Chapter 3: Cohomology I recommend Hatcher's intro "The idea of cohomology", pages 186-189. Section 3.1 Cohomology of spaces Running example (Later we return to the universal coefficient theorem.) For X a Δ -complex, recall simplicial homology: $\cdots \longrightarrow \bigwedge_{n \neq i} (X) \xrightarrow{\partial_{n+1}} \bigwedge_{n} (X) \xrightarrow{\partial_{n}} \bigwedge_{n-1} (X) \longrightarrow \cdots \longrightarrow \bigwedge_{2} (X) \xrightarrow{\partial_{2}} \bigwedge_{i} (X) \xrightarrow{\partial_{1}} \bigwedge_{p} (X) \longrightarrow O.$ Let G be an abelian group (think $G=\mathbb{Z}$). <u>Def</u> The <u>n-cochains with coefficients in G</u> is the group $\Delta^n(X;G) := Hom(\Delta_n(X), G)$. Kmk For A, B abelian groups, Hom(A, B) Ex For X above, $\Delta'(X;\mathbb{Z}) \cong \mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^{\times 3}$ is the group of homomorphisms $f: A \rightarrow B$. with $f \in \Lambda'(X; \mathbb{Z})$ determined by Group structure: For $f, g \in Hom(A, B)$, we have $f(a), f(b), f(c) \in \mathbb{Z}$. Indeed, f(17a-3c) = 17f(a) - 3f(c). $(f+q): A \rightarrow B$ by $(f+q)(a) = f(a) + g(a) \quad \forall a \in A$.

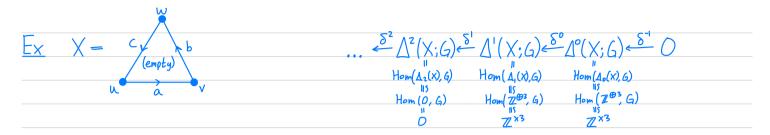
More generally, for
$$f \in \Delta^n(X;G)$$
 and $\sigma \colon \Delta^{n+1} \to X$
an $(n+1)$ -simplex in the Δ -complex X, we have

$$\begin{split} \delta f(\sigma) &= f \partial(\sigma) = f \left(\sum_{i=0}^{n+1} (-1)^{i} \sigma \right|_{[V_{0}, \dots, \widehat{V_{i}}, \dots, V_{n+1}]} \\ &= \sum_{i=0}^{n+1} (-1)^{i} f(\sigma)_{[V_{0}, \dots, \widehat{V_{i}}, \dots, V_{n+1}]}. \end{split}$$

Note $\delta \cdot \delta = 0$ since $\partial \cdot \partial = 0$. More explicitly, for $f \in \Lambda^n(X;G)$, we have $S^{n+1}S^n f = S^{n+1}f \partial_{n+1} = f \partial_{n+1}\partial_{n+2} = 0$

<u>Def</u> The (simplicial) <u>cohomology group $H^n(X;G)$ </u> of X with coefficients in G is $Ker(\delta^n)/Im(\delta^{n+1})$.

For a cochain $f \in \Delta^n(X; G)$ to be a cocycle means $\delta^n f = f \partial_{n+1} = 0$, i.e. f vanishes on boundaries.



 $\begin{array}{l} H^{\circ}(X;\mathbb{Z}) \coloneqq \frac{\ker \delta^{\circ}}{\operatorname{Im} \delta^{-1}} \cong \operatorname{Ker} \delta^{\circ} \cong \mathbb{Z} \\ \text{since if } f \in \Lambda^{\circ}(X;\mathbb{Z}) \text{ with } \delta f = 0, \text{ then} \\ 0 = \delta f a = f \partial a = f(v) - f(u) \Rightarrow f(v) = f(u) \\ 0 = \delta f b = f \partial b = f(v) - f(v) \Rightarrow f(w) = f(v) \\ 0 = \delta f c = f \partial c = f(w) - f(v) \Rightarrow f(w) = f(v) \\ 0 = \delta f c = f \partial c = f(w) - f(w) \Rightarrow f(w) = f(w) \\ \text{So } f (\text{with } f(w) = f(v) = f(w) = c) \\ \text{is determined by a single } c \in \mathbb{Z}. \\ \end{array}$ $\begin{array}{c} \operatorname{Ker} \delta^{\circ} \cong \mathbb{Z} \\ \operatorname{Ker} \delta^{\circ} \otimes \mathbb{Z} \\ \operatorname{Ker} \delta^{\circ} \cong \mathbb{Z} \\ \operatorname{Ker} \delta^{\circ} \otimes \mathbb{Z} \\ \operatorname{Ker} \delta^{\circ} \cong \mathbb{Z}$

