Course Overview

Section 2. 3 : The formal viewpoint Section 2. C : Simplicial approximation & Lefschetz fixed point theorem Chapter 3: Cohomology (Idea of cohomology pg. 186) Section 3. ¹ : Cohomology groups Universal coefficient theorem Swap
Cohomology of spaces, pg. 197 Section 3. 2 : Cup product Section 3. 3 : Poincare duality For M an n-dimensional orientable closed manifold, we have $H^k(M) \cong H_{n-k}(M)$ for all k.

Two key differences between homology and cohomology are	
Homology is a covariant functor while cohomology is contravariant.	
4 contains function $5: X \rightarrow Y$ induces	
$5_*: H_i(X) \rightarrow H_i(Y)$ on homology, but	
5^* : $H^i(Y) \rightarrow H^i(X)$ on cohomology.	
6 Chomology has a natural product, the cup product	
$H^i(X) \times H^j(X) \rightarrow H^{i+j}(X)$, defined as a composition	
$H^i(X) \times H^j(X) \rightarrow H^{i+j}(X)$, and $H^{i+j}(X \cdot X) \rightarrow H^{i+j}(X)$.	
$Im both cohomology and homology, By contravariance, the diagonal map X\rightarrow XXX$	
One can construct natural maps	via $X \mapsto (x, x)$ induces this map on cohomology.
$H^i(2) \times H^j(W) \rightarrow H^{i+j}(2 \times W)$ and No nice analogue for homology, in general.	
$H_i(2) \times H_j(W) \rightarrow H^{i+j}(2 \times W)$.	

Example of the cup product Homology can't tell the difference between
the torus S'xS' and S² vS' vS'. λa $\frac{1}{H_i(S' \times S') \cong \sum_{i=0}^{n} \frac{1=0}{T-1}}$ $\begin{array}{c} \begin{array}{c} \text{1} \\ \text{2} \\ \text{0} \end{array} \\ \begin{array}{c} \text{1} \\ \text{2} \\ \text{3} \end{array} \end{array}$ $i=2$ $i \geq 3$ Follows from $\widetilde{H}_i(X \vee Y) \cong \widetilde{H}_i(X) \oplus \widetilde{H}_i(Y)$ The cup product structure on cohomology can
tell the difference! $\overbrace{H^{i}(S^{1} \times S^{1})}^{\mathbb{Z}} \cong \begin{cases} \mathbb{Z} & \text{if } O \\ \mathbb{Z} \times \mathbb{Z} & \text{if } O \end{cases} \qquad \overbrace{H^{i}(S^{2} \times S^{1} \times S^{1})}^{\mathbb{Z}} \cong \begin{cases} \mathbb{Z} & \text{if } O \\ \mathbb{Z} \times \mathbb{Z} & \text{if } O \end{cases}$ $\begin{array}{|c|c|} \hline Z & i=2 \\ \hline 0 & i=3 \\ \hline \end{array}$ \sqrt{Z} $v=2$ $0 \t i23$ Let Ia] and Ib] be generators Let Ia] and Ib] be for H', with IT] a generator generators for H. $[a] \cup [b] = 0$ $[a] \cup [b] = [f]$ $H'(x) \times H'(x) \longrightarrow H^{2}(x)$

Section 2. ³ : The formal viewpoint

Consider the category of CW complexes and continuous maps.
\nA reduced homology theory is a function assigning
\n• to each nonempty CV complex X a sequence of abelian groups
$$
\tilde{h}_n(X)
$$
, and
\n• to each map $f: X \rightarrow Y$ a sequence of homomorphisms $f_* : \tilde{h}_n(X) \rightarrow \tilde{h}_n(X)$
\n $(functor means (fg)_* = f_*g_* and 1_* = 1)$
\nSatisfying the following three axioms:
\n(1) If $f \rightarrow g$, then $f_* = g_*$.
\n(2) There are natural boundary homomorphisms $\partial: \tilde{h}_n(X/A) \rightarrow \tilde{h}_n(A)$
\n $\forall CW pairs (X,A), fitting into an exact sequence.\n... $\rightarrow \tilde{h}_n(A) \xrightarrow{ix} \tilde{h}_n(X) \xrightarrow{4*} \tilde{h}_n(X/A) \xrightarrow{2*} \tilde{h}_n(A) \rightarrow ...$
\n $(Natural means f:(X,A) \rightarrow (Y,B) induces $\tilde{h}_n(X/A) \xrightarrow{2*} \tilde{h}_n(A) \rightarrow ...$
\n $(Natural means f:(X,A) \rightarrow (Y,B) induces $\tilde{h}_n(X/A) \xrightarrow{2*} \tilde{h}_{n-1}(A)$
\n $\tilde{f}_* \downarrow \rightarrow ...$
\n $\tilde{h}_n(Y_B) \xrightarrow{3*} \tilde{h}_{n-1}(B)$
\n(3) For X=V_XX_W with inclusions i_W: X_W \rightarrow X_W then
\n $\theta_K i_{W} : \theta_W \tilde{h}_n(X_{W}) \rightarrow \tilde{h}_n(X)$ is an isomorphism $\forall n$.$$$

RmkS **In the case of finite wedge sums,** (3) can be deduced from (1) and (2).

