<u>Section 2.2: Computations and Applications</u> Degree

Let The degree deg(f) of a map
$$
f: S^n \rightarrow S^n
$$
 (n) is the integer d. s.t. $f_{\mathbf{x}}: H_n(S^n) \longrightarrow H_n(S^n)$

\nis of the form $f_{\mathbf{x}}(\alpha) = d\alpha$.

\nEx $f: S' \rightarrow S'$ with $deg(f) = 2$

\nUse the form $f_{\mathbf{x}}(\alpha) = 1$.

Ex $f: S^2 \rightarrow S^2$ with deg(f)=3 $\frac{X}{\sqrt{2}}$

 $f \rightarrow$ and $f \rightarrow$ $,\bigoplus$ $\frac{Ex}{dx}$ $f:5' \rightarrow 5'$ with $deg(f)=3$
 $\frac{Ex}{dx}$ $f:5^{2} \rightarrow 5^{2}$ with $deg(f)$
 $\frac{5}{x^{2}}$ identity on
each wedge summand quotient each wedge summand quotient each wedge summand

Basic properties	Apperties
(a) deg(1 _s) = 1 since 1 _k = 1 _{h,s} or	
(b) deg(4 _s) = 0 if 5 is not surjective.	
PS Pick $x_0 \in f(s^n)$, $S^n \xrightarrow{f} S^n - \{x_0\} \xrightarrow{S^n}$	
Apply Hn to get 10: $\frac{1}{2}$	
(c) If f_0 and g_0 is in fact an if- and-only-if (Corollary 4.25)?	
(d) deg(fg) = deg(f) deg(g) since (fg)* = f*g*	
As a consequence, deg(f)= ±1 if 5 is a homotopy equivalence, since $f_0 = 1 \Rightarrow \log(f) deg(g) = deg(fg) = deg(1) = 1$.	
(e) deg(f)= -1 if 5 a reflection	
Generator $\Delta_1^n - \Delta_2^n$ maps to $\Delta_2^n - \Delta_1^n$.	

(f) The antipodal map -1: $Sⁿ \rightarrow Sⁿ$ via $x \mapsto -x$ has degree I'me antipodal map It's is a composition of n+1 reflections. (g) If $f: S^n \to S^n$ has no fixed points then $deg(f) = (-1)^{n+1}$. $\overline{P5}$ \quad \quad f(x) \neq χ implies (I-t)f(x)+t(-x) misses the origin, so $H(x,t) = \frac{(1-t)f(x)+t(-x)}{1+(1-t)f(x)+t(-x)}$ is a homotopy from f to -1. Thm 2.28 S" has a continuous nonzero tangent vector field iff n odd.

<u>Pf</u> (\Leftarrow) For n=2k-1 odd, consider the vector field $v(x_1, x_2, ..., x_{2k-1}, x_{2k}) = (-x_2, x_1, ...$
 (\Rightarrow) Given this vector field v , H:S"x[o, n] \Rightarrow s" by H $\nonumber P$ f (\Leftarrow) For n=2k-1 odd, consider the vector field $v(x_1, x_2, ..., x_{2k-1}, x_{2k}) = (-x_1, x_1, ..., x_{2k}, x_{2k-1})$ <u>Pf</u> (=) For n=2k-1 odd, consider the vector field v(x,,x,,,,,x_{zk-1},x_{zk})
(=) Given this vector field v, H:Sⁿ×[0,n]→Sⁿ by H(x,t)=cos(t)x+sin(t)]v(x)] Prop 2.29 For n even, \mathbb{Z}_2 is the only nontrivial group acting freely on S^{n} . <u>Frop 2.29</u> Hor n even, 22 is the only nontrivial group acting treely on 3
<u>Pf</u> Homemorphisms have degree ±1, giving Gdeg >{-1,1}, a homomorphism by (d). G acts freely \Rightarrow $\mathsf{G\setminus\{\mu\}\rightarrow\S$ -1ⁿ⁺¹3={-1}, so the kernel is trivial and $\mathsf{G}\subseteq\mathbb{Z}_{2}$.

