Chapter 2: Homology
Associates to each space X a group Hn(X) measuring the n-dimensional holes.
Unlike the homology group
$$
\pi_n(X)
$$
, the homology group $H_n(X)$ is
• difficult to define, and • easy to compute.

^A simplicial complex torus has at least 7 vertices, ²¹ edges, ¹⁴ triangles

Let X, Y be simplicial complexes with $X \simeq Y$. $H_n^A(x) \cong H_n(x)$ Homotopy invariance will be proven using singular homology. $H_n^{\Delta}(y) = H_n(y)$

Simplicial complexes Def An abstract simplicial complex on a vertex set V is a collection ^K of finite subsets of ^V, including all singletons, such that $\sigma \in K$ and $\tau \subset \sigma$ implies $\tau \in K$. $V_2 \leftarrow V_3$ E_X $V = \frac{6}{5}v_0, v_1, v_2, v_3, v_4$ $V = \{v_0, v_1, v_2, v_3, v_4\}$
K = $(\frac{2}{3}v_0, \frac{2}{3}, \frac{2}{3}v_3, \frac{2}{3}, \frac{2}{3}v_4, \frac{2}{3}, \$ V_{4} $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$ $\frac{2}{3}$, $\frac{2}{3}$ $\frac{2}{3}$, $\frac{2}{3}$ $\frac{2}{3}$, $\frac{2}{3}$ $\frac{2}{3}$ z v $\{v_4\}, \{v_2, v_3\}, \}$, v_z , v_3 3 V_z , v_z , v_3 3 V_y · Vo $Ex \quad V = \frac{5}{2} v_0, v_1,$ Simplicial complexes are CW complexes
V_z and are given the same topology $V = \{v_0, v_1, v_2, v_3\}$
K = the set of all V_1
Simplicial complexes are CW complexes
Sylsafs of V subsets of V (the weak topology). \mathbf{v}_{χ}

Simplicial homology for simplicial complexes Let \times be a simplicial complex. <u>Simphelia nonology for simphelial complex.</u>
Let X be a simplicial complex.
The <u>chaingroup</u> An(X) is the free abelian group on the set of oriented n-simplices in X. In the chain group An(X) is the free abelian group on the set of oriented n-simplices in X.
(I.e., An(X) is the set of formal sums of n-simplices. Its elements are n-chains..) Define the <u>boundary operator</u> $\partial_n : A_n(X) \to A_{n-1}(X)$ by
 $\partial_n(E_1x_0, x_1, ..., x_n) = \sum_{i=0}^{n} (-1)^i [x_0, ..., x_i, ..., x_n]$ and ext $(\alpha, \chi_n) = \sum_{i=0}^{n} (-1)^i [x_{\alpha}, ..., x_i, ..., x_n]$ and extending linearly. Tmeans xi is removed We will show $\partial_{n} \circ \partial_{n+1} = \mathcal{O}.$ $\Delta_{n+1}(x) \xrightarrow{\partial_{n+1}} \Delta_n(x) \xrightarrow{\partial_n} \Delta_{n-1}(x)$ Hence \prod_{m} ∂_{n+1} \subset Ker ∂_{n} μ_n | X Def The n-dimensional simplicial homology (Ker On) Ker On Ker On $group$ of X is $\lim_{n \to \infty} (x) = \frac{\text{Ker } \partial_n}{\text{Im } \partial_{n+1}}$ $\left(\frac{\text{Im } \partial_{n+1}}{\text{Im } \partial_{n+1}} \right) \right) \left(\frac{\text{Im } \partial_{n+1}}{\text{Im } \partial_{n+1}} \right)$ Ker On is the group of n-cycles . The only of <u>Induces</u>.

 $\Delta_1(\times) =$ $\{a[0,1]+ b[0,3]+ c[1,2]+ d[1,3]+ e[2,3] : a,bcd,e \in \mathbb{Z}\} \cong \mathbb{Z}$ 5 . J.(^) = 2 a10,15+1010,35+C1,25+a11,37+e12,33 · a,0,Cd,e=2 5 = 2 ;
Ne write a simplex as [0,3] instead of {0,33 to denote that it is oriented
Grayo operation: (4[0,3] + [1,2]) + (-6[0,3]+[2,3]) = -2[0,3]+[1,2]+[2,3].

