Ex $f: S^2 \rightarrow S^2$ with deg(f)=3Ex $f: S' \rightarrow S'$ with deg(f)=3

Basic properties
(a)
$$deg(1_{s})=1$$
 since $1_{*}=1_{H_{n}(s^{n})}$.
(b) $deg(5)=0$ if f is not surjective.
PS Pick $x_{0} \in f(s^{n})$. $S^{n} \xrightarrow{f} S^{n} \{x_{0}\} \xrightarrow{f} S^{n}$
Apply H_{n} to get $\mathbb{Z} \xrightarrow{f} O \xrightarrow{f} \mathbb{Z}$.
(c) If $f \simeq g$, then $deg(5)=deg(g)$ (since $f_{*}=g_{*}$).
This is in fact an if-and-only-if (Corollary 4.25).
(d) $deg(fg) = deg(5) deg(g)$ since $(fg)_{*} = f_{*}g_{*}$.
As a consequence, $deg(5)=\pm 1$ if f is a homotopy equivalence,
since $fg\simeq 1 \implies deg(5) deg(g) = deg(fg) = deg(1) = 1$.
(e) $deg(5)=-1$ if f is a reflection
Generator $\Delta_{1}^{n} - \Delta_{2}^{n}$ maps to $\Delta_{2}^{n} - \Delta_{1}^{n}$.

(f) The antipodal map $-1: S^n \rightarrow S^n$ via $\chi \mapsto -\chi$ has degree $de_q(-1) = (-1)^{n+1}$ since it is a composition of n+1 réflections. (g) If $f: S^n \to S^n$ has no fixed points then $deg(f) = (-1)^{n+1}$. <u>Pf</u> $f(x) \neq x$ implies (1-t)f(x) + t(-x) misses the origin so $H(x,t) = \frac{(1-t)f(x) + t(-x)}{\|(1-t)f(x) + t(-x)\|} \text{ is a homotopy from } f to -1.$ Thm 2.28 S" has a continuous nonzero tangent vector field iff n odd. $\underline{P} (\Leftarrow) \text{ For } n=2k-1 \text{ odd, consider the vector field } v(x_1, x_2, \dots, x_{2k-1}, x_{2k}) = (-x_2, x_1, \dots, -x_{2k}, x_{2k-1}).$ (⇒) Given this vector field V, $H: S^n \times [0, \pi] \rightarrow S^n$ by $H(x,t) = \cos(t)x + \sin(t) \frac{v(x)}{\|v(x)\|}$ is a homotopy from 1 to -1, meaning $I = (-1)^{n+1}$, so n is odd. Prop 2.29 For n even, Zz is the only nontrivial group acting freely on S". <u>Pf</u> Homemorphisms have degree ± 1 , giving $G \xrightarrow{deg} \{-1, 1\}$, a homomorphism by (d). G acts freely \Rightarrow $G \setminus \{id\} \rightarrow \{-1^{n+i}\} = \{-1\}$, so the kernel is trivial and $G \subset \mathbb{Z}_2$.

Local degree Let $f: S^n \rightarrow S^n$. Suppose $f'(y) = \{x_1, ..., x_m\}$ is finite for some yES". Choose disjoint neighborhoods Ui = xi and V=y with f(ui) = V ti. $H_n(U_i, U_i - \chi_i)$ ∽* $\rightarrow H_n(V, V-y)$ For all i we have: i by excision Z excision Hence all six groups $H_n(S^n, S^{n}-x_{:})$ $H_n(S^n, S^n_{-y})$ are isomorphic to Z. \cong by LES of pair with $S^{h}-\varkappa_{i}\simeq *$ ≅ LES pair The top map is multiplication → Hn(sn) $H_n(S^n)$ by an integer $deg(f)|_{x_i}$, the local degree at xi. Εx $\frac{Prop \ 2.30}{deq(f)} = \sum_{i} deq(f) |x_{i}.$ deg(f) deg(f) $= \sum_{i} deg(f) | x_i$ $= \sum_{i} deg(f) | x_i'$ <u>Rmk</u> If f maps U: homeomorphically = |+|-|+| = |+0+| onto V, then $deg(f)|_{x_i} = \pm 1$. = 2 = 2

Rmk deg(f) can be defined for any map $f: M \rightarrow N$ between orientable manifolds of the same dimension.