<u>Local degree</u> Let $f: \tilde{S}^n \rightarrow S^n$, Suppose $S^{-1}(y) = \{x_1, ..., x_m\}$ is finite for some yes". Choose disjoint $\overline{\mathscr{X}_{3}}$ neighborhoods $U_i \ni x_i$ and $V \ni y$ with $f(u_i) \in V$ ti. $H_n(u_i, u_i - x_i)$ \Rightarrow Hn(V, V-y) For all i we have: $\frac{1}{2}$ by excision E excision Hence all six groups $H_{n}(S^{n}, S^{n}_{-}\mathbf{x}_{i})$ $H_n(S^n, S^n - y)$ are isomorphic to Z. $\leq b$ LES of pair \leq LES pair The top map is multiplication $H_n(S^n)$ ․ Տ* $\left(\mathcal{L}_{n}\right)$ by an integer deg(f) x_i , the local degree at x_i . Еx Prop 2.30 $deg(f) = \sum_{i} deg(f) |x_{i}|$. $deq(f)$ $deq(f)$ $=$ \sum_i deg(s) $|x_i$ $= \sum_{i} \text{deg}(f_i) | x'_i$ Rmk If f maps U_i homeomorphically $= |+|-|+|$ $= | + O + |$ onto V, then $deg(f)|x_i = \pm 1$. $= 2$ $= 2$

Rmk deg(§) can be defined for any map
f:M→N between orientable manifolds
of the same dimension.

 Rmk $deg(Sf) = deg(f)$, where $SF: S^{n+1} \rightarrow S^{n+1}$ sum aeg(5+) aeg(7), where 5+15 -
is the suspension of map f:5" > 5",

Cellular homology α α For X a Δ -complex we defined Hn(X) and proved $H_n(\chi) \cong H_n(\chi)$. Simplicial complexes $\in \Lambda$ -complexes $\in \Lambda$ complexes For X a CW-complex we now define $H_n^{\text{cw}}(x)$ and prove $H_n^{cw}(x) \cong H_n(x)$. $H_{n}^{cw}(x) = \frac{Ker \ d_{n}}{x}$ H_{n+1} is the homology of a chain complex $\ldots \longrightarrow H_{n+1}(\chi^{n+1},\chi^n) \xrightarrow{d_{n+1}} H_n(\chi^n,\chi^{n-1}) \xrightarrow{d_n} H_{n-1}(\chi^{n-1},\chi^{n-2}) \longrightarrow$ "homology squared $\frac{115}{77}$ (# n-cells) We postpone a definition of d_n ,
and a verification that $d_n d_{n+1} = O_n$.

 $\underline{d_{n+1}} \rightarrow \left| \bigwedge_n (\times^n X^{n-1}) \xrightarrow{d_n} \right| \xrightarrow{d_{n-1}} (\times^{n-1} X^{n-2})$ H_{n+1} (\times^{n+1}) Cellular boundary formula π (# n-cells) For e_{α} an n-cell in X, we have $d_n(e_{\alpha}^n)=\sum_{\beta}d_{\alpha\beta}e_{\beta}^{n-1}$, where $d_{\alpha\beta}$ is • (roughly) the # of times the attaching map for e_{α}^{n} "wraps around" e_{β}^{n-1} (less roughly) the degree of the map S_{β}^{n-1} $\begin{pmatrix} f_{\text{or}} \\ n \geq 1 \end{pmatrix}$ S_{α}^{n-1} attaching map quotient collapsing
 $X^{n-1} - e_B^{n-1}$ to a point of e^{η^2}