 $\Delta_{2}(x) = \{a[1,2,3]: a \in \mathbb{Z}\} \cong \mathbb{Z}.$ $[1, 2, 3]$ = $[2, 3, 1]$ = $[3, 1, 2]$ $(d$:ffer from $[1, 2, 3]$ by an even permutation) $-\left[1,2,3\right]=\left[1,3,2\right]=\left[2,1,3\right]=\left[3,2\right]$, 1] (differ from [1, 2, 3 by an odd permutation)

 $D_{1}(\text{[0,2]}) = (-1)^{0} \text{[3]} + (-1)^{1} \text{[0]} = [3] What$ is $\partial_1 (I_0, 37 + I_3, 27)$?

 $\mathcal{D}_{2}\left(\left[1,2,3\right]\right)=\left(-1\right)^{0}\left[2,3\right]+ \left(-1\right)^{1}\left[1,3\right]+ \left(-1\right)^{2}\left[2,3\right]= \left[-2,3\right]+ \left[-3,1\right]+ \left[1,2\right]$

 $\sum_{\mathbf{2}}$

 $\overline{\partial_{1}\partial_{2}}(I,$ 2 , 33) = 0, (52, 3] ⁺ [3, ¹³ ⁺ [, 2]) = 0, [2,33 ⁺ 0. [3.B⁺ 0, 4,2] ⁼ (E-E]) ⁺ (E- *3) ⁺ (53-[B) ⁼ ⁰. $\partial_{0}[\mathbb{Z}^{2}]=0.$

In the prior example, how might we algorithmically $Ker2 \cong \mathbb{Z}^2$ and $\mathbb{Z}_m 2_1 \cong \mathbb{Z}^3$, while also Compute finding generators? 93 $X = 0$ $9x5$ Matrix representing ∂_1 : Δ_1 (x) = Δ_0 (x) $[0,1]$ $[O,1]$ $[2,3]$ $[2,3]$ $[0,3]$ \overline{L} , 2) $[1,3]$ $3($ 0.3 $L_{\mathcal{O}}$ \bigcup 0 ÷ $\overline{1}$ $\left(\begin{array}{c}\right)$ O D \bigcirc \hat{O} $\overline{3}$ $\sqrt{ }$ $\overline{}$ \bigcirc \overline{O} SWMP $\overline{2}$ $7⁷$ \bigcirc $\frac{1}{2} \left(\frac{1}{2} \right)^2$ O rowis $\sqrt{3}$ O \sim Ő O_1 $To,3$ $[13] [2,3]$ 17 $0,1$ $\lceil 0,3 \rceil$ $\lceil 1,7 \rceil$ $1,37$ $[2,3]$ $\sqrt{1}$ $17-70$ \bigcirc \circlearrowright Ó $\overline{3}$ $\overline{3}$ Add third row $\overline{) \mathfrak{v} }$ è $($) Add first to first $27 - 11$ and thind O $27 - 11$ \bigcirc O $rows \t{10}$ fourth \overline{O} \bigcap $L_{\mathcal{O}}$ Ő \bigcap $[1,3]+[0,1]-[0,3]$ $[2,3]+[0,1]-[0,3]+[1,1]$ $[0,3]$ $[1,2]$ $[0,1]$ + $[1,3]$ + $[3,0]$ $[0,1]$ + $[1,2]$ + $[2,3]$ + $[3,0]$ O_1 \bigcirc \overline{O} \bigcirc \bigcirc U Add col 1 - col 2 to col 4
Add col 1 - col 2 + col 3 to col 5 3 $-\sqrt{2}$ Ô \bigcap $27 - 11$ $\left\{ \right.$ \bigcirc 0 Ő \bigcirc \overline{O} This matrix has rank 3 and nullity Z. The first three rows give a generating set for Im (21). The last two columns give a generating set for Ker (21).

