Exact sequences and excision

Recall a chain complex ^C. is a sequence of abelian groups and homomorphisms Exact sequences and excision
Recall a chain complex C. is a sequence ^O Vi.

$$
\begin{array}{ll}\n\text{Def} & A \quad \text{chain} \quad \text{complex} \quad \dots \quad \text{even} \quad \text{Cov}_{\text{out}} \\
\text{Def} & A \quad \text{chain} \quad \text{complex} \quad \dots \quad \text{Cov}_{n+1} \stackrel{\partial_{m+1}}{\rightarrow} \text{C}_{n} \stackrel{\partial_{n}}{\rightarrow} \text{C}_{n-1} \rightarrow \dots \\
\text{is exact} \quad \text{if} \quad \text{Im} \quad \partial_{n+1} = \text{Ker} \quad \partial_{n} \quad \text{In} \\
\hline\n\text{Sobomology measures how far a chain} \\
\text{Complex is from being exact.}\n\end{array}
$$

$$
\frac{E_X}{\{L\}} \{i\} \cup \{j \rightarrow A \xrightarrow{\alpha} \beta \text{ is exact } \Leftrightarrow \text{Ker } \alpha = 0
$$
\n
$$
A \xrightarrow{\alpha} B \rightarrow 0 \text{ is exact } \Leftrightarrow \text{Im } \alpha = B
$$
\n
$$
0 \rightarrow A \xrightarrow{\alpha} B \rightarrow 0 \text{ is exact } \Leftrightarrow \alpha \text{ is an isomorphism}
$$
\n
$$
0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0 \text{ is a short exact sequence (SES)}
$$
\n
$$
\Leftrightarrow \alpha \text{ is injective, } \beta \text{ is surjective, and } \text{Ker } \beta = \text{Im } \alpha.
$$
\n
$$
\text{In this case, } C \xrightarrow{\alpha} B / \text{Ker } \beta = B / \text{Im } \alpha \xrightarrow{\alpha} B / A.
$$

Def	(X,A) is a good pair if $A \times X$ is a nonempty closed subset that is a deformation retract of some neighborhood in X.	$\lim_{x \to A} (X \wedge A)$ is represented fortract of some neighborhood in X.	$\lim_{x \to A} (X \wedge A)$ is represented homology class is $[\partial_{\alpha}] = \partial_{\alpha} \in \tilde{H}_{n-1}(A)$.
Time 2.13 For	(X,A) a good pair a subcomplex there is a long exact sequences (LES)	$X = D^2$ $\lim_{A \to 0} (A) \xrightarrow{\text{i.e.}} \tilde{H}_n(X) \xrightarrow{\text{i.e.}} \tilde{H}_n(X \wedge A)$	$X = D^2$ \forall $\alpha \in C_1(X)$
Hint (A) $\xrightarrow{\text{i.e.}} \tilde{H}_n(X) \xrightarrow{\text{i.e.}} \tilde{H}_n(X \wedge A)$ \n <td>$X = D^3$ \forall $\alpha \in C_2(X)$</td> \n	$X = D^3$ \forall $\alpha \in C_2(X)$		
Hint (A) $\xrightarrow{\text{i.e.}} \tilde{H}_n(X) \xrightarrow{\text{i.e.}} \tilde{H}_n(X \wedge A)$ \n <td>$X = D^3$ $\alpha \in C_2(X)$</td> \n	$X = D^3$ $\alpha \in C_2(X)$		
where i: $A \xrightarrow{X}$ is the inclusion and j: $X \xrightarrow{X/A}$ is the quotient map.\n <td>$\forall A \Rightarrow X \wedge A$ is the quotient map.</td> \n	$\forall A \Rightarrow X \wedge A$ is the quotient map.		

Corollary 2.14
$$
\widetilde{H}_n(S^n) \cong \mathbb{Z}
$$
 and $\widetilde{H}_k(S^n) = O$ for $k+n$.