$$
\begin{array}{ll}\n\text{Chain complex} & \xrightarrow{3-cells} d_3 \xrightarrow{2-cells} d_1 \xrightarrow{0-cells} 0-cells} d_2 \rightarrow \mathbb{Z} \\
\downarrow^{(v)}(x) = \text{Ker } d_0/\text{Im } d_1 \cong \mathbb{Z} \\
\downarrow^{(v)}(x) = \text{Ker } d_1/\text{Im } d_2 \cong \mathbb{Z}/3\mathbb{Z} \\
\downarrow^{(w)}(x) = \text{Ker } d_1/\text{Im } d_2 \cong \mathbb{Z}/3\mathbb{Z}\n\end{array}
$$

 $H_{n+1}(X^{n+1},X^{n}) \xrightarrow{d_{n+1}} H_n(X^n,X^{n-1}) \xrightarrow{d_n} H_{n-1}(X^{n-1},X^{n-2})$ Cellular boundary formula For e_{α}^n an n-cell in X, we have $d_n(e_{\alpha}^n)=\sum_{\beta}d_{\alpha\beta}e_{\beta}^{n-1}$, where $d_{\alpha\beta}$ is • (roughly) the # of times the attaching map for e_{α}^{n} "wraps around" e_{β}^{n-1} (less roughly) the degree of the composition
 S_{∞}^{n-1} attaching map X^{n-1} quotient collapsing S_{β}^{n-1} (for).

of e_{∞}^{n} $X^{n-1} - e_{\beta}^{n-1}$ to a point <u>tx</u>
X= genus q torus 3 -cells $\overline{d_3}$ $\overline{d_4}$ Chain complex $H_0^{cv}(x) = \frac{Ker d_0}{Im d_1} \cong \mathbb{Z}$ $H^{cw}(X) = \frac{\text{Ker } d_1}{\text{Im } d_2} \cong \mathbb{Z}^{29}$
 $H_2^{cw}(X) = \frac{\text{Ker } d_2}{\text{Im } d_3} = \mathbb{Z}$

Lemma 2.34(c)	implies	$H_n(X^{n+1}) \cong H_n(X^{n+2}) \cong ... \cong H_n(X)$.	PS for X finite follows from LES $H_{n+1}(X^{n+2}, X^{n+1}) \longrightarrow H_n(X^{n+1}) \cong H_n(X^{n+2}) \longrightarrow H_n(X^{n+2}, X^{n+1})$ and induction.
Thm 2.35	For X a CW complex, $H_n'(X) \cong H_n(X)$.	PS Note $H_n(X) \cong H_n(X^{n+1}) \cong H_n(X^{n})/Ker$ $\lim_{n \to \infty} F_{X\alpha_{n+1}} = H_n(X^{n})/Im \ a_n$.	$Exatness$
Well now show in induces an isomorphism in $H_n(X^{n})/Im \ a_{n+1} \cong Xer$ $\dim_{\mathbb{Z}} Ker \ a_n$ and $H_n(X^{n})$ isomorphically onto $Im \ j_n = Ker \ j_n$.\n <td>$Smj_n \ a_{n+1} = Im \ a_{n+1}$, and $H_n(X^{n})$ isomorphically onto $Im \ j_n = Ker \ j_n$.</td> \n <td>$Smj_n \ a_n \cong Ker$ $\lim_{n \to \infty} Im \ a_{n+1} \cong Ker$.</td> \n	$Smj_n \ a_{n+1} = Im \ a_{n+1}$, and $H_n(X^{n})$ isomorphically onto $Im \ j_n = Ker \ j_n$.	$Smj_n \ a_n \cong Ker$ $\lim_{n \to \infty} Im \ a_{n+1} \cong Ker$.	

Immediate applications If ^a CW complex ^X Li) has no n-cells, then $H_n(x)=O$ (since $H_n(x^n|x^{n-1})$ $(\mathbb{R})\cong\mathbb{Z}^{\left(\#n-\text{cells}\right)}=0).$ (i) has k n-cells, then $H_n(x)$ is generated by $\leq k$ elements. (iii) has no two cells in adjacent dimensions, then H(X)=-cells Un (since dn =O Fn).