Define the <u>boundary operator</u> $\partial_n : A_n(X) \to A_{n-1}(X)$ by
 $\partial_n(\big[x_o, x, ..., x_n] \big) = \sum_{i=0}^n (-1)^i [x_o, ..., x_i, ..., x_n]$ and extending linearly. [↑]means ti is removed

$$
\partial_2 \partial_3 (D_1, 2, 3) = \partial_2 (D_1, 2, 3) - [0, 2, 3] + [0, 1, 3] - [0, 1, 2])
$$

= (E335-E133+E123) - (E235-E033+E023) + (E135-E033+E023) - (E125-E023+E023)
= O.

Proof that $\partial_n \circ \partial_{n+1} = O$ $\Delta_{n+1}(x) \xrightarrow{\partial_{n+1}} \Delta_n(x) \xrightarrow{\partial_n} \Delta_{n-1}(x)$ Since the boundary operators are linear, it suffices to show that $\sqrt{(ker \partial_{min})}$ (Ker On) Ker ∂_{n-1} applying OnOnt to ^a single ImOn+2 ImOn+ ImOn (n ⁺ 1) - $(n+1)$ -simplex gives zero. Note On (On+i ([zo, Note
 ∂_n (∂_{n+1} ($\left[\chi_{\sigma,\varkappa_{1},\dots,\varkappa_{m}}\right]$))
 $=$ ∂_n ($\sum_{i=1}^{n+1}$ (-I)ⁱ $\left[\chi_{\sigma}$ On (Ən+1 ([xo,xı, ... x_m]))
Ən (Z i=o (-1)^{i,} [xo,..., xi, ..., xn+1]) Proof that $\partial n \circ \partial n_{+} = 0$

Since the boundary operators are

linear, it suffices to show that

applying $\partial n \partial n_{+}$ to a single

(n+1)-simplex gives zero.

Note
 ∂n (∂n_{+}) ($\sum_{i=0}^{n+1}$, $\sum_{i=0}^{n}$, $\sum_{i=1}^{$ $+\check{\Sigma}_{i (-1)⁵⁻¹ (-1)² [xo,..., $\hat{\chi}_i$,..., $\hat{\chi}_j$,..., χ_{n+1}])
= O by symmetry (canceling (n-1)-simplices in pairs).$

 Ex The dunce hat is α Δ -complex. is not a Δ -complex \triangle -complex. since the restricted face maps are not order-preserving. Ex Every simplicial complex X is a Δ -complex, with one $\sigma_{\alpha}: \Delta^n \rightarrow X$ for each n-simplex. $Simplicial complexes \subseteq A$ -complexes S CW complexes Aside Thm 2C.5 Aside Ex 23 on Hatcher page 133 shows
the 2nd barycentric subdivision of shows every CW complex is homotopy equivalent a Δ -complex is a simplicial complex. to a simplicial complex.

 $Simplicial$ homology for Δ -complexes Let \times be a Δ -complex. The chain group $\Delta_n(x)$ is the free abelian group on the set of $\sigma_{\alpha}: \Delta^n \to X$. $\Lambda_n(x) = \frac{5}{2} \sum_{x} n_x \sum_{x} |\nabla x \cdot \Lambda^n \rightarrow X, \quad n_x \in \mathbb{Z}$, finitely many n_x nonzero 3. Define the boundary operator $\partial_n : A_n(x) \longrightarrow A_{n-1}(x)$ by σ $\partial_{n}(\sigma_{x})=\sum_{i=0}^{n}(-1)^{i}\sigma_{x}|_{[x_{0},...,x_{i},...,x_{n}]}$ and extending linearly. <u>Lemma 2.1</u> $\partial_{n} \circ \partial_{n+1} = \mathcal{O}.$ $\frac{15}{5}$ Let $\sigma_{\alpha}: A^{n+1} \rightarrow X$. Note $\partial_n \partial_{n+1} (\sigma_{\alpha}) =$ $\frac{\partial_{n+1}}{\partial x}\mathcal{A}_n(x) \xrightarrow{\partial_n} \mathcal{A}_{n-1}(x)$ $= \partial_n \left(\sum_{i=0}^{n+1} (-1)^i \nabla_{\alpha} \big|_{\vec{L}^{\alpha_0}, \dots, \vec{L}_{i,j}, \dots, \vec{L}_{n-j}} \right)$ $\Delta_{\mathsf{n}+1}(x)$ $= \sum_{j \in i} (-1)^{j} (-1)^{i} \int_{-\infty}^{\infty} | \Im z_{i},...,\hat{z}_{j},...,\hat{z}_{i},...,\hat{z}_{m} |].$ Δnl $+ \sum_{i < j} (-|)^{j+1} (-1)^{i} \mathbb{G}_{\infty} |_{\mathbb{F}^\times \mathscr{A}_{\sigma}, \dots, \widehat{\mathscr{L}}_{i}, \dots, \widehat{\mathscr{L}}_{j}, \dots, \mathscr{L}_{m}]}$ $Ker 2$ Ker ∂ $Ker\mathcal{D}$ $=$ \mathcal{O}_{\bullet} $\mathcal{I}_{\mathsf{m}}\mathfrak{d}_{\mathsf{m}2}$ 'Im∂nn 'Im J. <u>Def</u> The n-dimensional simplicial homology group of X is $\text{H}_{n}^{a}(x) = \frac{\text{Ker } \partial n}{\pi a^{n}}$