\n**25** Base case $n = O$: $S^o = \bullet \bullet$

\n**Inductive step:** Assume $\operatorname{frac}(\mathbf{S}^{n-1})$.

\n**4.** $S^{n-1} \xrightarrow{\mathbf{L}} X = D^n \xrightarrow{\mathbf{3}} X / A = S^n$

\n**4.** $S^{n-1} \xrightarrow{\mathbf{L}} X = D^n \xrightarrow{\mathbf{3}} X / A = S^n$

\n**5.** $\widetilde{H}_{n-1}(S^{n-1}) \xrightarrow{\mathbf{L}} \widetilde{H}_{n-1}(D^0) \xrightarrow{\mathbf{3}} \widetilde{H}_n(S^n) \xrightarrow{\mathbf{4}} \widetilde{H}_n(S^n) = H_{n-1}(S^{n-1})$

\n**Corollary 2.15** $2D^n = S^{n-1}$ is not a retract of D^n .

\n**26** $S^{n-1} \xrightarrow{\mathbf{3}} D^n \xrightarrow{\mathbf{5}} S^{n-1} \xrightarrow{\mathbf{3}} \widetilde{H}_n$ under $H_{n-1}(S^{n-1}) \xrightarrow{\mathbb{Z}} H_{n-1}(D^n) \xrightarrow{\mathbf{4}} H_{n-1}(S^{n-1})$

The proof of Thm 2. ¹³ is ^a long & important story. The proof of Thm 2.13 is a long & important
• For AcX, define <u>relative homology groups</u> H. (X,A). For AcX arbitrary, prove there is ^a LES $G(H_n(A) \longrightarrow H_n(X) \longrightarrow H_n(X,A)$... For (X, A) ^a good pair, we have $H_n(X, A) \cong \tilde{H}_n(X \tilde{A})$ $\forall n$ by Prop 2.22.

Relative homology groups Let AcX be spaces. By ignori*ng* structure (chains in 1) we can sometimes go further. Let $C_n(X,A) = C_n(x) / C_n(A)$. $\begin{array}{ccc} E_X & X & A & \alpha \in C_1(X) \\ A & B & \epsilon \in C_1(A) \subset A \end{array}$ N declares $C_n(x) \to C_{n-1}(x)$ takes $C_n(A)$ to $C_{n+1}(A)$, A A $B \in C_n(A) \subset C_n(x)$ Note ∂:Cn(X) → Cn-1(X) takes Cn(A) to Cn-1(A),
hence inducing ∂:Cn(X,A) → Cn-1(X,A), $\beta = O$ in $C_1(X,A)$ We get a chain complex $(3^2=0)$ A) to (n=(A),
n=(X, A),
O) $\begin{array}{ccc} & & \beta & \beta \epsilon \\ & & & \gamma & \\ \end{array}$ 2 in C,(X,A)
β=α in C,(X,A) ... - (n⁺ (X, A) - > (n(X, A) - + (n⁺ (X, A)+.. Ex Relative homology is "modulo A" Def The relative homology Hn(X, A) is the n -th homology of the above chain complex. • Elements of Hn(X,A) are represented by $\frac{L_X}{L_X}$ Relative homology is "modulo A"
e above chain complex.
A) are represented by <u>relative n-cycles</u>: $\propto \epsilon C_n(X)$ with $\partial \alpha \in C_{n-1}(A)$. $[\alpha] \in H_{1}(X,A)$ $[\alpha] = [\alpha'] \in H_1(\chi A)$ $[\alpha] = O \epsilon H_1(XA)$ <u>relative n-cycles: «ECn(X)</u> with Ə«EC_{n-I}(A).
• A relative cycle « is trivial in Hn(X,A) iff it is a relative boundary: $\alpha = \partial \beta + \gamma$ for $\beta \in C_{n+1}(X)$ and $\gamma \in C_n(A)$.

is called a short exact sequence (SES) of chain complexes Since each row is exact and each column is a chain complex.

