

<u>Prop 1.30</u> Given a covering space $p: X \rightarrow X$, a homotopy $f_t: Y \to X$, and a lift $\tilde{f}_o: Y \to \tilde{X}$ of fo, there exists a unique homotopy $f_t: Y \rightarrow \tilde{X}$ that lifts St. <u>Prop 1.31</u> Let $p: X \rightarrow X$ be a covering space. Then $\rho_*: \pi_1(\tilde{X}) \rightarrow \pi_1(X)$ is injective. Also, Image(Px) is all homotopy classes of loops in X that lift to loops (not paths) in X. <u>Pf</u> If $[f] \in ker(\rho_*)$, then pf is nullhomotipic in X. By Prop 1.30 we can lift to see f is nullhomotopic in \widetilde{X} . Clearly loops lifting to loops represent elements in Image (P*). Л Conversely, $[g] \in Image(\rho_*)$ implies $g \approx g'$ with g' lifting to a loop, which by Prop 1.30 means g lifts to a loop.

<u>Prop 1.32</u> Let $p: \widetilde{X} \rightarrow X$ be a covering space with X and X path-connected. The number of sheets $|p^{-1}(x_0)|$ is equal to the index $[\pi, (X): H]$. where $H = \rho_* \pi_1(\tilde{X})$.

 $\begin{array}{cccc} \underline{Pf} & \text{Define } \overline{\Phi} : \{\text{cosets of } H\} \longrightarrow p^{-1}(x_o) & \text{by} \\ & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & &$

ρ

We care about lifts of general maps, Not just of homotopies.
Prop 1.33 (Lifting criterion) Let
$$p:(\tilde{X}, \tilde{x}_0) \rightarrow (X, x_0)$$
 be a covering space.
Let $f:(Y, y_0) \rightarrow (X, x_0)$ be a map with Y connected and locally path-connected.
Then a lift $\tilde{F}:(Y, y_0) \rightarrow (\tilde{X}, \tilde{x}_0)$ of f exists iff $f_{K}(\pi; (Y, y_0) \in p_{K}(\pi; (\tilde{X}, \tilde{x}_0)))$.
 $\underline{Pf}(\Rightarrow)$ is obvious since $f_{K} = p_{K} \tilde{f}_{K}$.
 (\Leftrightarrow) Y is path-connected since it is connected and locally path-connected.
For $y \in Y$, let χ be a path in Y from y_0 to y .
Path f_{X} in X based at x_0 lifts uniquely to path f_{X} in \tilde{X} based at \tilde{x}_0 .
 $F_{Y}' \circ f_{X} = f_{X} (\pi; (Y, x_0)) \leq p_{K}(\pi; (\tilde{X}, \tilde{x}_0))$.
By Prop. 1.31, $f_{X}' \cdot f_{X}$ lifts to a loop in \tilde{X} .
By uniqueness of path lifting, the first half of this loop is f_{X}'
so $f_{X'}(t) = f_{X}(t)$.

<u>F continuous</u>: Let $y \in Y$. Since $p: \tilde{X} \to X$ is a covering space, let $f(y) \in U \xrightarrow{}_{\text{open}} X$ with $\tilde{f}(y) \in \tilde{U} \subset \tilde{X}$ and $p|_{\tilde{u}}: \tilde{U} \to U$ a homeomorphism. Since $5^{-1}(u)$ is open in Y, choose a path-connected open set $y \in V \subset 5^{-1}(u)$. We will show $F|_{V} = (p|_{u})^{-1} \cdot F|_{V}$, hence F is continuous at y.

Indeed, fix a path r in Y from yo to y. For each y'eV, fix a path n in V from y to y'. Each path from in X has a lift $\overline{ss} \cdot \overline{sn}$ with $\overline{sn} = (pln)^{-1}$: Thus $\overline{s}(V)c\overline{U}$ and $\overline{sl}_v = (pln)^{-1} \overline{sl}_v$. Ũ.

We also have a unique lifting property.