 $Ex 2.3 \quad X = f_{ours}$ \overline{a} \overline{a} $\partial_{\theta}(v) = 0$ $\partial_1(a) = v - v = 0$ $\partial_1 (b) = v - v = 0$ $\text{A}_3(x) \xrightarrow{\partial_3} \text{A}_1(x) \xrightarrow{\partial_2} \text{A}_1(x) \xrightarrow{\partial_1} \text{A}_2(x) \xrightarrow{\partial_2} \text{O}$ $\partial_1(c) = v-v=0$ $\frac{115}{72}$ ۱IS \mathcal{D}^3 $\overline{\mathcal{U}}$ $D_{2}(U) = b-c+a = a+b-c$ $U.L$ $\partial_{7}(L) = a - c + b = a + b - c$ a, b, c Ker do has basis {v} and $\text{Im}\partial_i=0 \implies H_o^A(x) \cong \frac{Ker\partial_o}{\text{Im}\partial_i} \cong \mathbb{Z}$. $Ker\partial_1$ has basis {a,b,c} or {a,b,a+b-c} $\Rightarrow H_1^4(X) \cong \frac{Ker\partial_1}{\pm m\partial_2} \cong \mathbb{Z}^2$.
Im ∂_2 has basis {a+b-c} Ker ∂_7 has basis $U-L$ \Rightarrow $H_2^4(X) \cong$ $\frac{Ker\partial_2}{T\cup 22} \cong \mathbb{Z}$. \mathbb{L}_{m} $\partial_{z} = 0$ $\underline{\beta_{f}}: \partial_{z}(\rho U+qL)=\rho(a+b-c)+q(a+b-c)=0 \Leftrightarrow q=-\rho.$

$$
\frac{E_X}{\Delta_1}(x) \xrightarrow{\partial_3} \Delta_1(x) \xrightarrow{\partial_2} \Delta_1(x) \xrightarrow{\partial_3} \Delta_0(x) \xrightarrow{\partial_4} \Delta_0(x) \xrightarrow{\partial_5} \Delta_1(x) \xrightarrow{\partial_6} \Delta_1(x) \xrightarrow{\partial_7} \Delta_1(x) \xrightarrow{\partial_8} \Delta_1(x) \xrightarrow{\partial_9} \Delta_1(x) \xrightarrow{\partial_9} \Delta_1(x) \xrightarrow{\partial_1} \Delta_1(x) \xrightarrow{\partial
$$

$$
\frac{E_{X} 2.4 \times E_{Y}^{2}}{\frac{\partial_{3}}{\partial_{1}} \left(\frac{1}{\sqrt{c}}\right)^{a}} = \frac{\frac{1}{\sqrt{c}} \int_{c}^{v} \frac{1}{\sqrt{c}} e^{-\frac{1}{\sqrt{c}}} e^{-\frac{1}{
$$