The theorem now follows from a more general fact:

Defining ∂ : Hn $(c) \rightarrow H_{n-1}(A)$ takes work! <u>Thm 2.16 (snake lemma)</u> Let See diagram, where $\partial [c] = a$. $0 \longrightarrow A_n \longrightarrow B_n \longrightarrow C_n \uparrow \longrightarrow O$ $0 \longrightarrow A_{n-1} \longrightarrow B_{n-1} \longrightarrow C_{n-1} \longrightarrow 0$ $\partial_a = O$ since $i(\partial a) = \partial i a = \partial \partial b = O$ and i is injective. • Also ∂ H_n(C) \rightarrow H_{n-1}(A) is well-defined up to $0 \longrightarrow A_{n-2} \longrightarrow B_{n-2} \longrightarrow C_{n-2} \longrightarrow 0$ $-$ the choice of b $j(b)=j(b') \Rightarrow b-b' \in Ker j = \mathbb{I}m i$ be any SES of chain complexes. \Rightarrow $b-b' \in i(a_n)$ for $a_n \in A_n$ $v - v = b(xn)$
 $-$ the choice of c. Then $c + \partial c' = c + \partial j b' = c_j$
 $v + b = 0$
 $v + b = 0$
 $v + c = 0$
 v Then we get a LES of homology groups: $\mathcal{F} \mapsto H_n(A) \xrightarrow{\iota_*} H_n(B) \xrightarrow{\iota_*} H_n(C)$ · Exactness follows by checking: (i) \mathcal{I}_{m} ix c Ker jx j i = $O \Rightarrow j_{\text{w}}$ i = O_{\bullet}
When defining ∂ Icj in this case,
We have b a cycle, hence ∂_{b} =0. $\hookrightarrow H_{n-1}(A) \xrightarrow{\iota_*} H_{n-1}(B) \xrightarrow{\iota_*} H_{n-1}(C)$ (ii) $\mathbb{L}_{m \setminus \ast}$ c Ker ∂ (iii) \mathbb{I}_m ∂ \in Ker i_* $i_*\partial$ $[c]$ = i_* $[a]$ = $[\partial b]$ = Q . (iv) Ker j* \subset Im l_* (v) Ker ∂ c Im j* $\frac{\triangleleft H W}{\triangleleft$ H ix and jx are well-defined since (vi) Ker l_{*} c Im ∂ i and j are chain maps.

 $(Translation: B=X-Z, so X-int B= cZ.)$

So cl Z c int A \Leftrightarrow X = int A v int B.)

The proof uses the following machinery.

Let $C_n(A+B)$ be the subgroup of $C_n(X)$ Consisting
of chains $\Sigma_i n_i \sigma_i$ such that each $\sigma_i: \Delta^n \to X$ has image contained in A or in B.

 $\sigma \in C_1(A+B)$ $\sigma' \notin C_1(A+B)$

Prop 2.21 (Special case) Let A,BCX with X= int A v int B. The inclusion L: Cn(A+B) \rightarrow Cn(X) is a chain homotopy equivalence. $\left(\begin{matrix} \exists & g:C_n(X) \rightarrow C_n(A+B) & with & 1 & pchain & homotopic & to & 1 \end{matrix}\right)$
and gi chain homotopic to $1\overline{1}_{C_n(A+B)}$. \subset_\bullet (A+ $\begin{array}{lll} \n\Pr{op Q. \Delta} & \text{(Special case)} \quad \text{Let } A, B \subset X \quad \text{with } X = \text{ int } A \text{ with } B. \\
\hline \text{The inclusion } L: C_n(A + B) \to C_n(X) \text{ is a chain homotopy equivalence.} \\
\hline \hline \end{array} \qquad \begin{array}{lll} \n\frac{1}{3} & \text{if } C_n(A + B) \to C_n(X) \\
\hline \text{and } g \text{ is chain homotopic to } & \text{if } C_n(A + B) \to C_n(X) \\
\hline \end{array} \qquad \begin{array}{lll} \n\frac{1}{3} & \text{if }$ $\longrightarrow \mathcal{L}_{\mathsf{n}+\mathsf{l}}(\chi) \longrightarrow \mathcal{L}_{\mathsf{n}}(\chi) \longrightarrow \mathcal{L}_{\mathsf{n}-\mathsf{l}}(\chi) \longrightarrow \dots$ Dn 18 I. Cn(x) $D_{n+1}D_{n-1}D = 1$
 $DD_{n+1}D_{n-1}D = 1$ L \longrightarrow $\left(\begin{matrix} n(X) & \xrightarrow{\epsilon} & C_{n-1}(X) \end{matrix}\right) \longrightarrow ...$ Here $\rho \iota = \mathbb{1}_{C_n(A+B)}$. Rmks • The proof is 4/2 pages in Hatcher. Hn(A⁺ B) is non-standard notation. • Note ρ must split chains in X into smaller pieces. Barycentric
Subdivision Lo · Dn is constructed via stacked iterations subdividually of barycentric subdivision $1/2$