<u>Prop 1.34</u> Given a covering space $p: \tilde{X} \rightarrow X$ and a map $f: Y \rightarrow X$, if two lifts $\tilde{F}_1, \tilde{F}_2: Y \rightarrow \tilde{X}$ agree at a point and Y is connected, then $\tilde{f}_1 = \tilde{f}_2$.

<u>Pf</u> The main idea is to show $\{y \in Y \mid \tilde{F}_1(y) = \tilde{F}_2(y)\}$ is open and closed.

Classification of covering spaces

$$\begin{array}{c|c} \hline \mbox{Thm } 1.38 & X \ \mbox{path-connected, locally path-connected, semilocally simply-connected.} Then \\ & \{ \mbox{basepoint-preserving iso classes of path-connected} \} & B & \{ \ \mbox{subgroup, of} \} \\ & (\mbox{covering spaces } p: (\widetilde{X}, \widetilde{z}_0) \rightarrow (X, z_0) \} & T_1(X, z_0) \} \\ & & [p: (\widetilde{X}, \widetilde{z}_0) \rightarrow (X, z_0)] \longmapsto & p_*(\pi, (\widetilde{X}, \widetilde{z}_0)) \\ & (\mbox{is a bijection.} \end{array}$$

<u>Rmk</u> If you ignore basepoints, then you map to conjugacy classes of subgroups.

Prop 1.37 (B is well-defined and injective) $(\widetilde{X}_{1}, \widetilde{X}_{1})$ $(\widetilde{X}_{2}, \widetilde{X}_{1})$ Let X be path-connected and locally path-connected. p_1 p_2 (χ, χ_0) Two connected covering spaces are basepoint-preserving isomorphic $iff \quad \rho_{1*}\left(\pi_{1}(\widetilde{X}_{1},\widetilde{x}_{1})\right) = \rho_{2*}\left(\pi_{1}(\widetilde{X}_{2},\widetilde{x}_{2})\right).$

 \underline{PF} (=>) $\rho_1 = \rho_2 f$ and $\rho_z = \rho_1 f^{-1}$ induce (or imply) \subseteq and \supseteq .

 (\leftarrow) By the lifting Criterian (Prop 1.33) $\stackrel{\leq}{=} \text{gives a lift } \widetilde{p}_1 \colon \widetilde{X}_1 \to \widetilde{X}_2 \quad (\text{so } p_2 \, \widetilde{p}_1 = p_1), \text{ and} \\ \stackrel{\geq}{=} \text{gives a lift } \widetilde{p}_2 \colon \widetilde{X}_2 \to \widetilde{X}_1 \quad (\text{so } p_1 \, \widetilde{p}_2 = p_2). \\ \text{Since these lifts compose to fix basepoints,}$ Unique lifting (Prop 1.34) gives $\widetilde{p}_{1}\widetilde{p}_{1} = 1_{\widetilde{X}_{1}}$ and $\widetilde{p}_{1}\widetilde{p}_{2} = 1_{\widetilde{X}_{2}}$.
$$\begin{split} & 1_{\widetilde{X}_{1}} = \widetilde{\rho_{2}} \widetilde{\rho_{1}} & \xrightarrow{\neg \gamma} \widetilde{X}_{1} \\ & & \downarrow \rho_{1} \\ & \widetilde{\chi}_{1} & \xrightarrow{\rho_{1}} X \end{split}$$
 $(\widetilde{\chi}_{1},\widetilde{z}_{1}) \xrightarrow{\widetilde{p}_{1}} (\widetilde{\chi}_{2},\widetilde{z}_{1})$ $p_{1} \qquad p_{2}$ Note $\rho_1(\tilde{\rho}_{*}\tilde{\rho}_{1}) = (\rho_1\tilde{\rho}_{*})\tilde{\rho}_1 = \rho_{*}\tilde{\rho}_1 = \rho_{1}$. (X x0)