Ex of (iii)	CP ⁿ has a CW structure with one	Put	CP ⁿ	Put
Cell of each even dimension	$2k \le 2n$. Hence	\mathbb{C}^{n+1}	\mathbb{C}^n	\mathbb{C}^{2n+1}
H: (CP ⁿ) \cong { Z for i=0,2,4,6,..., 2n	\mathbb{C}^{2n+1}	\mathbb{R}^{2n}		
Obherwise.	\mathbb{C}^{n+1}	\mathbb{C}^{n+1}		

$$
\frac{Ex \text{ of } (iii) \text{ } S^{n} \times S^{n} \text{ has a } CW \text{ structure with} \\ \text{one } O\text{-cell, two } n \text{-cells, and one } 2n \text{-cell.} \\ \text{Hence for } n > 1 \text{ we have} \\ \text{Hi}(S^{n} \times S^{n}) \cong \begin{cases} \mathbb{Z} & i=0 \text{ or } 2n \\ \mathbb{Z}^{2} & i=n \\ O & \text{otherwise.} \end{cases}
$$

This is also true for $n = 1$ but we his is also true tor n=1 but we
had to consider boundary maps.)

Mayer-Viectors sequence
Thm (pg 149) For X a space and A, B=X
with X= int A · int B, there is a LES
H _n (A ⁿ B) → H _n (A)® H _n (B) → H _n (X)
\n $H_{n-1}(A^{n}B) → H_{n-1}(A)@H_{n}(B) → H_{n-1}(X)$ \n
\n $H_{0}(A^{n}B) → H_{0}(A)@H_{0}(B) → H_{0}(X) → O$ \n
\n $H_{2}(A^{n}B) → H_{2}(A)® H_{2}(B) → H_{2}(S^{2})$ \n
\n $H_{2}(A^{n}B) → H_{2}(A)® H_{2}(B) → H_{2}(S^{2})$ \n
\n $H_{1}(A^{n}B) → H_{1}(A)® H_{2}(B) → H_{2}(S^{2})$ \n
\n $H_{1}(A^{n}B) → H_{1}(A^{n}B) P_{2}(B) → H_{1}(S^{2})$ \n
\n $H_{1}(A^{n}B) → H_{1}(A^{n}B) P_{2}(B) → H_{1}(S^{2}) = \mathbb{Z}$ \n
\n $H_{0}(S^{n}) \cong \mathbb{Z} \Rightarrow H_{0}(S^{n}) \cong \mathbb{Z}$ \n