 $\frac{\text{Rmk}}{\text{is the suspension of map } f: S^n \to S^n}$

Cellular homology a a For X a A-complex we defined $H^{A}_{n}(X)$ and proved $H^{\Delta}_{n}(X) \cong H_{n}(X).$ Simplicial complexes $\notin A$ -complexes $\notin CW$ complexes For X a CW-complex we now define $H_n^{cw}(\dot{X})$ and prove $H_n^{cw}(X) \cong H_n(X).$ $H_n^{CW}(X) = \frac{\ker d_n}{\operatorname{Im} d_{n+1}}$ is the homology of a chain complex $\dots \longrightarrow H_{n+1}(X^{n+1}, X^n) \xrightarrow{d_{n+1}} H_n(X^n, X^{n-1}) \xrightarrow{d_n} H_{n-1}(X^{n-1}, X^{n-2}) \longrightarrow \dots$ "homology squared 115 77 (# n-cells) We postpone a definition of d_n , and a verification that $d_n d_{n+1} = O$.

$$\begin{array}{c|c} \begin{array}{c} \begin{array}{c} 3\text{-cells} & 2\text{-cells} & 0\text{-cells} \\ \hline & & & & \\ \end{array} \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 1\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & & \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \hline & \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \\ \end{array} \xrightarrow{2 \text{-cells}} & \begin{array}{c} 2\text{-cells} & 0\text{-cells} \end{array} \xrightarrow{2 \text{-cells}} \end{array}$$

<u>Immediate applications</u> If a CW complex X (i) has no n-cells, then $H_n(X)=O$ (since $H_n(X^n, X^{n-1})\cong \mathbb{Z}^{(\#n-cells)}=O$). (ii) has k n-cells, then $H_n(X)$ is generated by $\leq k$ elements. (iii) has no two cells in adjacent dimensions, then $H_n^{CW}(X)\cong\mathbb{Z}^{(\#n-cells)}$ $\forall n$ (since $d_n=O$ $\forall n$).

$$\begin{array}{c|c} \underline{\mathsf{Ex}} & \underline{\mathsf{of}} & (\underline{\mathsf{iui}}) & (\mathbb{P}^n \text{ has a CW structure with one} \\ \hline \\ cell & \underline{\mathsf{of}} & each even dimension & 2k \leq 2n \text{.} \\ \hline \\ H_i(\mathbb{CP}^n) \cong \{ \mathbb{Z} \text{ for } i=0,2,4,6,...,2n \\ \hline \\ 0 & \mathrm{otherwise.} \\ \end{array}$$

$$\frac{Ex of (iii)}{n} S^{n} \times S^{n} \text{ has a CW structure with}$$
one D-cell, two n-cells, and one 2n-cell.
Hence for n>1 we have
$$\begin{pmatrix} \mathbb{Z} & i=0 \text{ or } 2n \\ \mathbb{Z}^{2} & i=n \\ 0 & otherwise. \end{pmatrix}$$

(This is also true for n=1 but we had to consider boundary maps.)

Ex 2.37 The nonorientable surface Ng of genus g
has one O-cell, g 1-cells, and one 2-cell attached
by the word
$$a_1^2 a_2^2 \dots a_3^2$$
.
 3 -cells 2-cells 1-cells O-cells
Chain complex $O \longrightarrow \mathbb{Z} \xrightarrow{d_2} \mathbb{Z}^9 \xrightarrow{d_1} \mathbb{Z} \xrightarrow{d_2} \mathbb{Z} \xrightarrow{d_2} \mathbb{Z}$
We compute $d_2(T) = 2a_1 + 2a_2 + \dots + 2a_g$.
 $H_0(N_g) = \frac{\text{Kar } d_0}{\text{Im } d_1} \cong \mathbb{Z}$
Ker d_1 has basis $\{a_1, \dots, a_{g-1}, a_g\}$ or $\{a_1, \dots, a_{g-1}, a_{1+\dots} + a_g\}$
 $H_1(N_g) = \frac{\text{Kar } d_2}{\text{Im } d_2} \cong \mathbb{Z}^{9^{-1}} \oplus \mathbb{Z}/2\mathbb{Z}$
 $H_2(N_g) = \frac{\text{Kar } d_2}{\text{Im } d_2} = O$ since $\text{Ker } d_2 = O$.

