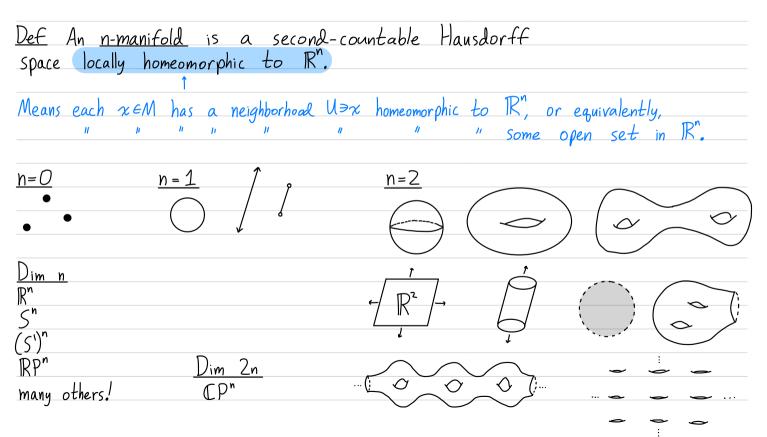
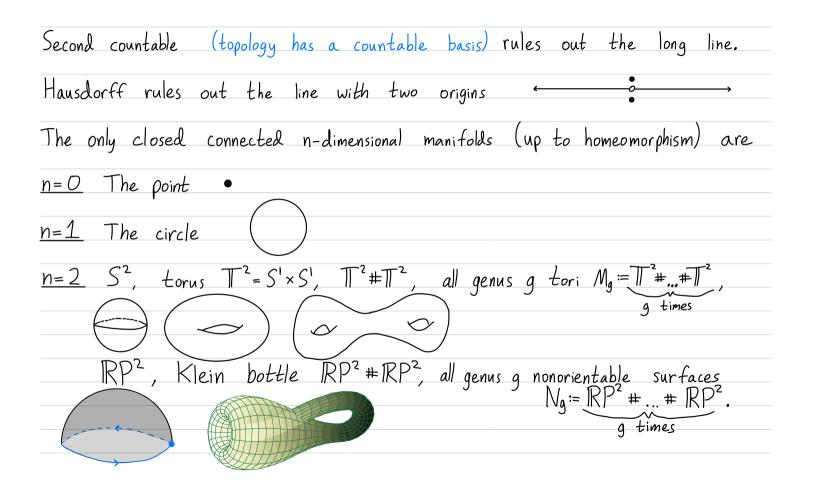
Introduction to manifolds

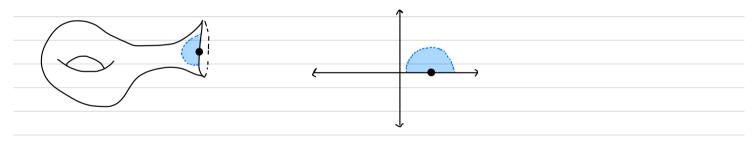


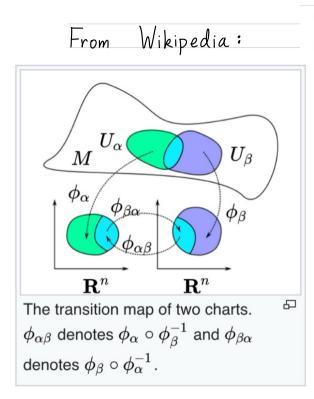


Every closed connected 2-manifold can be given a metric <u>n=3</u> Hard! With constant curvature (positive, zero, or negative).
Proven by Perelman in 2006, declined Fields medal Thurston's geometrization conjecture (now theorem) says each closed 3-manifold can be canonically decomposed into pieces with one of eight types of geometric structure. It implies the
<u>Poincaré conjecture (now theorem)</u> Every closed connected 3-manifold with trivial fundamental group is homeomorphic to S ³ .
n=4 Hard!
$n \ge 5$ Hard, but some things get easier.
In 1961, Smale proved a generalized Poincaré conjecture (a homotopy n-sphere is homeomorphic to S ⁿ) for n≥5. In 1982, Freedman proved it for n=4. The trivial π, assumption does not suffice for n≥4.

<u>Invariance of dimension</u> For n≠m, a space cannot be both an n-manifold and an m-manifold.

Def An <u>n-manifold with boundary</u> (need not be a manifold!) is a second-countable Hausdorff space locally homeomorphic to \mathbb{R}^n or to $\mathbb{R}^n_+ \coloneqq \{(x_1, ..., x_n) \in \mathbb{R}^n \mid x_n \ge 0\}$.





Given a topological space M					
a C^k atlas	is a collection of charts	$\{\varphi_{\alpha}: U_{\alpha} \to \mathbf{R}^n\}_{\alpha \in A}$		a C^k map	
a smooth or C^{∞} atlas		$\{\varphi_{\alpha}: U_{\alpha} \to \mathbf{R}^n\}_{\alpha \in A}$	such that $\{U_{\alpha}\}_{\alpha \in A}$ covers M, and such that for all α and β in A, the transition map $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}$ is	a smooth map	
an analytic or C^{ω} atlas		$\{\varphi_{\alpha}: U_{\alpha} \to \mathbf{R}^n\}_{\alpha \in A}$		a real- analytic map	
a holomorphic atlas		$\{\varphi_{\alpha}: U_{\alpha} \to \mathbf{C}^n\}_{\alpha \in A}$		a holomorphic map	

A <u>differentiable</u> (C^k or C[®]) manifold is a second-countable Hausdorff space M equipped with a maximal differentiable atlas.

Whitney embedding theorem $A \subset n$ -manifold can be smoothly embedded in \mathbb{R}^{2n} . (For n a power of Z, \mathbb{RP}^n cannot be embedded in \mathbb{R}^{2n-1} .)