Pf of Thm 2,20 (Excision) Let X = int A v int B.
By Prop 2.21 we have L:C _n (A+B) → C _n (X) and g:C _n (X) → C _n (A+B)
with $g_L = 1_{C_n(A+B)}$ and $\partial D + D\partial = 1_{C_n(K)} - \iota g$.
These maps all take chains in A to chains in A, giving
$C_{n+1}(X)/_{C_{n+1}(A)} \xrightarrow{\partial} C_n(X)/_{C_n(A)} \xrightarrow{\partial} C_n(X)/_{C_{n-1}(A)}$
$C_{guvvalence}$ $\int_{C_{n+1}(A+B)/_{C_{n+1}(A)} \xrightarrow{\partial} C_n(A+B)/_{C_n(A)} \xrightarrow{\partial} C_n(A+B)/_{C_{n-1}(A)}$
$C_{n+1}(A+B)/_{C_{n+1}(A)} \xrightarrow{\partial} C_n(A+B)/_{C_n(A)} \xrightarrow{\partial} C_n(A+B)/_{C_{n-1}(A)}$
$C_{n+1}(B)/_{C_{n+1}(A+B)} \xrightarrow{\partial} C_n(B)/_{C_n(A+B)} \xrightarrow{\partial} C_n(B)/_{C_{n-1}(A+B)}$

Chrild)/Chrilan8) Chilip)/Chilosof Chilip)/Chilan8) Chilip)/Chilan8)
Chilip) Chilip a Chain homotopy equivalence (D still induces a chain homotopy).
Chilip) Chilip induces a chain isomorphism Chilip/Chilan8) E>Chilat8)/Ch • Hence $H_n(X,A) \cong H_n(A+B,A) \cong H_n(B, A \circ B)$.

From the LES in Theorem $\left(\begin{array}{cc} N\sigma & number \end{array}\right)$... $\frac{1}{\sigma}$ Hn(A) $\frac{1}{\sigma}$ Hn(X) $\frac{1}{\sigma}$ Hn(X,A) $\frac{1}{\sigma}$... From the LES in <u>Theorem (No number)</u> ... $\frac{\partial}{\partial t}H_n(A) \xrightarrow{L*} H_n(\chi) \xrightarrow{j*} H_n(\chi,A) \xrightarrow{2} ...$
We prove the LES in Thm 2.13 ... $\frac{\partial}{\partial t}H_n(A) \xrightarrow{L*} H_n(\chi) \xrightarrow{j*} H_n(\chi/A) \xrightarrow{2} ...$ when (X, A) is a good pair (nonempty A is a deformation retract of some neighborhood in X). When (X, A) is a good pair (nonemply A is a deformation retract of some neighborhood in
This follows from Prop 2.22 (and noting that $Q \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}$ is exact). $\overrightarrow{C} \longrightarrow \overrightarrow{Z} \longrightarrow \overrightarrow{Z} \longrightarrow \overrightarrow{C}$
 $\widetilde{H}_1(\overrightarrow{X/A}) \longrightarrow \widetilde{H}_2(A) \longrightarrow \widetilde{H}_2(\overrightarrow{X}) \longrightarrow \widetilde{H}_2(\overrightarrow{X/A})$ $\widetilde{H}_1(\overline{X}/A) \xrightarrow{2} \widetilde{H}_p(A) \longrightarrow \widetilde{H}_q(X) \longrightarrow \widetilde{H}_q(X/A) \longrightarrow \widetilde{H}_p(X/A)$ Prop 2.22 For (X,A) a good pair, the quotient map (X,A)→(X/A,A/A)
induces isomorphisms q_{*} Hn(X,A)→Hn(x/A,A/a)≅Hn(X/A) ∀n. $\frac{X}{A}$
 $\frac{X}{A}$
 $\frac{X}{A}$