<u>Classification of covering spaces</u> <u>I hm 1.38</u> X path-connected, locally path-connected, semilocally simply-connected. Then basepoint-preserving iso classes of path-connected? B { subgroups of } Covering spaces $p: (\tilde{X}, \tilde{z}_0) \rightarrow (X, z_0)$ } $\pi_1(X, z_0)$ } $\begin{bmatrix} \rho : (\widetilde{X}, \widetilde{z}_0) \longrightarrow (X, z_0) \end{bmatrix} \longmapsto p_* (\pi, (\widetilde{X}, \widetilde{z}_0))$ is a bijection. Def X is semilocally simply-connected (SISC) if $\forall x \in X$, Ex The Hawaiian earrings are \exists open set $x \in V$ with $\pi(V) \rightarrow \pi(X)$ trivial. not slsc. Ex The cone over the Hawaiian lo see this condition is necessary, consider the universal cover, and V small enough to be evenly-covered. earrings is slsc but not lsc. Recall X is bcally simply-connected (Isc) if it has a basis with simply-connected sets. Note lsr ⇒ slsc.

$$\frac{\Pr op \ 1.36}{X} (B \text{ is surjective})$$

$$X \text{ path-connected, locally path-connected, semilocally simply-connected.}$$
Then \forall subgroups $H \subset \pi_1(X, x_0)$, \exists covering space $p: (\tilde{X}_{H}, \tilde{x}_0) \rightarrow (X, x_0)$ with $p_*(\pi_1(\tilde{X}_{H}, \tilde{x}_0) = H.$

$$\frac{\Pr (1) \text{ Define the universal cover } p: \tilde{X} \rightarrow X \text{ with } \pi_1(\tilde{X}) \text{ trivial.}$$

$$(2) \text{ Define } \tilde{X}_H \text{ as a quotient of } \tilde{X}.$$

$$(1) \quad \tilde{X} := \{ [x_0] | x \text{ is a path in } X \text{ starting at } x_0 \}.$$

$$p: \tilde{X} \rightarrow X \text{ via } p([x_0]) = \chi(1).$$
The slsc hypothesis is used to define the topology on \tilde{X} via a basis.
Can check this is a covering space.

To see that X is path-connected, form a path $I \rightarrow X$ with $0 \mapsto [x_0]$ and $1 \mapsto [x_1]$ via $t \mapsto [x_t]$, where $x_t(s) = \{x(s) \mid 0 \le s \le t$ $(x(t) \mid t \le s \le 1.$ To see that \widehat{X} is simply-connected, recall p_* injective. Let $[x_1] \in I_{mage}(p_*)$. $I_{mage}(p_*)$ is represented by loops lifting to loops. $Note \quad t \mapsto [x_t]$ lifts x, and for this to be a loop means $[x_0] = [x_1] = [x_1]$. Before we define a topology on \widetilde{X} we make a few preliminary observations. Let \mathcal{U} be the collection of path-connected open sets $U \subset X$ such that $\pi_1(U) \to \pi_1(X)$ is trivial. Note that if the map $\pi_1(U) \to \pi_1(X)$ is trivial for one choice of basepoint in U, it is trivial for all choices of basepoint since U is path-connected. A path-connected open subset $V \subset U \in \mathcal{U}$ is also in \mathcal{U} since the composition $\pi_1(V) \to \pi_1(X)$ will also be trivial. It follows that \mathcal{U} is a basis for the topology on X if X is locally path-connected and semilocally simply-connected.

Given a set $U \in \mathcal{U}$ and a path γ in *X* from x_0 to a point in *U*, let

 $U_{[\gamma]} = \{ [\gamma \cdot \eta] \mid \eta \text{ is a path in } U \text{ with } \eta(0) = \gamma(1) \}$

As the notation indicates, $U_{[\gamma]}$ depends only on the homotopy class $[\gamma]$. Observe that $p: U_{[\gamma]} \to U$ is surjective since U is path-connected and injective since different choices of η joining $\gamma(1)$ to a fixed $x \in U$ are all homotopic in X, the map $\pi_1(U) \to \pi_1(X)$ being trivial. Another property is

