<u>Chapter 1</u>: Fundamental group Associates to each space X a group $\pi_1(X)$ measuring the 1-dimensional holes. Section I.I Basic constructions Section 1.2 Van Kampen's theorem Section 1.3 Covering spaces

<u>The idea</u> What is the algebraic structure of loops C in the complement of two unlinked loops A and B?

 $\mathbb{R}^3 \setminus (A \circ B) \simeq ?$

<u>The idea</u> What is the algebraic structure of loops C in the complement of two unlinked loops A and B?

 $\mathbb{R}^{3} \setminus (A \lor B) \simeq S' \lor S' \lor S^{2} \lor S^{2}$ $\mathfrak{N}_{r} (S' \lor S' \lor S^{2} \lor S^{2}) \cong \langle a, b \rangle \cong \mathbb{Z} \ast \mathbb{Z}$ <u>The idea</u> What is the algebraic structure of loops C in the complement of two linked loops A and B?

aba-16-1 = 1

 $\Re(\text{torus } \vee S^2) \cong \langle a, b | a b a^{-1} b^{-1} \rangle \cong \mathbb{Z} \oplus \mathbb{Z}$

Section II Basic constructions
A path is a map
$$f: I \to X$$

A homotopy of paths is a homotopy $f_t: I \to X$ rel $\{0, 1\}$.
We say fo and fi are homotopic, denoted for f_1 ,
or $[f_0]=[f_1]$ since this is an equivalence relation.
The product of paths $f_0: T \to X$

The product of paths
$$f, g: \perp \rightarrow \chi$$

with $f(l) = g(0)$ is defined by $f \cdot g(s) = \begin{cases} f(2s), & 0 \le s \le 1/2 \\ g(2s-1), & 1/2 \le s \le 1. \end{cases}$

The product respects homotopy classes.

Path f: $I \rightarrow X$ is a loop if $f(o) = x_o = f(1)$. The set of all homotopy classes of loops based at 20 is denoted TT. (X.x.).

<u>Proposition 1.3</u> π , (X, x_o) is a group with respect to the product $[f] \cdot [g] = [f \cdot g]$.

Pf See how Hatcher uses reparametrizations to prove associativity, identity.

No

The fundamental group of the circle. We prove $\Pi_1(S') \cong \mathbb{Z}$ using covering spaces. Def (page 56) A covering space of X is a space \tilde{X} together with a map $\rho: \tilde{X} \rightarrow X$ such that $E_x p: R \rightarrow S' by$ • there is an open cover EUx3 of X s.t. Vx, $p^{-1}(U_{\alpha})$ is a disjoint union of open sets in \widetilde{X} $p(t) = (\cos 2\pi t, \sin 2\pi t)$ each mapped homeomorphically onto Ux by p. $\frac{\text{Def}(\text{page 60})}{\text{is a map } \widehat{\varphi}: Y \rightarrow \widehat{X}} \quad \text{with } \widehat{p} \widehat{\varphi} = f.$

<u>Prop 1.30</u> Given a covering space $p: \widetilde{X} \rightarrow X$, a homotopy $f_t: Y \rightarrow X$, and a lift $\widetilde{f}_0: Y \rightarrow \widetilde{X}$ ′×{D 3! {F_} of fo, there exists a unique homotopy $\widetilde{f}_t: Y \rightarrow \widetilde{X}$ that lifts St.

<u>PF idea</u> Unique lifts over an open set exist by the homeomorphism property (\bullet) . Piecing these together takes a page in Hatcher.

$$\frac{P_{rop} \quad 1.12}{E_{\times} \quad 1.13} \quad \pi_{i} \left(X \times Y \right) \cong \pi_{i} \left(X \right) \times \pi_{i} \left(Y \right)$$

$$\frac{E_{\times} \quad 1.13}{\pi_{i} \left(S' \times S' \right) \cong \mathbb{Z} \times \mathbb{Z}}$$

$$\pi_{i} \left((S')^{n} \right) \cong \mathbb{Z}^{n}$$

Prop 1.18 If $\varphi: X \to Y$ is a homotopy equivalence, then $\varphi_*: \pi_1(X, \varkappa_0) \longrightarrow \pi_1(Y, \varphi(\varkappa_0))$ is an isomorphism.