$$\begin{array}{c} \underline{Mayer - Vietoris \ Sequence.} \\ \hline Thm (pg | 49) \ For X a space and A, B \in X \\ with X = int A \circ int B, there is a LES \\ \hline H_n(A^nB) \longrightarrow H_n(A) \oplus H_n(B) \longrightarrow H_n(X) \\ \hline H_{n-1}(A^nB) \longrightarrow H_{n-1}(A) \oplus H_n(B) \longrightarrow H_{n-1}(X) \\ \hline \vdots \\ \hline H_0(A^nB) \longrightarrow H_0(A) \oplus H_0(B) \longrightarrow H_0(X) \longrightarrow O \qquad (also holds with H_o instead) \\ \hline Ex 2.46 \ X = S^2 \ A = D^2 \ B = D^2 \ A^nB \approx S' \qquad A^nB \approx S' \qquad A^nB \approx S' \qquad B = D^n, A^nB \approx S^n, \\ H_1(A^nB) \longrightarrow H_n(A) \oplus H_n(B) \longrightarrow H_2(S^1) \\ \hline H_1(A^nB) \longrightarrow H_n(A) \oplus H_n(B) \longrightarrow H_2(S^1) \\ \hline H_1(A^nB) \longrightarrow H_1(A) \oplus H_1(B) \longrightarrow H_2(S^1) \\ \hline H_1(A^nB) \longrightarrow H_1(A^nB) \oplus H_1(S^n) \cong \mathbb{Z}. \end{array}$$

<u>Pf of Mayer-Vietoris LES</u> We have a SES of chain complexes $0 \to C_n(A \circ B) \xrightarrow{\psi} C_n(A) \oplus C_n(B) \xrightarrow{\psi} C_n(A+B) \to 0$ $0 \longrightarrow C_{n-1}(A \cap B) \xrightarrow{\psi} C_{n-1}(A) \xrightarrow{\psi} C_{n-1}(B) \xrightarrow{\psi} C_{n-1}(A) \xrightarrow{\psi} C_{n-1}(A \cap B) \xrightarrow{\psi} C_{n-1}(A \cap$ Define $\varphi(x) = (x, -x)$ and $\psi(x, y) = x + y$. Recall Cn(A+B) is the subgroup of Cn(X) with all sums of chains in A and chains in B. So up is surjective by definition. $H_n(A+B) \cong H_n(X) \quad \forall n$. And & is injective. Ker $\psi \in Im \varphi$ since $\varphi \psi(x) = \varphi(x, -x) = x - x = 0$. Imp c Ker 4 since $\Psi(x,y)=0 \Rightarrow x=-y$ $\Rightarrow x, y$ are chains in AnB $(x = -y \in C_n(A \cap B))$ $\begin{array}{c} \overleftarrow{} H_n(A \circ B) \xrightarrow{\underline{P}} H_n(A) \oplus H_n(B) \xrightarrow{\Psi} H_n(X) \end{array}$ $\Rightarrow (x,y) = (x,-x) = \varphi(x).$ So we've verified exactness. $\hookrightarrow H_{n-1}(A \land B) \xrightarrow{\Phi} H_{n-1}(A) \oplus H_{n-1}(B) \xrightarrow{\Psi} H_{n-1}(X)$