<u>Prop 2.22</u> For (X,A) a good pair, the quotient map (X,A)→(X/A,A/A)
induces isomorphisms q_{*} Hn(X,A)→Hn(x/A,A/A)≅Hn(X/A) ∀n. χ Pf Let ^V be ^a neighborhood that deformation retracts onto ^A. ov N $H_n(X, A) \longrightarrow H_n(X, V) \longleftarrow \frac{1}{excsion} H_n(X-A, V-A)$ q_* α q_* α q_* α q_* α $H_n(X/A, A/A) \longrightarrow H_n(X/A, Y/A) \leftarrow \frac{1}{exission} H_n(X/A - A/A, Y/A - A/A)$ \bullet The right horizontal maps are \cong by excision. The rightmost vertical map is \cong since $q: X \rightarrow X/A$ is a homeomorphism on the complement of ^A. \bullet It's plausible the left horizontal maps are \cong since V deformation retracts to ^A . Proof uses LES of ^a triple \therefore \rightarrow $H_n(v, A) \rightarrow H_n(x, A) \stackrel{\cong}{\rightarrow} H_n(x, v) \rightarrow H_{n-1}(v, A) \rightarrow ...$ $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & & & & & \bullet & \bullet & \bullet \\
\bullet & & & & & \bullet & \bullet & \bullet \\
\bullet & & & & & & \bullet & \bullet \\
\bullet & & & & & & \bullet & \bullet\n\end{array}$ \bullet Hence the leftmost vertical map is \cong by commutativity.

If $\alpha, \beta, \delta, \epsilon$ are isomorphisms, then so is γ .	For (i), let c
Pf We'll show	Construct $c \in C$
(i) β, δ surjective and ϵ injective $\Rightarrow \delta$ surjective	$k'(c'-\gamma c) = k'c' \cdot k' \gamma c$
(ii) β, δ injective and α surjective $\Rightarrow \gamma$ injective.	$\Rightarrow c'-\gamma c = j'$
By surjective $\Rightarrow b'$	

 $L^{1} \epsilon C^{'}$. via "diagram chasing".
= k'c'- Skc = k'c'- Sd = O b' for some $b' \in B'$. $B = \beta b$ for some $b \in B$. Note $\gamma(c+jb) = \gamma c + \gamma j b = \gamma c + j' \beta b = \gamma c + j' b' = c'.$ So x is surjective.

The equivalence of simplicial and singular homology

The Five Lemma Consider the following commutative diagram of abelian groups and exact rows.

The equivalence of simplicial and singular
\nThe Five Lemma Consider the following
\ndiagram of abelian groups and exact re
\n
$$
A \xrightarrow{\alpha} B \xrightarrow{\rightarrow} C \xrightarrow{k} D \xrightarrow{\ell} E
$$

\n $\alpha \downarrow T \qquad \beta \downarrow T \qquad \gamma \qquad \gamma \qquad \delta \qquad \delta \qquad \epsilon$
\n $\alpha \downarrow T \qquad \beta \downarrow T \qquad \delta \qquad \delta \qquad \epsilon$
\n $\alpha \downarrow T \qquad \beta \downarrow T \qquad \delta \qquad \delta \qquad \epsilon$
\nIf $\alpha, \beta, \delta, \epsilon$ are isomorphisms, then so is

If
$$
\alpha, \beta, \delta, \xi
$$
 are isomorphisms, then so is γ .