More generally For X a Δ -complex, $H^{\circ}(X; \mathbb{Z}) \cong \mathbb{Z}^{\times (\# \text{ connected components of } X)}$ $H^{\circ}(X; G) \cong G^{\times (\# \text{ connected components of } X)}$

 $\overset{\delta^{2}}{\leftarrow} \overset{\Delta^{2}}{\overset{\times}{\underset{\scriptstyle ||}{\rightarrow}}} \overset{\Sigma^{1}}{\leftarrow} \overset{\Lambda^{1}}{\overset{\times}{\underset{\scriptstyle ||}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\times}{\underset{\scriptstyle ||}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\times}{\atop}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\times}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\times}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\times}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\times}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\times}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\times}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\rightarrow}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\rightarrow}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\rightarrow}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}{\phantom}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}} \overset{\Lambda^{2}}{\overset{\Lambda^{2}}$

 $H'(X;\mathbb{Z}) = \frac{\ker \delta'}{\operatorname{Im} \delta^{\circ}} = \frac{\Lambda'(X;\mathbb{Z})}{\operatorname{Im} \delta^{\circ}} \cong \mathbb{Z}.$ Spanning To understand this quotient, tree choose a spanning tree for X. Let $q \in \Delta'(X; \mathbb{Z})$. We can find $f \in \Lambda^{\circ}(X; \mathbb{Z})$ with $S^{\circ} f(b) = g(b)$ and $S^{\circ} f(c) = g(c)$ by choosing f(w), f(w), f(w) so that f(w) - f(v) = g(b), f(u) - f(w) = g(c). These choices determine $\delta^{\circ}f(a) = f(v) - f(u)$, which need not be equal to $q(a) \in \mathbb{Z}$. Spanning Forest More generally For X a graph with k edges not in a spanning forest, $H'(X; \mathbb{Z}) \cong \mathbb{Z}^{\times k}$ $H'(X;\mathbb{Z})\cong\mathbb{Z}^{\times 3}$ $H'(X;G) \cong G^{Xk}$

Generators for cohomology
For X a graph,
$$H'(X; \mathbb{Z})$$
 is generated
by the cocycles assigning
• 1 to a single oriented edge not in a spanning forest
• 0 to every other edge.
Ex $H'(X; \mathbb{Z})$ is generated by $f_{a_1}, f_{a_6} \in \text{Ker } S' = \Delta'(X; \mathbb{Z}),$
where $f_{a_1}: \Lambda_1(X) \to \mathbb{Z}$ by $f_{a_1}(c_{a_1} + \dots + c_{2a_7}) = c_1$
and $f_{a_6}: \Lambda_1(X) \to \mathbb{Z}$ by $f_{a_6}(c_{a_1} + \dots + c_{2a_7}) = c_6$.
Here $f_{a_6}(a_6) = 1$ (so $f_{a_6}(-a_6) = -1$).
We say f_{a_6} is the dual cochain to the edge a_6 .
Notation $f_{a_6} = a_6^*$.
For X a Δ -complex with k-simplex σ ,
the dual cochain σ^* is a cocycle (i.e. in Ker δ^{k})
if σ is maximal (i.e. has no cofaces $\sigma \subseteq \tau$).

 $E_X X = 2$ -dimensional Δ -complex $H'(X; \mathbb{Z})$ is generated by the Cocycle f assigning 1 to each blue edge and D otherwise. q is not a cocycle To see $f \in \text{Ker } S'$, note $\delta'q \neq 0$ S'f(T) = (|-|+0-0) if T is a 2-simplexbordering two blue edges (0) otherwise.

This generator [5] for $H'(X; \mathbb{Z})$ is dual to a generator [Z] for $H_1(X; \mathbb{Z})$. Note f(z) = 1 even if we replace z with a homologous cycle, or q with a cohomologous cocycle.

<u>Rmk</u> For <u>singular</u> H'(X;Z) where X is the annulus, a generating cocycle f assigns to each singular edge an "oriented count" of the # of times it crosses the blue line. $\frac{f(\text{orange edge}) = 1}{f(\text{green edge}) = 1 - 1 = 0}$ $E_X \quad X = S^2 \times I$. $E_X X = torus.$ Simplicial H'(X;Z)≃Z. Simplicial $H'(X;\mathbb{Z})$ generated by cocycles f and g. Generating cocycle $S \in \text{Ker } S^2$ Each tetrahedron T satisfies $\delta^{2}f(T) = \left(\frac{1-1+0-0}{5} \right)$ if T borders two blue triangles otherwise.