 $\begin{array}{l} U_{[\gamma]} = U_{[\gamma']} \text{ if } [\gamma'] \in U_{[\gamma]}. \text{ For if } \gamma' = \gamma \cdot \eta \text{ then elements of } U_{[\gamma']} \text{ have the} \\ (*) \quad \text{form } [\gamma \cdot \eta \cdot \mu] \text{ and hence lie in } U_{[\gamma]}, \text{ while elements of } U_{[\gamma]} \text{ have the form} \\ [\gamma \cdot \mu] = [\gamma \cdot \eta \cdot \overline{\eta} \cdot \mu] = [\gamma' \cdot \overline{\eta} \cdot \mu] \text{ and hence lie in } U_{[\gamma']}. \end{array}$

This can be used to show that the sets $U_{[\gamma]}$ form a basis for a topology on \widetilde{X} . For if we are given two such sets $U_{[\gamma]}$, $V_{[\gamma']}$ and an element $[\gamma''] \in U_{[\gamma']} \cap V_{[\gamma']}$, we have $U_{[\gamma]} = U_{[\gamma'']}$ and $V_{[\gamma'']} = V_{[\gamma'']}$ by (*). So if $W \in \mathcal{U}$ is contained in $U \cap V$ and contains $\gamma''(1)$ then $W_{[\gamma'']} \subset U_{[\gamma'']} \cap V_{[\gamma'']}$ and $[\gamma''] \in W_{[\gamma'']}$.

The bijection $p: U_{[y']} \to U$ is a homeomorphism since it gives a bijection between the subsets $V_{[y']} \subset U_{[y]}$ and the sets $V \in \mathcal{U}$ contained in U. Namely, in one direction we have $p(V_{[y']}) = V$ and in the other direction we have $p^{-1}(V) \cap U_{[y]} = V_{[y']}$ for any $[y'] \in U_{[y]}$ with endpoint in V, since $V_{[y']} \subset U_{[y']} = U_{[y]}$ and $V_{[y']}$ maps onto Vby the bijection p.

The preceding paragraph implies that $p: \widetilde{X} \to X$ is continuous. We can also deduce that this is a covering space since for fixed $U \in \mathcal{U}$, the sets $U_{[\gamma]}$ for varying $[\gamma]$ partition $p^{-1}(U)$ because if $[\gamma''] \in U_{[\gamma]} \cap U_{[\gamma']}$ then $U_{[\gamma]} = U_{[\gamma'']} = U_{[\gamma'']}$ by (*).

(2) For $[x], [x'] \in X$, define $[x] \sim [x']$ if y(1) = y'(1) and $[x \cdot \overline{y'}] \in H$. This is an equivalence relation since H is a subgroup

- reflexive identity
- Symmetric: inverses
- Eransitive : H closed under multiplication

Define \tilde{X}_{H} to be the quotient space $\tilde{X}_{H} = \tilde{X}/\sim$. Can check the map $\tilde{X}_{H} \rightarrow X$ induced from $[x] \rightarrow y(1)$ gives a covering space. We claim $\Pi_1(\widetilde{X}_H, \widetilde{x}_0) \to \Pi_1(X, x_0)$ has image H (where \tilde{x}_{0} is the equivalence class of $[x_{0}]$).

Indeed, a loop γ in X lifts to a loop in $X_H \Leftrightarrow [\gamma] \sim [\gamma_0] \Leftrightarrow [\gamma] \in H$.