Section 1.2 Van Kampen's theorem (arbitrary unions)

<u>RECALL</u> The Seifert-van Kampen theorem (Two set version, from Munkres.) Thm (Seifert-van Kampen) Let X=UV with U, V open in X, with $U, V, U \cap V$ path-connected, and $x_0 \in U \cap V$. Then the homomorphism $\overline{\Phi}: \Pi, (U, x_0) * \Pi, (V, x_0) \longrightarrow \Pi, (X, x_0)$ is surjective, and its kernel N is the least normal subgroup containing all words of the form $i_u(w)^{-1}i_v(w)$ for $w \in \Pi_1(U \land V, \mathscr{P}_{\circ})$. Hence $\pi_1(X) \cong (\pi_1(u) * \pi_1(v)) / N.$ $\pi(W)$ \propto π, (U₁V) \mathcal{X}_{o} 'π, (X) B (X_{2}) β, X2 $\pi_{1}(\mathcal{W}) = \langle \alpha_{1}, \alpha_{2}, \alpha_{3} \rangle \qquad \pi_{1}(\mathcal{V}) = \langle \beta_{1}, \beta_{2}, \beta_{3} \rangle \qquad \pi_{1}(\mathcal{U} \circ \mathcal{V}) = \langle w \rangle$ $\mathbb{T}_{1}(X) \cong \left\langle \left\langle \alpha_{1}, \alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}, \beta_{3} \right\rangle = \left\langle i_{u}(w)^{-1} i_{v}(w) \right\rangle$ Note $i_{u}(w) = \alpha_{z}$ and $i_{v}(w) = \beta_{z}$ $= \langle \alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3 \rangle \alpha_3^{-1} \beta_3 \rangle$ $\cong \langle \alpha_1, \alpha_2, \beta_1, \beta_2, w \rangle$

Section 1.2 Van Kampen's theorem (arbitrary unions)

lm 1.20 Let X = U_x A_x s.t. each A_x is open, path-connected, and Contains xo. • If each Ag Ap is path-connected, then $\overline{\Phi}: \mathscr{H}_{\mathrm{or}} \Pi_{1} (A_{\mathrm{or}}) \longrightarrow \Pi_{1}(X)$ (defined using the jox) is surjective. If furthermore each Ag Ap Ar is path-connected, then $ker(\Phi)$ is the normal subgroup generated by all elements $i_{\alpha\beta}(w) i_{\beta\alpha}(w)^{-1}$ for $w \in \pi_1(A_{\alpha} \land A_{\beta})$.

Ex Write X as union of 5 open Non-Ex To see the triple intersection sets each containing the bold assumption is necessary, consider tree and one extra edge. $A_{\alpha} = X \setminus \{a\}, A_{\beta} = X \setminus \{b\}, A_{\gamma} = X \setminus \{c\},$ Double, triple intersections path-connected. Double intersections contractible $\Rightarrow \ker(\overline{\mathfrak{T}})$ trivial. To get the right answer $\mathbb{Z}*\mathbb{Z}$ So $\overline{\Phi}$ gives an isomorphism $\pi_i(\chi) \cong \#_{i=1}^5 \pi_i(A_i) = \#_{i=1}^5 \mathbb{Z}$. use only Ar and Ap.