This is the first example we've seen where cohomology is not isomorphic to homology, since for X = Klein bottle we had Hi(X; Z) = Z = Z = i = 1O = i = 2That torsion has "jumped" from $H_1(X; \mathbb{Z})$ to $H'(X; \mathbb{Z})$ is related to Corollary 3.3.

 $a \in H_1(X; \mathbb{Z})$

 $U^* \in H^2(X; \mathbb{Z})$ with 2a = 0

with 24*=0.

More generally, for M a closed connected
nonorientable n-manifold, we have
$$H^{n}(M; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{if } M \text{ orientable} \\ \mathbb{Z}_{2\mathbb{Z}} & \text{if } M \text{ nonorientable}. \end{cases}$$

The main features of singular and simplicial homology extend to cohomology, even though maps reverse directions.

- Reduced cohomology: Apply Hom(-,G) to the augmented chain complex $\therefore \xrightarrow{2r} C_{i}(X) \xrightarrow{2r} C_{o}(X) \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow O$ $\widetilde{H}^{n}(X;G) \cong H^{n}(X,G)$ for n>0. $\widetilde{H}^{n}(X;G) \times G \cong H^{n}(X,G)$.
- Relative cohomology and the LES of a pair (X, A): Apply Hom(-;G) to the SES $O \longrightarrow C_n(A) \xrightarrow{i} C_n(X, A) \longrightarrow O$ to get the SES $O \leftarrow C^n(A;G) \xleftarrow{i} C^n(X;G) \xleftarrow{j} C^n(X,A;G) \leftarrow O$. Check surjectivity' Hom($C_n(X,A),G$) This is in fact a SES of cochain complexes (i* and j* commate with δ). The snake lemma gives a LES $\cdots \leftarrow H^{n+1}(X;A;G) \xrightarrow{i} T^n(X;G) \xleftarrow{i} H^n(X;A;G) \xrightarrow{j} S$

• Induced homomorphisms:
A map of spaces
$$f: X \rightarrow Y$$

induces $f^{\pm} : C^{*}(Y;G) \rightarrow C^{*}(X;G)$
Hom(Cn(Y), G)
 Y
Since $f_{\pm}: C_{\bullet}(X) \rightarrow C_{\bullet}(Y)$ is a chain map $(f_{\pm} \partial = \partial f_{\pm})$, $\dots \rightarrow C_{n\pm}(X) \xrightarrow{\partial M_{\pm}} C_{n}(X) \rightarrow \dots$
 $f^{\pm}: C^{*}(Y) \rightarrow C_{\bullet}(Y)$ is a chain map $(f_{\pm} \partial = \partial f_{\pm})$, $\dots \rightarrow C_{n\pm}(Y) \xrightarrow{\partial M_{\pm}} C_{n}(X) \rightarrow \dots$
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.
 $f^{\pm}: C^{*}(Y) \rightarrow C^{*}(Y) \rightarrow C^{*}(X)$ is a cochain map $(\delta f^{\pm} = f^{\pm} \delta)$.

• Homotopy invariance: If
$$f \simeq g: X \rightarrow Y$$
,
then $f^* = g^*: H^n(Y) \rightarrow H^n(X)$.
 $f = g^*: H^n(Y) \rightarrow H^n(Y)$.
 $f = g^*: H^n(Y) \rightarrow H^n($

• Excision
• Axioms for cohomology
• Singular, simplicial, and cellular cohomology
• Mayer-Vietoris LES.
$$X = int(A) \lor int(B)$$

 $\dots \longleftarrow H^{n+1}(X;G) \leq \delta$
 $H^{n}(A \cap B;G) \leftarrow \mathbb{H}^{n}(A;G) \oplus H^{n}(B;G) \leftarrow \mathbb{H}^{n}(X;G) \leq \delta$
 $H^{n-1}(A \cap B;G) \leftarrow \dots$
 $E_{X} = S^{n+1} A = D^{n+1} B = D^{n+1} A \cap B \simeq S^{n}$

The universal coefficient theorem (for cohomology)
• Cohomology groups are determined algebraically by homology groups.
• It is subtle! Derived functors (Ext).
• Ring (cup) product structure on cohomology not determined by homology.
Ex Applying Hom (-, Z) to the chain complex (

$$O \longrightarrow Z \xrightarrow{\circ} Z \xrightarrow{2} Z \xrightarrow{\circ} Z \xrightarrow{\circ} O$$