(1)(2) $\langle a^2, b^2, ab \rangle$ Deck transformations and group actions $\langle a, b^2, bab^{-1} \rangle$ (3)(4)Let $p: \widetilde{X} \rightarrow X$ be a covering space. The group of deck transformations $\langle a^2, b^2, aba^{-1}, bab^{-1} \rangle$ $\langle a, b^2, ba^2b^{-1}, baba^{-1}b^{-1} \rangle$ ìS $G(\tilde{\chi}) = \begin{cases} \text{Covering space} & \tilde{\chi} \xrightarrow{h} \tilde{\chi} \\ \text{isomorphisms} & P \chi \chi \ell P \end{cases}$ (5)(6) $\langle a^3, b^3, ab^{-1}, b^{-1}a \rangle$ $\langle a^3, b^3, ab, ba \rangle$ equipped with composition. (7) $E_{X}(\mathcal{F}) \quad G(\widetilde{X}) \cong \mathbb{Z}/_{Y} \qquad (8) \quad G(\widetilde{X}) \cong \mathbb{Z}/_{Z} \times \mathbb{Z}/_{Z}$ $\langle a^4, b^4, ab, ba, a^2b^2\rangle$ $\langle a^2, b^2, (ab)^2, (ba)^2, ab^2a \rangle$ (9)(10)A covering space is normal if $\forall x \in X$ and $\tilde{x}, \tilde{x}' \in \rho^{-1}(x)$, $\exists h \in G(\tilde{X})$ with $h(\tilde{x}) = h(\tilde{x}')$. $(a^2, b^4, ab, ba^2b^{-1}, bab^{-2})$ $\langle b^{2n}ab^{-2n-1}, b^{2n+1}ab^{-2n} | n \in \mathbb{Z} \rangle$ (11)(12)(Maximal symmetry) $\langle a \rangle$ $\langle b^n a b^{-n} | n \in \mathbb{Z} \rangle$ E_{x} (1),(2), (5)-(8), (\parallel) normal. (13)(14)(ab) (a, bab^{-1})

Deck transformations and group actions $\underline{\mathsf{Ex}}$ The group $G(\widehat{\mathsf{X}})$ of deck transformations acts on the covering space \widetilde{X} by $G(\widetilde{X}) \times \widetilde{X} \longrightarrow \widetilde{X}$ X h X PX X LP A group action on a set Y is a function $G \times Y \rightarrow Y$, denoted $(g, y) \mapsto g \cdot y$, satisfying $(h, \tilde{z}) \mapsto h(\tilde{z})$ • id.y=y ¥yeY • $g'(g,y) = (g'g) \cdot y \quad \forall g,g' \in G \quad \forall y \in Y.$ Ex Z acts on R That is, it is a homomorphism from G to the group of permutations of Y. $\underline{Ex} \mathbb{Z}^n$ acts on \mathbb{R}^n $Ex \langle a, b \rangle$ acts on A group action on a space Y is a homomorphism from G to the So does Z/4, group of homeomorphisms of Y. via rotations, The orbit space Y/G is the but not freely. quotient space V/n, where For a normal covering space $X \rightarrow X$, the orbit space $\tilde{X}/G(\tilde{x})$ is $y \sim q. y$ $\forall y \in Y$ and $q \in G$. homeomorphic to X.

Deck transformations and group actions

Proposition 1.40. *If an action of a group G on a space Y satisfies* (*), *then:*

- (a) The quotient map $p: Y \rightarrow Y/G$, p(y) = Gy, is a normal covering space. (b) *G* is the group of deck transformations of this covering space $Y \rightarrow Y/G$ if *Y* is path-connected.
- (c) *G* is isomorphic to $\pi_1(Y/G)/p_*(\pi_1(Y))$ if *Y* is path-connected and locally pathconnected

Each $\gamma \in Y$ has a neighborhood U such that all the images g(U) for varying (*) $g \in G$ are disjoint. In other words, $g_1(U) \cap g_2(U) \neq \emptyset$ implies $g_1 = g_2$.

Section 1.A Graphs and Free groups Theorem 1A.4 Every subgroup of a free group is free. Pf Let $F = \langle g_{\alpha} \rangle_{\alpha \in A}$ be a free group. Let G be a subgroup. Let $X = V_{x \in A} S'$. Note $\pi(x) \cong F$. By Prop 1.36, \exists covering space $\rho: \widetilde{X} \to X$ with $\rho_*(\pi, (\widetilde{X})) = G$; hence $\pi_1(\widehat{X}) \cong G$ since p_{*} is injective. Lemma 1A.3 says any covering space of a graph is a graph. And the fundamental group of a graph is a free group. So $G \cong \pi(\widehat{X})$ is free. $F = \langle q_1, q_2, q_3, g_4 \rangle$