- Can deduce the Mayer-Vietoris LES, for example.
- Could give axioms instead for unreduced homology (Eilenberg & Steenrod 1952).
- The original 'dimension axiom' $\widetilde{h}_{n}(S^{0}) = h_{n}(\rho t) = O$ for $n \neq O$ is no longer included. Ex In the bordism homology theory, $\widetilde{h_n}(S) = h_n(\rho t) \neq O$ for infinitely many n.
- Any sequence of coefficient groups $\widetilde{h}_{n}(S^{o})$ = h_n(pt) is possible,
for example via $\widetilde{h}_{n}(X)=\bigoplus_{i}\widetilde{H}_{n-i}(X;G_{i}).$ Negative n is fine. for example ria $\widetilde{h}_n(x) = \bigoplus_i \widetilde{H}_{n-i}(x; G_i)$. Negative n is fine.
- A general homology theory is not uniquely identified by A general nomology theory is not uniquely identitied by
its Coefficient groups, though singular homology is (Thm 4.59)。

Categories and functors

Def A category C consists of

\n\n- (1) A collection Ob(C) of objects.
\n- (2) Sets Mor (X,Y) of morphisms V X, Y \in Ob(C), including a distinguished 'identity' 11x
$$
\epsilon
$$
 Mor(X,X) VX.
\n- (3) A composition $P: Mor(X,Y) \times Mor(Y,Z) \longrightarrow Mor(X,Z) VX,Y,Z$,
\n- (4) $f, g \longmapsto gf$
\n
\nSatisfying $f1 = f, 11f = f, \text{and } (fg)h = f(gh)$.

Consider also posets, ^a group ^G, ^a homotopy category, chain complexes.

In the category of sets, groups, spaces, the morphisms are functions,

perhaps with extra structure (group homomorphisms, continuous maps).

Consider also posets, a group G, a homotopy category, chain complexes.
 $\begin{array}{ccc}\$ perhaps with extra structure (group homomorphisms, continuous maps).

Consider also posets, a group G, a homotopy category, chain composition of the composition well-defined since - \bigcup gh $\bigcup_{j=1}^k s_j g_j = s_j g'_j + s_j \leq f'_i$ and $g = g'_i$. $\begin{array}{ccc}\nC_{n+1} & \xrightarrow{2} & C_n \xrightarrow{2} & C_{n-1} \\
\downarrow & \searrow & \searrow & \searrow \\
C_{n-1} & \xrightarrow{2} & C_{n-1} \end{array}$

Def A (covariant) functor $F: \mathbb{C} \rightarrow \mathbb{D}$ $X \rightarrow X \rightarrow Y \rightarrow Z$ assigns to each $X \in Ob(C)$ some $F(X) \in Ob(D)$ and to each $f \in Mor(X, Y)$ some $F(S) \in Mor(F(X), F(Y))$ F(Y) ¹⁷⁹⁾, F(Z) such that $F(1) = 1$ and $F(fg) = F(s)F(g)$. D
 $\begin{array}{lll}\n\mathbb{D} & \times & \xrightarrow{g} & \times & \xrightarrow{f} & \xrightarrow{f} \\
\hline\n\text{For (F(x), F(x))} & & & \xrightarrow{f(x)} & \xrightarrow{f(y)} & \xrightarrow{f(y)} & \xrightarrow{f(x)} & \xrightarrow{f(x)} & \xrightarrow{f(xg) = F(s)F(g)} \\
\text{For (x, y) is the function of } & \text{for (x, y) is the function of } & \text{for (x, y) is the function of } & \text{for (x, y) is the function of } & \text{for (x, y) is the function of } & \text{for (x, y) is the function of } & \text{for (x, y)$ F(fg)=F(§)F(g) Such that $F(1)$ = 1 and $F(fg)$ = $F(s)F(s)$
Ex Homology, 1_* = 1 and $(fg)_* = f_* g_*$. Ex Homology, 1_* = 1 and $(fg)_* = f_* g_*$.
A contravariant functor instead assigns $X \xrightarrow{g} Y \xrightarrow{f} Z$ to each £EMor(X,Y) some F(s)EMor(F(Y),F(X)) with $F(1) = 1$ and $F(fg) = F(g) F(f)$. $F(\chi)$ ϵ $^{F(g)}$ $F(fg)=F(s)F(g)$
 $\left\langle \begin{array}{cc} g & \gamma & \frac{5}{2} \\ \sqrt{g} & F(g) & F(g) \\ \hline \\ F(fg)=F(g)F(g) \end{array} \right\rangle$ $F(Y) \stackrel{F(\xi)}{\longleftarrow} F(z)$ Ex The dual rector space functor $F(V) = V^*$ $F(fq) = F(q)F(f)$ assigning the vector space V to V^* , the space of linear maps $V\rightarrow \mathbb{R}$. Ex Cohomology $V \rightarrow W$ $V^* \leftarrow f^* W^*$ Since V . $\frac{f}{f}$