 $C_2 \xrightarrow{2} C_1 \xrightarrow{1} O$
gives the cochain complex $1 \xrightarrow{\circ} Z \xrightarrow{2} Z \xrightarrow{\circ} Z$
 $O \longrightarrow Z \xrightarrow{\circ} Z \xrightarrow{2} Z \xrightarrow{\circ} Z \xrightarrow{\circ} O$
 $C_2 \xrightarrow{2} C_1 \xrightarrow{1} O$
 $C_2 \xrightarrow{2} Z \xrightarrow{1} O \xrightarrow{2} Z \xrightarrow{1} O \xrightarrow{2} Z$
 $O \longrightarrow Z \xrightarrow{\circ} Z \xrightarrow{2} Z \xrightarrow{\circ} Z \xrightarrow{\circ} O \xrightarrow{1} O \xrightarrow{1} O \xrightarrow{1} O \xrightarrow{2} Z$
 $O \longrightarrow Z \xrightarrow{\circ} Z \xrightarrow{2} Z \xrightarrow{\circ} Z \xrightarrow{\circ} O \xrightarrow{1} O \xrightarrow{2} Z \xrightarrow{2} Z \xrightarrow{0} O \xrightarrow{2} Z \xrightarrow{1} O \xrightarrow{2} Z \xrightarrow{1} O \xrightarrow{2} Z \xrightarrow{1} O \xrightarrow{1} O \xrightarrow{2} Z \xrightarrow{1} O \xrightarrow{1}$

In general, $H^{n}(C;\mathbb{Z}) \notin H_{n}(C)$ and $H^{n}(C;\mathbb{Z}) \notin H_{0}(C),\mathbb{Z})$.

Thm 3.2 Universal coefficient theorem (for cohomology) For a chain complex C of free abelian groups, the cohomology $H^{n}(C;G)$ of the cochain complex Hom(Cn,G)is determined by the split SES

 $0 \longrightarrow \operatorname{Ext}(H_{n-1}(C), G) \longrightarrow H^{n}(C; G) \xrightarrow{h} \operatorname{Hom}(H_{n}(C), G).$

• If group A is finitely generated, $A \cong \mathbb{Z}^r \oplus (\bigoplus_{i=1}^m \mathbb{Z}_{m,\mathbb{Z}})$ then $Hom(A,\mathbb{Z})\cong$ free part of A \mathbb{Z}^r and $Ext(A,\mathbb{Z})\cong$ torsion part of A, giving: $\bigoplus_{i=1}^m \mathbb{Z}_{m,\mathbb{Z}}$

<u>Cor 3.3</u> If a chain complex C of free abelian groups has finitely generated homology H_n and H_{n-1} , with torsion subgroups $T_n \subseteq H_n$ and $T_{n-1} \subseteq H_{n-1}$, then $H^n(C; \mathbb{Z}) \cong (H_n/T_n) \oplus T_{n-1}$.

Let $Z_n := \operatorname{Ker} \partial_n \subseteq C_n$ and $B_n := \operatorname{Im} \partial_{n+1} \subseteq C_n$.

(Also a homomorphism.)

To see h is surjective, note the SES

$$O \rightarrow Z_n \rightarrow C_n \xrightarrow{2} B_{n-1} \rightarrow O$$

splits since B_{n-1} is free (abelian), as a subgroup of Cn-1.
Hence \exists projection $p: C_n \rightarrow Z_n$ restricting to identity on Z_n .
Extend $q_0: Z_n \rightarrow G$ vanishing on B_n to $q_0 p: C_n \rightarrow G$ vanishing on B_n .
This extends homomorphisms $H_n(C) \rightarrow G$ to elements of Ker δ .
Get $Hom(H_n(C), G) \rightarrow Ker \delta \rightarrow \frac{Ker \delta^n}{Tm \delta^{n-1}} = H^n(C;G)$.
 $O \rightarrow Ker h \longrightarrow H^n(C;G) \xrightarrow{n} Hom(H_n(C),G) \longrightarrow O$
Note $hs = 1$ (extend and then restrict).
Hence h is surjective and the above SES splits.

Ext(-,G) is the (first) derived functor of Hom(-,G)

Let G be an abelian group.
Hom
$$(-, G)$$
 is left exact (Hatcher Ex pg 193):
If $A \rightarrow B \rightarrow (-)$ is exact, then so is
 $O \rightarrow Hom(C,G) \rightarrow Hom(B,C) \rightarrow Hom(A,C)$.

Hom(-,G) is not exact, however. Maps SES's to SES's.