This SES of chain complexes now gives a LES of homology groups: $\begin{array}{c} \longleftrightarrow H_n(A \land B) \xrightarrow{\Phi} H_n(A) \oplus H_n(B) \xrightarrow{\Psi} H_n(A+B) \end{array}$ Recall from Prop 2.21 (special case) that since $X = int A \lor int B$, the inclusion $C_n(A+B) \rightarrow C_n(X)$ is a chain homotopy equivalence, inducing

"Not standard notation

This gives the LES

Rmk The connecting homomorphism 2: Hn (X) -> Hn. (AnB) can be made explicit. different !-Let $[z] \in H_n(X)$, where z is a cycle in X $(\partial z=0)$. By Prop 2.21 (special case) we can write z = x + y for χ a chain in A and y a chain in B. Note $\partial z = 0 \implies \partial(x+y) = 0 \implies \partial x = -\partial y$. We have $\partial [z] = [\partial x] = [-\partial y] \in H_{n-1}(A \cap B)$.

<u>Homology with coefficients</u> So far we have been doing homology with \mathbb{Z} coefficients: $H_n(X) = H_n(X; \mathbb{Z})$. This can be generalized to homology Hn(X;G) with G coefficients, for G any abelian group. Ex Cellular homology of the Klein bottle K $G = \mathbb{Z}$ coefficients 2-cells 1-cells O-cells $\rightarrow 7$ — →ℤ→D T → 2b h ł → 0 $G = \frac{\mathbb{Z}}{2\mathbb{Z}}$ coefficients $H_{i}(K; \mathbb{Z}_{2\mathbb{Z}}) \cong \begin{pmatrix} \mathbb{Z}_{2\mathbb{Z}} & i=0 \\ \langle \mathbb{Z}_{2\mathbb{Z}} \rangle^{2} & i=1 \\ \mathbb{Z}_{2\mathbb{Z}} & i=2 \\ 0 & \text{otherwise} \end{pmatrix}$ 2-cells 1-cells O-cells →‰____) →^ℤ/₂_ℤ —— $\longrightarrow (\mathbb{Z}_{21})^2$ $T \longmapsto 0$ b H → 0 Note Hi(K; 2/2) = Hi(toms; 2/2).

In singular homology with coefficients, the chain groups

$$C_n(X) = C_n(X; \mathbb{Z}) = \{ \Sigma_x n_x \nabla_x \mid \nabla_x \colon \Delta^n \to X, n_x \in \mathbb{Z}, \text{ finitely many } n_x \text{ nonzero } \}$$

are replaced by
 $C_n(X; G) = \{ \Sigma_x n_x \nabla_x \mid \nabla_x \colon \Delta^n \to X, n_x \in G, \text{ finitely many } n_x \text{ nonzero } \}$

$$\longrightarrow C_{n+1}(X;G) \xrightarrow{\partial_{n+1}} C_n(X;G) \xrightarrow{\partial_n} C_{n-1}(X;G) \longrightarrow ...$$

The boundary operator formula
$$\Im: C_n(X;G) \longrightarrow C_{n-1}(X;G)$$

remains unchanged $\Im(\Sigma_i n; \sigma_i) = \Sigma_i n; \Im\sigma_i$ with $\Im\sigma_i = \Sigma_{j=0}^n (-1)^j \sigma_i |_{Evo, ..., \hat{v}_j, ..., v_n}$
except with $n_i \in G$ instead of $n_i \in \mathbb{Z}$.

 $H_n(X; \mathbb{Z}/m\mathbb{Z})$ is sometimes easier to compute than $H_n(X; \mathbb{Z})$, for example with the Klein bottle.

