollary If $X = U \vee V$ where U and V are open and simply connected and $U \wedge V$ is nonempty and path connected, then X is simply connected. Thm S^n is simply connected for $n \ge 2$. Pf_ Let 0< ≤=1. Let $U = \{ (x_{1}, ..., x_{n+1}) \in S^n \mid x_{n+1} > -\xi \}$ and $V = \{ (x_1, ..., x_{n+1}) \in S^n \mid x_{n+1} < \xi \}$. Note Sⁿ = U V. Note U and V are open and simply connected (they're contract:ble). Note $U \cap V \simeq S^{n-1}$ is path connected for $n \ge 2$. Hence by the corollary, Sⁿ is simply connected. U

=

ν

 C^{n-1}

 \sim

 $|| \wedge \rangle /$

Section 60: Fundamental groups of some surfaces
For
$$T=S'\times S'$$
 the torus, \mathbb{RP}^2 the projective plane,
and $T#T$ the dauble torus, we will see
 $\pi, (T) \cong \mathbb{Z} \times \mathbb{Z}$
 $\pi, (\mathbb{RP}^2) \cong \mathbb{Z}/\mathbb{Z}$
 $\pi, (T#T) is not abelian.
Since $\pi_i(S^1) \cong 0$, this shows that none of
 $S^2, T, \mathbb{RP}^2, T#T$ are homotopy equivalent.
Double torus $T#T$$

Rink Similarly, $\Pi_n(X \times Y) \cong \Pi_n(X) \times \Pi_n(Y)$ $\forall n \ge 1$.

Recall Let $p: E \rightarrow B$ be a covering map with $p(e_0) = b_0$. Then $\phi: \pi_1(B, b_0) \rightarrow \rho^{-1}(b_0)$ defined by $\phi(\Sigma_{f}) = \tilde{f}(I)$ where \tilde{f} is the lift of f with $\tilde{f}(O) = e_0$ is a well-defined set map, called the lifting correspondence. Thm If E is path connected, then ϕ is surjective. If E is simply connected, then ϕ is bijective. <u>Corollary</u> T, (RP2) ≈ Z/2. <u>Pf</u> Since $p: S^2 \rightarrow \mathbb{R}P^2$ is a covering map ' κ → ξκ,-κζ with S² simply connected, we have that Ιρ $\pi_1(\mathbb{R}P^2, b_0)$ is in bijective correspondence with $p^{-1}(b_0)$, a set of size \exists . Hence $\Pi_{r}(\mathbb{R}\mathbb{P}^{2})\cong\mathbb{Z}/\mathbb{Z}$.

To see that $\pi_1(T \# T)$ is not abelian, consider the retraction $T \# T \rightarrow figure$ eight. Double torus T#T figure eight Retractions are surjective on M. And π , (sigure eight) is not abelian since $[s] * [q] \neq [q] * [s]$. Hence Tr. (T#T) is not abelian. To formally see that $[s] * [g] \neq [g] * [s]$ in π , (sigure eight), consider the covering space in Munkres' Figure 60.3. Note figure lifts to a path from eo to e, whereas g*f lifts to a path from eo to e-1; hence $[f] * [q] \neq [q] * [f]$ by Theorem 54.3.

Figure 60.3