Pf of Mayer-Vietoris LES Communications of chain complexes now gives We have a SES of chain complexes a LES of homology groups: \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow .. $0 \rightarrow C_n(A \circ B) \xrightarrow{\Psi} C_n(A) \bullet C_n(B) \xrightarrow{\Psi} C_n(A \circ B) \rightarrow 0$ \leftarrow $H_n(A \circ B) \xrightarrow{\Phi}$ $0 \longrightarrow C_{n-1}(A \cdot B) \xrightarrow{\iota \varrho} C_{n-1}(A) \oplus C_{n-1}(B) \xrightarrow{\iota \varrho} C_{n-1}(A) \oplus C_{n-1}(B)$ $\leftarrow H_n(A \circ B) \xrightarrow{\underline{\text{F}}} H_n(A) \oplus H_n(B) \xrightarrow{\underline{\text{V}}} H_n(A \circ B)$ \leftarrow $H_{n-1}(A\circ B) \xrightarrow{\underline{\mathscr{F}}}\ H_{n-1}(A) \oplus H_{n-1}(B) \xrightarrow{\underline{\mathscr{V}}}\ H_{n-1}(A+B)$ Define $\varphi(x)$ =(x,-x) and $\psi(x,y)$ =x+y. Recall from Prop 2. ²¹ (special case) that since Recall $C_n(A+B)$ is the subgroup of $C_n(X)$ with the inclusion $C_n(A+B) \rightarrow C_n(X)$ all sums of chains in ^A and chains in ^B. is ^a chain homotopy equivalence, inducing So ψ is surjective by definition. $H_n(A+B) \cong H_n(X)$ Vn. And φ is injective. T Not standard notation Ker ψ C Im φ since φ $\psi(x)$ = φ $(x,-x)$ = x - x = O . \mathcal{I}_{m} φ c Ker ψ since $\psi(x,y)$ =0 \Rightarrow x=-y This gives the LES \Rightarrow xy are chains in AnB $(x=y \in C_n(A \cap B))$ \Rightarrow x,y are chains in AnB (x=-y ECn(AnB))
 \Rightarrow (x,y) = (x,-x) = $\varphi(\infty)$ $(x) = \varphi(x)$ So we've verified exactness. Recall from Prop 2.21 (special case) th
X= int A v int B, the inclusion C_n(A+B) ->
is a chain homotopy equivalence, induc
H_n(A+B) = H_n(X) Vn.
This gives the LES
...
H_{n-(AnB) ^{<u>E</u>} + H_{n-}(A) + H_{n-}(B) ^V + H_{n-(}}

 Rmk The connecting homomorphism $\partial H_n(x) \rightarrow H_{n-1}(A \cap B)$ can be made explicit. Uniterest! Let $[z] \in H_n(X)$, where z is a cycle in X ($\partial z = 0$). By Prop 2.21 (special case) we can write $z = x+y$ for x a chain in A and y a chain in B . Note $\partial z = 0 \implies \partial (x+y) = 0 \implies \partial x = -\partial y$. We have $\partial [z] = [\partial x] = [-\partial y] \in H_{n-1}(A \circ B)$.

 $x \in C_1(A)$
 $\partial x = -\partial y \in \text{Ker}(\partial_1^{A \wedge B})$
 $y \in C_2(B)$ $z \in \text{Ker}(\partial_{z}^{x})$

Ex 2.47 The Klein bottle K is the union of two Möbius bands glued together along their boundary circle.																																			
\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n	\n $\frac{1}{11}$ \n

Homology with coefficients
So far we have been doing homology with $\mathbb Z$ coefficients: $H_n(X) = H_n(X; \mathbb Z)$. This can be generalized to homology $H_n(X,G)$ with G coefficients, for G any abelian group. Ex Cellular homology of the Klein bottle K α $G = \mathbb{Z}$ coefficients $H_i(k;\mathbb{Z}) \cong \begin{cases} \mathbb{Z} & i=0\\ \mathbb{Z} \oplus \mathbb{Z}_2 & i=1\\ 0 & \text{otherwise} \end{cases}$ $2 -$ cells $1-cells$ O -cells $\rightarrow \mathbb{Z}$ - $\rightarrow \mathbb{Z}$ \longrightarrow \cup TH -32b \rightarrow 0 h h $G = \mathbb{Z}/_{2\mathbb{Z}}$ coefficients $\frac{z_{2z}}{\sqrt{\frac{z_{2z}}{z_{2z}}}$ $i=1$
 $\frac{z_{2z}}{\sqrt{\frac{z_{2z}}{z}}}$ $i=2$
oth $2-cells$ $1-cells$ O -cells $H_i(k;\mathcal{H}_2) \cong$ →^Z/2z —— $\rightarrow (^{\mathbb{Z}}\!/_\mathbb{Z} \eta)^2$ - $\rightarrow \mathbb{Z}_{\mathbb{Z}}$ \longrightarrow \bigcirc $T \longmapsto$ otherwise h \vdash \rightarrow 0 $Note H_i(K; Z₂) \cong H_i(tons; Z₂)$