\nFor (ii), let $c \in C$ with $\gamma(c) = O$.

\nSelf: $\gamma(c) = O$.

\nFind $\$

Thm 2.27 The homomorphisms $H_n^{\Delta}(X,A) \rightarrow H_n(X,A)$ from simplified to singular homology are isomorphisms. Y_n
When (X,A) is a Δ -complex pair.
Rmk Taking $A = \phi$ gives $H_n^{\Delta}(X) \cong H_n(X)$.
BE We find do the case when X is finite-dimensional and $A = \phi$, Let X^k be the k-skeleton of X .
We have a commutative diagram with exact rows.
When $(X^k, X^{k-1}) \rightarrow H_n^{\Delta}(X^{k-1}) \rightarrow H_n^{\Delta}(X^k) \rightarrow H_n^{\Delta}(X^k, X^{k-1}) \rightarrow H_{n-1}^{\Delta}(X^{k-1}) \rightarrow$ \n
From $(X^k, X^{k-1}) \rightarrow H_n(X^{k-1}) \rightarrow H_n(X^k) \rightarrow H_n(X^k, X^{k-1}) \rightarrow H_{n-1}(X^{k-1}) \rightarrow$ \n
When $(X^k, X^{k-1}) \rightarrow H_n(X^{k-1}) \rightarrow H_n(X^k) \rightarrow H_n(X^k, X^{k-1}) \rightarrow H_{n-1}(X^{k-1}) \rightarrow$ \n
When $(X^k, X^{k-1}) \rightarrow H_n(X^{k-1}) \rightarrow H_n(X^k) \rightarrow H_n(X^k, X^{k-1}) \rightarrow H_{n-1}(X^{k-1}) \rightarrow$ \n
When $(X^k, X^{k-1}) \rightarrow H_n(X^{k-1}) \rightarrow H_n(X^{k-1}) \rightarrow H_n^{\Delta}(X^{k-1}) \rightarrow$ \n
When $(X^k, X^{k-1}) \rightarrow H_n(X^{k-1}) \rightarrow H_n(X^{k-1}) \rightarrow H_n^{\Delta}(X^{k-1}) \rightarrow$ \n
When $(X^k, X^{k-1}) \rightarrow H_n^{\Delta}(X^{k-1}) \rightarrow H_n^{\Delta}(X^k) \rightarrow H_n^{\Delta}(X^{k-1}) \rightarrow$ \n
When

$$
\frac{1}{\sqrt{2\pi}\int_{0}^{\infty} (X_{1}^{n})^{\frac{1}{2}} \Delta_{n}((X_{1}^{n},X^{n-1})^{\frac{1}{2}} \Delta_{n}((X_{1}^{n},X^{n-1})^{\
$$

The case when ^X is infinite-dimensional requires more work.

• Now assume $A \neq \emptyset$. We have

 $\rightarrow H_{n}^{a}(A) \longrightarrow H_{n}^{a}(\times) \longrightarrow H_{n}^{a}(\times A) \longrightarrow H_{n-1}^{a}(A) \longrightarrow H_{n-1}^{a}(\times) \longrightarrow$ Now assume $A \neq \emptyset$. We have
 $\rightarrow H_{n}^{a}(A) \rightarrow H_{n}^{a}(X) \rightarrow H_{n}^{a}(X,A) \rightarrow H_{n-1}^{a}(A) \rightarrow H_{n-1}^{a}(X,A)$
 $\qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ $\downarrow A$) \longrightarrow $\downarrow H_{n-1}(A)$ \longrightarrow $\downarrow H_{n-1}(\times)$ \longrightarrow

Applying the five lemma again finishes the proof of Thm ². 27·