b $Ex 2.4$ n-sphere S^n \overline{U} One \triangle -complex structure consists of two $\begin{pmatrix} c & c \end{pmatrix}$ n-simplices, U and L, glued together along sphere Sⁿ
lex structure consists of two
U and L, glued together along (-0---->---0-
non boundary. $\begin{pmatrix}\nU \\
\frac{c}{a} & \frac{c}{b} & \frac{c}{b}\n\end{pmatrix}$ - $rac{c}{\sqrt{2}}$.
- --- $\overline{\mathbf{P}}$ a_A and a_B their common boundary. α b β L Ker ∂_n has basis $\{V-L\}$ \implies $H_n^{\Delta}(S^n) \cong \mathbb{Z}$. \Rightarrow a T_m $\partial_{n+1} = 0$

More generally,
$$
H_i^a(S^n) \cong \begin{cases} \mathbb{Z} & i=0 \\ 0 & i \leq i \leq n-1 \\ \mathbb{Z} & i=n \\ 0 & i \geq n+1 \end{cases}
$$
 \leftarrow *Cellular homology will give easily*

Question Is $H_n^a(x)$ independent of the Λ -complex structure on X? $Question$ Does $X \cong Y$ imply $H_n^{\mathsf{a}}(X) \cong H_n^{\mathsf{a}}(Y)$?

Answers "Yes" and "yes" , as we will show using singular homology.

<u>Singular homology</u> Let \times be a topological space. A singular n-simplex is a map $\sigma: \Delta^n \rightarrow X$. The chain group $C_n(x)$ is the free abelian group on the set of singular n-simplices. $C_n(x) = \frac{5}{2} \sum_{x} n_x \sum_{x} |\nabla x \cdot \Lambda^n \rightarrow X, \quad n_x \in \mathbb{Z}$, finitely many n_x nonzero 3. Define the <u>boundary operator</u> $\partial_n : C_n(X) \to C_{n-1}(X)$ by
 $\partial_n(\sigma_x) = \sum_{i=0}^n (-1)^i \sigma_x |_{[x_0, ..., x_i, ..., x_n]}$ and extending linearly. Lemma 2.1 $\partial_{n} \circ \partial_{n+1} = \mathcal{O}$. 75 Let $\sigma_{\alpha}: A^{n+1} \rightarrow X$, Note $\overrightarrow{a_{n+1}}$ \subset_n (\times) $\overrightarrow{a_{n}}$ \subset_{n-1} (\times) $C_{\mathsf{nat}}(\mathsf{X})$ $\partial_n \partial_{n+1} (\sigma_{\alpha}) = \partial_n (\Sigma_{i=0}^{n+1} (-1)^{i} \sigma_{\alpha})_{\sigma \in \mathcal{A}_{\alpha}, \dots, \hat{A}_{i}, \dots, \hat{A}_{n+1}})$ = $\sum_{j \in i} (-1)^{j} (-1)^{i} \int_{\alpha} |[\nabla \alpha_{j},...,\hat{\alpha}_{j},...,\hat{\alpha}_{i},...,\alpha_{m}]]$ $+ \sum_{i < j} (-|)^{j} |(-|)^{i} \mathbb{G}_{\le}|_{\mathbb{F}^{2}(\sigma_{1},\ldots,\widehat{2^{j}},\ldots,\widehat{2^{j}}),\ldots,\mathbb{Z}^{j}}]$ Ker ∂ Ker ∂_n $\overline{\text{Ker }O_n}$ $=$ Ω . Im $\partial_{\texttt{n+2}}$ 'Im $\partial_{\bf n}$ i .
Im∂, <u>Def</u> The n-dimensional singular homology group of X is $H_n(x) = \frac{\text{Ker } \partial n}{\text{Im } \partial n + 1}$