In singular homology with coefficients, the chain groups
\n
$$
C_n(x) = C_n(x;\mathbb{Z}) = \{ \sum_{x} n_x \nabla_{x} | \nabla_{x} \cdot \Delta^n \rightarrow X, n_x \in \mathbb{Z}, \text{ finitely many } n_x \text{ nonzero } \}
$$

\nare replaced by
\n $C_n(x;G) = \{ \sum_{x} n_x \nabla_{x} | \nabla_{x} \cdot \Delta^n \rightarrow X, n_x \in G, \text{ finitely many } n_x \text{ nonzero } \}$

$$
\dots \longrightarrow C_{n+1}(X; G) \xrightarrow{\partial_{n+1}} C_n(X; G) \xrightarrow{\partial_n} C_{n-1}(X; G) \longrightarrow \dots
$$

The boundary operator formula
$$
\partial: C_n(X; G) \rightarrow C_{n-1}(X; G)
$$

remains unchanged $\partial(\Sigma_{i} n_{i} \sigma_{i}) = \Sigma_{i} n_{i} \partial \sigma_{i}$ with $\partial \sigma_{i} = \Sigma_{i=0}^{n} (-1)^{i} \sigma_{i} |_{[\Sigma_{\sigma}, ..., \hat{\nu_{i}}, ..., \nu_{n}]}$
except with $n_{i} \in G$ instead of $n_{i} \in \mathbb{Z}$.
The most common coefficients are $G = \mathbb{Z}, \frac{p}{n} \mathbb{Z}, \mathbb{Q}$, or R.

The most common coefficients are
$$
G = \mathbb{Z}
$$
, $\mathbb{Z}/m\mathbb{Z}$, \mathbb{Q} , or R.

 $H_n(X; Z/mZ)$ is sometimes easier to compute than $H_n(X; Z)$ for example with the Klein bottle.

Rmk Homology with coefficients can sometimes tell us more.	
Is the quotient map q:RP ² → RP ² /(RP ³) ¹⁰ = S ² nullhomotopic?	RP ²
Z coefficients	$\overline{H}_n(\mathbb{RP})^2 \cong (\mathbb{Z}_{2\mathbb{Z} - n-1} - \overline{H}_n(S^2) \cong (\mathbb{Z} - n-2 - \overline{H}_n(S^2)) \cong (\mathbb{Z} - n-1)$ \n
No map q**: $\overline{H}_n(\mathbb{RP}^2) \to \overline{H}_n(S^2)$ can be nonzero. Not sure.	
7/22 coefficients	$\overline{H}_n(\mathbb{RP}^2, \mathbb{Z}_2) \cong (\mathbb{Z}_{2\mathbb{Z} - n-1}, 2 - \overline{H}_n(S^2, \mathbb{Z}_{2\mathbb{Z}}) \cong (\mathbb{Z}_{2\mathbb{Z} - n-2} - \overline{H}_n(S^2, \mathbb{Z}_{2\mathbb{Z} - n-2} - \$

Universal coefficient theorem for homology

Thm3A. ³ If ^C is ^a chain complex of free abelian groups, then there are natural SES's then there are natural SES_{'s}
 $O \rightarrow H_n(C) \otimes G \longrightarrow H_n(C; G) \longrightarrow Tor(H_{n-1}(C), G) \longrightarrow O$ for all n and for all abelian groups G. Corollary 3A. 6 (a) Hn $(x;\mathbb{Q})\cong H_n(x;\mathbb{Z})\otimes\mathbb{Q}$. So for Hn(X;Z) finitely generated, $\underbrace{\text{Ex}}$ We saw
dim_a H_n(X;Q) = rank Hn(X;Z), $\underbrace{\text{H}}$ Hn(Klein bottle; dim_a Hn(X;Q) = rank Hn(X;Z).
(b) If Hn(X;Z) and Hn₁(X;Z) are finitely generated Hn(Klein bottle;Z) = {Z = n=1} and p is prime, then $H_n(X;\mathbb{Z}/p\mathbb{Z})$ consists of $\bigcup_{n \geq 2}$. one I/pI summand for each Corollary 3A. (i) I summand of Hn(X:1) Hn(Klein bottle : #(2)⁼ Corollary 3A.6 then implies $H_n(K)$ ein bottle; Z/z = Z/z $n = 0$ (ii) E/p& & summand of Hn(X: 1) 4/2404/24 ⁿ ⁼ 1 (iii) $\mathbb{Z}/\rho^k\mathbb{Z}$ summand of $H_{n-1}(X;\mathbb{Z})$ $\frac{z}{2z}$ n = 2 $n \geq 3$.