Universal coefficient theorem for homology

<u>I hm 3A.3</u> If C is a chain complex of free abelian groups, then there are natural SES's $\mathcal{O} \rightarrow \mathcal{H}_n(\mathcal{C}) \otimes \mathcal{G} \rightarrow \mathcal{H}_n(\mathcal{C}; \mathcal{G}) \rightarrow \mathcal{T}_{or}(\mathcal{H}_{n-1}(\mathcal{C}), \mathcal{G}) \rightarrow \mathcal{O}$ for all n and for all abelian groups G. <u>Corollary 3A.6</u> (a) $H_n(X; \mathbb{Q}) \cong H_n(X; \mathbb{Z}) \otimes \mathbb{Q}$. <u>Ex</u> We saw So for Hn(X; Z) finitely generated, $\frac{\mathbb{E} \times \text{ we saw}}{\text{H}_n(\text{Klein bottle}; \mathbb{Z}) \cong \left(\frac{\mathbb{Z}}{2\mathbb{Z}} \text{ n=0} \right)$ $\dim_{\mathbb{R}} H_n(X; \mathbb{Q}) = \operatorname{rank} H_n(X; \mathbb{Z}).$ (b) If $H_n(X;\mathbb{Z})$ and $H_{n-1}(X;\mathbb{Z})$ are finitely generated and p is prime, then $H_n(X; \mathbb{Z}/p\mathbb{Z})$ consists of n ≥2. Corollary 3A.6 then implies one Z/pZ summand for each Hn(Klein bottle; ZZZ)≈ (ZZZZ n=0 (i) \mathbb{Z} summand of $H_n(X;\mathbb{Z})$ }<mark>ℤ_{2ℤ}⊕ℤ_{2ℤ} n=1</mark> (ii) $\mathbb{Z}/\rho^{k}\mathbb{Z}$ summand of $H_{n}(X;\mathbb{Z})$ [™]/2ℤ n=2 (iii) Z/pkZ summand of Hn-1(X;Z). n ≥ 3.

Rmk Sometimes you can "go backwards" and get
$$H_n(X; \mathbb{Z})$$
 from $H_n(X; \mathbb{Q})$ and $H_n(X; \mathbb{Z}/p\mathbb{Z})$ \forall primes p :

 $\begin{array}{c} \underline{(or 3A.7)}\\ (a) & H_n(X;\mathbb{Z})=0 \iff H_n(X;\mathbb{Q})=0 \quad \text{and} \\ & H_n(X;\mathbb{Z}/\mathbb{PZ})=0 \quad \forall \text{ primes } p. \\ \hline (b) & A \text{ map } f:X \rightarrow Y \text{ induces isomorphisms on homology with } \mathbb{Z} \text{ coefficients} \\ \iff \text{ it does so for homology with } \mathbb{Q} \text{ and } \mathbb{Z}/\mathbb{PZ} \text{ coefficients } \forall \text{ primes } p. \end{array}$

Euler characteristic

Thm 2.44 For X a finite CW complex, $\chi(X) = \sum_{n} (-1)^{n} \operatorname{rank} H_{n}(X)$ Hence the Euler characteristic is independent of CW structure, and also a homotopy invariant.

Rmk The rank of a finitely generated abelian group is the number of Z summands when the group is expressed as a direct sum of cyclic groups.

 $\underline{\mathsf{Ex}} \quad \mathsf{rank} \left(\mathbb{Z}_{3\mathbb{Z}} \oplus (\mathbb{Z}_{6\mathbb{Z}})^2 \oplus \mathbb{Z}_{2\mathbb{Z}} \oplus \mathbb{Z}^5 \right) = 5.$

Rmk If $0 \rightarrow A \xrightarrow{\propto} B \xrightarrow{B} C \rightarrow 0$ is a short exact sequence (SES) of finitely generated abelian groups, then rank B = rank A + rank C since $C = \operatorname{im} \beta \cong B/\operatorname{ker} \beta = B/\operatorname{im} x$ with α injective \Rightarrow rank C = rank B - rank A.

<u>Pf of Thm 2.44</u>

1

$$\begin{array}{ll} (\text{Topology} & \text{Step}) \\ \text{Let} & \mathcal{L}_n = \text{H}_n\left(X^n, X^{n-1}\right) \cong \mathbb{Z}^{(\# n-cells)} = \mathbb{Z}^{Cn} \\ \text{Hence} & \mathcal{X}(X) = \sum_n (-1)^n c_n = \sum_n (-1)^n \ rank \ \mathcal{L}_n = \sum_n (-1)^n \ rank \ \text{H}_n(X) \end{array}$$