$$\begin{array}{c|c} \hline Applications to cell complexes \\ \hline Y obtained from path-connected X by attaching \\ \hline Z-cells e_{x}^{2} via q_{0}: S^{1} \rightarrow X. \\ \hline Fix x_{0} \in X. \\ \hline Choose paths x_{x} to image(q_{0}). \\ \hline Let N \subseteq \pi_{1}(X, x_{0}) be normal subgroup generated by all $\chi_{Y} q_{x} \overline{\chi_{x}}. \\ \hline Prop 1.26 \\ \hline (a) X \hookrightarrow Y induces a surjection \pi_{1}(X, x_{0}) \rightarrow \pi_{1}(Y, y_{0}) \\ \hline with kernel N, so \pi_{1}(Y) \cong \pi_{1}(X)/N. \\ \hline (b) If instead Y were obtained by attaching n-cells for some n>2, \\ \hline then X \hookrightarrow Y induces an isomorphism \pi_{1}(X)^{2} \cong \pi_{1}(X). \\ \hline (c) For X a path-connected (W complex, the inclusion \\ \chi^{2} \hookrightarrow X induces an isomorphism \pi_{1}(\chi)^{2} \cong \pi_{1}(\chi). \\ \hline \end{array}$$$

Rmk Choice of path for doesn't matter, since a different path
$$\eta_{x}$$
 gives a conjugate element $\eta_{\alpha} \cdot \varphi_{\alpha} \cdot \overline{\eta_{x}} = (\eta_{\alpha} \cdot \overline{\chi_{\alpha}}) \cdot \overline{\chi_{\alpha}} \cdot (\chi_{\alpha} \cdot \overline{\eta_{\alpha}}).$

$$\frac{Pf}{Let} = Y \lor \{ \text{vectangular strips} \} \cong Y.$$

$$Choose \quad y_{x} \in e^{2}x.$$

$$Note \quad A = Z - U_{x} \{ y_{x} \} \cong X \text{ and } B = Z - X \cong *$$

$$are \quad open \quad path-connected \quad sets \quad with \quad union \quad Z.$$

$$Note \quad A \cap B \cong V_{x} S' \quad with \quad \Pi_{i}(A \cap B) \quad generated$$

$$(bosely \quad speaking) \quad by \quad [X \propto U_{x} \overline{X_{x}}].$$

Van Kampen's says $\Pi_1(Y) \cong \Pi_1(Z)$ is isomorphic to the quotient of $\Pi_1(A) \cong \Pi_1(X)$ by the normal subgroup generated by the image of $\Pi_1(A \wedge B) \longrightarrow \Pi_1(A)$, which corresponds to N.

(b) The only difference with the above proof is $A \cap B \simeq V_x S^{n-1}$, with n > 2. So $\pi_1(A \cap B)$ is trivial and van Kampen's gives $\pi_1(Y) \simeq \pi_1(Z) \simeq \pi_1(A) \simeq \pi_1(X)$. van Kampen

(c) If X is finite-dimensional (X=Xⁿ for some n), then (c) follows from (b) and induction. (Add on 3-cells, then 4-cells, etc.)

Otherwise, let
$$f: T \rightarrow X$$
 be a loop based at $x_0 \in X^2$.
 $Im(s)$ is compact and hence lives in a finite subcomplex
of X by Proposition A.1, and hence in X^n for some n.
Since $\Pi_1(X^2) \rightarrow \Pi_1(X^n)$ is surjective by (b),
f is homotopic to a loop in X^2 .
So $\Pi_1(X^2) \rightarrow \Pi_1(X)$ is surjective.

To see it is also injective, suppose f is a loop in X^2 which is nullhomotopic in X via a nullhomotopy $F: I \times I \to X$. Im(F) is compact, hence lies in Xⁿ for some $n \ge 2$. Since $\pi_1(X^2) \longrightarrow \pi_1(X^n)$ is injective by (b), it follows that f is nullhomotopic in X2.

Corollary For every group G there is a
2-dimensional CW complex XG with
$$\pi_i(X_G) \cong G$$

Pf Choose a presentation $G = \langle g_X | r_B \rangle$,
which exists since every group is a
quotient of a free group.

Construct XG from Vor Sox by attaching Z-cells ep Via loops specified by the words rb.

Ex G=Z/nZ