Rmk Sometimes you can "go backwards" and get $H_n(X;\mathbb{Z})$ from $H_n(\breve{X};\mathbb{Q})$ and $H_n(X;\mathbb{Z}/p\mathbb{Z})$ \forall primes ρ :

Cor 3A.7 (a) Hn(X;Z)=O \Leftrightarrow Hn(X;Q)=O and $\lim_{x \to \infty} (x, \frac{z}{\rho x}) = 0$ \forall primes p. Hn(X;%pD)=O ∀ primes p。
(b) A map f:X→Y induces isomorphisms on homology with Z coefficients \Leftrightarrow it does so for homology with Ω and $\frac{\mathcal{P}}{\varphi\mathbb{Z}}$ coefficients \forall primes ρ .

Euler characteristic

Thm 2. ⁴⁴ For ^X ^a finite CW complex, $\chi(x) = \sum_{n} (-1)^n$ rank $H_n(x)$. Hence the Euler characteristic is independent of CW structure, and also ^a homotopy invariant. Rmk The rank of a finitely generated abelian group is the number of Z summands when the group is expressed as a direct sum of cyclic groups. $\begin{array}{ll} \text{Ex} & \text{rank} \ (\mathbb{Z}/_{3 \mathbb{Z}} \oplus \ (\mathbb{Z}/_{6 \mathbb{Z}})^{2} \oplus \mathbb{Z}_{2 \mathbb{Z}} \oplus \mathbb{Z}^{5}) = 5. \end{array}$ Rmk If $O \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow O$ is a short exact sequence (SES) of finitely generated abelian groups, then rank B ⁼ rank A ⁺ rank C since $\mathcal{C} = \mathsf{im} \ \beta \cong \mathbb{B}/\mathsf{ker} \ \beta = \mathbb{B}/\mathsf{im} \ \mathsf{x} \quad \text{with} \quad \mathsf{\alpha} \quad \mathsf{injective}$ \Rightarrow rank C = rank B - rank A.

Pf of Thm 2.44

 $\overline{ }$

(Algebra Step)	Let																				
0	•	C_{k}	•	C_{n-1}	•	•	C_{0}	•	0												
be any chain complex of Finitely generated abelian groups.																					
We have SES 's																					
0	•	ker d _n	•	•	im d _n	•	0														
and	0	•	im d _{n+1}	•	ker d _n	•	•	1n	•	0											
1	1	1	1	1	1	1	•	1													
1	1	1	1	1	1	1	1														
2	1	1	1	1	1	1	1														
2	1	1	1	1	1	1	1	1													
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

$$
\begin{array}{ll}\n(\text{Topology} & \text{Step}) \\
\text{Let} & \text{C}_n = \text{H}_n(X^n, X^{n-1}) \cong \mathbb{Z}^{(\text{# }n-\text{cells})} = \mathbb{Z}^{C_n} \\
\text{Hence} & \chi(\chi) = \sum_n (-1)^n_{C_n} = \sum_n (-1)^n \text{ rank } C_n = \sum_n (-1)^n \text{ rank } H_n(\chi)\n\end{array}
$$