homeomorphic $Advartage: Clearly $\overline{X} \cong \overline{Y} \implies H_n(x) \cong H_n(x)$.
Also, we will show $\overline{X} \cong \overline{Y} \implies H_n(x) \cong H_n(x)$.$ · Disadvantage: Typically Cn(X) is infinite dimensional for all n. • Let \times be a Δ -complex. Thm 2.27 will show $H_n(X) \cong H_n^A(X)$. Hence $H_n(x)$ is finitely generated if X is a finite Δ -complex, which a priori is not clear. $\cdots \longrightarrow C_{\text{min}}(\times) \xrightarrow{\mathcal{O}_{\text{net}}} C_{\text{min}}(\times) \xrightarrow{\mathcal{O}_{\text{min}}} C_{\text{min}}(\times) \longrightarrow$ • $\frac{\partial P_{\text{top}}}{\partial x} \frac{\partial}{\partial y} = \frac{\partial P_{\text{top}}}{\partial x} \frac{\partial P_{\text{top}}}{\partial x} = \frac{\partial P_{\text{ext}}}{\partial y} \frac{\partial P_{\text{top}}}{\partial x}$ • $\Gamma_{\text{top}} \supseteq \Gamma_{\text{top}}$ $H_0(\chi) \approx \bigoplus_{\kappa \in A} \mathbb{Z}$, where A is the set of path-components of X . $\frac{Pf}{Pf}$ Sketch $H_o(X) = \frac{C_o(X)}{Im \theta_1}$ For $X \neq \emptyset$ homomorphism \mathcal{I}_{m} ∂_{0} \subset Ker ϵ clear. $\Sigma: C_{0}(X) \rightarrow \mathbb{Z}$ via Σ ng $G_{X} \mapsto \Sigma n_{X}$ is surjective. $Ker \le c Im \, \partial_1$ For X path-connected, Hatcher shows Ker $\epsilon = \pm m \partial_{1}$, giving $\dot{H}_{o}(x) = \frac{C_{o}(x)}{Im \, \partial_{1}} = \frac{C_{o}(x)}{Rec}$ $\leq \mathbb{Z}$.

\n- \n
$$
P_{\text{rop}} \gtrsim 8.8 \qquad H_n(\rho t) = O \quad \text{for } n \geq 1.
$$
\n
\n- \n $P_{\text{f}} \qquad \dots \qquad \frac{a_n}{\rho} C_q(x) \frac{a_1}{\alpha} C_3(x) \frac{a_2}{\rho} C_2(x) \frac{a_3}{\alpha} C_1(x) \frac{a_3}{\rho} C_0(x) \frac{a_3}{\rho} O$ \n
\n- \n $\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}{2}$ \n
\n- \n $\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1$

Homotopy Invariance of Singular Homology

\nCorollary 2.11
$$
\times \times \times \Rightarrow
$$
 $H_n(x) \cong H_n(\times)$.

\nThe proof will use algebraic formalisms of chain complexes, chain maps, and chain homotopes.

\nDef. A chain complex $\sum_{n=1}^{\infty} C_n \xrightarrow{2n} C_{n-1} \xrightarrow{2n} C_n \$

 $H_n(C_{\bullet}) = \frac{Ker \omega_n}{\pm m \partial_{n+1}} \xrightarrow{\pm} \frac{Ker \omega_n}{\pm m \partial_{n+1}} = H_n(C_{\bullet}^{\prime})$ defined by $x+Im\partial_{n+1} \mapsto f_n(\alpha)+Im\partial'_{n+1}$ for $\alpha \in Ker\partial_n$,
 $[\alpha] \mapsto [f_{n}\alpha]$

Two chain maps
$$
f,g:C_{\bullet}\rightarrow C_{\bullet}
$$
 are chain homotopic if there
are homomorphisms $P:C_{\bullet}\rightarrow C_{\bullet+1}$ with $\partial P+P\partial = f-g$.
\n... $\rightarrow C_{n+1} \frac{\partial m_1}{\partial m_1} C_n \frac{\partial n_2}{\partial m_2} C_{n-1} \rightarrow ...$
\n... $\rightarrow C_{n+1} \frac{\partial m_1}{\partial m_1} C_n \frac{\partial n_2}{\partial m_2} C_{n-1} \rightarrow ...$
\n... $\rightarrow C_{n+1} \frac{\partial m_1}{\partial m_1} C_n \frac{\partial n_2}{\partial m_2} C_{n-1} \rightarrow ...$
\nPrope 2.12 Chain homomorphism on homology.
\nP₅ If we Kerr2n, then
\n $f_{n}\alpha - g_{n}\alpha = \partial_{n+1}^{1}P_{n}\alpha - P_{n-1}^{1} \partial_{n}\alpha = \partial_{n+1}^{1}P_{n}\alpha$, so For $[\alpha] \in H_{n}(C_{\alpha})$,
\n $f_{n}\alpha + Im \partial_{n+1}^{1} = g_{n}\alpha + Im \partial_{n+1}^{1}$.
\n $[f_{n}\alpha] = [g_{n}\alpha]$.

Aside Chain complexes and maps form a "malel category",
meaning you can do homotopy theory on them,'
Other malel categories include topological spaces, simplicial sets, and spectra.

A map $f: X \rightarrow Y$ of spaces induces
 $f_*: C_n(X) \rightarrow C_n(Y)$ $\forall n$ defined by
 $f_* (\Sigma_{\alpha} n_{\alpha} \sigma_{\alpha}) = \Sigma_{\alpha} n_{\alpha} f \sigma_{\alpha}$ (where $\sigma_{\alpha}: \Delta^n \rightarrow X$). Back, to S_p aces, $'$ Note $S_{\#}\partial = \partial S_{\#}$ since f_{*} $\partial \sigma = f_{*}(\Sigma_{i} (-i)^{i} \sigma |_{\Sigma^{i} \sigma_{i} \cdots \hat{i} \hat{i}} \gamma_{i} \gamma_{i} \gamma_{i})$ = $\sum_{i}(-1)^{i} f \sigma |_{\text{Two, ..., } \hat{V}_{i}, ..., V_{n}})$ $=$ $\partial f_{\pm} \sigma$. S_{0} $S_{\#}: C_{0}(X) \rightarrow C_{0}(Y)$ is a chain map. $\longrightarrow C_{n+1}(x) \xrightarrow{\partial_{n+1}^{x}} C_{n}(x) \xrightarrow{\partial_{n}^{x}} C_{n-1}(x)$ $\begin{array}{ccc}\n\downarrow_{\mathcal{F}_{*}} & \downarrow_{\mathcal{F}_{*}} \\
\longrightarrow C_{n+1} & (\gamma) \longrightarrow & C_{n}(\gamma) \longrightarrow & C_{n-1}(\gamma) \longrightarrow \\
\end{array}$ Prop 2.9 gives an induced map $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$ $\forall n,$ defined by $f_{*}(\alpha + \mathbb{I}_{m} \partial_{n+1}^{x}) = f_{*}\alpha + \mathbb{I}_{m} \partial_{n+1}^{y}$ for $\alpha \in \mathbb{K}_{n} \partial_{n}^{x}$. $\overline{\mathcal{L}}_*(\Gamma_{\alpha})=\Gamma_{\overline{\mathcal{L}}*\alpha}$

 $Indeed, for [x] \in H_n(X)$ i.e. $\alpha \in \text{Ker } \partial_{n}^{x}$, we have <u>Indeed, for [x]E}</u>
g* f* [x] = g*[f#x] $=[9#f*\alpha]$ $9 * 5 * 8$
 $9 * 5 * 8$ $=\left[\left(gf\right)_\#\alpha\right]$ $=$ $(gf)_*$ $[x]$

Homotopy Invariance of Singular Homology Thm 2. ¹⁰ If two maps fig : X-Y of spaces are homotopic , then they induce the same homomorphism ⁵** ⁹*: Hn(x) - >HulY· Corollary 2. ¹¹ X⁼ ^V => Hn(X) ⁼ Hn(X)· Pf of Zoll . X Hn(X) *)Hn(Y) 9 gf ⁼ 1x = gxf* ⁼ (4x) * ⁼ 1Hn(x) fg ⁼ 1y = f x9* ⁼ 1Hult) · Pf of Thm ² . 10 We will build a chain homotopy P : C. (X) + ^C ⁺ (Y) with &P ⁺ PO ⁼ 9-f# ·

Recall a chain homology satisfies We calculate
\n
$$
-2\lim_{n+1} P_{n-1} - 2\lim_{n} P_{n-2} = 9+ - 5+ \qquad \qquad \frac{3R}{2} - 5+ \qquad \qquad \frac
$$