Ex Applying
$$Hom(-,\mathbb{Z})$$
 to $O \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \rightarrow \sqrt{n}\mathbb{Z} \rightarrow O$
yields $O \rightarrow O \rightarrow \mathbb{Z} \xrightarrow{n} \mathbb{Z} \rightarrow O$, which is not exact.

However,
$$Hom(-,G)$$
 is exact on free abelian groups:
If $O \rightarrow A \rightarrow B \rightarrow C \rightarrow O$ is a SES of free abelian groups,
then so is $O \rightarrow Hom(C,G) \rightarrow Hom(B,C) \rightarrow Hom(A,C) \rightarrow O$.

Def For abelian groups A and G, $Ext(A,G) \coloneqq H'(F;G)$ for F any free resolution of A. So Ext(-,G) is the first derived functor of Hom(-,G).

<u>Proposition 3F.II</u> If $D \rightarrow A \rightarrow B \rightarrow (\rightarrow O)$ is an exact sequence of abelian groups, then so is

 $\begin{array}{c} O \longrightarrow Hom(C,G) \longrightarrow Hom(B,G) \longrightarrow Hom(A,G) \\ & \overbrace{} Ext(C,G) \longrightarrow Ext(B,G) \longrightarrow Ext(A,G) \longrightarrow O. \end{array}$

Applying Hom(-,G) gives a SES of chain complexes Snake lemma gives a LES in cohomology:

 $0 \longrightarrow F_2^A \longrightarrow F_2^B \longrightarrow F_2^c \longrightarrow 0$

 $0 \to F_{i}^{A} \longrightarrow F_{i}^{B} \longrightarrow F_{i}^{C} \longrightarrow O$

 $0 \to \overline{F}^{A} \to \overline{F}^{B} \to \overline{F}^{C} \to 0$

 $0 \longrightarrow H^{\circ}(F^{c};G) \longrightarrow H^{\circ}(F^{b};G) \longrightarrow H^{\circ}(F^{A};G))$

 $\hookrightarrow H'(F';G) \longrightarrow H'(F^{\mathfrak{b}};G) \longrightarrow H'(F^{\mathfrak{c}};G))$

 $\hookrightarrow H^{2}(F^{c};G) \to H^{2}(F^{B};G) \to H^{2}(F^{A};G))$

 \underline{P} The SES $O \rightarrow A \rightarrow B \rightarrow (\rightarrow O)$ extends to a SES of chain complexes Now, recall $H^{\circ}(F^{A};G) \cong Hom(A,G)$, and $H^{1}(F^{A};G) \cong Ext(A,G)$. Also, $H^{2}(F^{A};G) = O$ Since each abelian group has a free resolution $D \rightarrow F_{1} \rightarrow F_{0} \rightarrow A \rightarrow O$ with $F_{2} = O$.

Indeed, let $F_0 \rightarrow A$ be surjective where free abelian group Fo has basis in correspondence with a generating set of A. The kernel F, of this map, as a subgroup of a free abelian group, is free abelian. Hence $O \rightarrow F_1 \rightarrow F_2 \rightarrow A$ is exact.

Thm 3.2 Universal coefficient theorem (for cohomology) For a chain complex C of free abelian groups, the cohomology $H^{n}(C;G)$ of the cochain complex Hom(Cn,G)is determined by the split SES

 $0 \longrightarrow \operatorname{Ext}(H_{n-1}(C), G) \longrightarrow H^{n}(C; G) \xrightarrow{h} \operatorname{Hom}(H_{n}(C), G).$

• Ext(A, G) = 0 if A is free. • $Ext(A, G) \cong Ext(A, G) \cong Ext(A, G)$ • $Ext(A \oplus A', G) \cong Ext(A, G) \cong Ext(A', G)$ • $Ext(Z_{nZ}, G) \cong G_{nG}$ (Next page.) • $Ext(A, G) \cong G_{nG}$ (Next page.)

• If group A is finitely generated, $A \cong \mathbb{Z}^r \oplus (\bigoplus_{i=1}^m \mathbb{Z}_{miZ})$ then $Hom(A, \mathbb{Z}) \cong$ free part of A \mathbb{Z}^r and $Ext(A, \mathbb{Z}) \cong$ torsion part of A, giving: $\bigoplus_{i=1}^m \mathbb{Z}_{miZ}$

<u>Cor 3.3</u> If a chain complex C of free abelian groups has finitely generated homology Hn and Hn-1, with torsion subgroups $T_n \subseteq H_n$ and $T_{n-1} \subseteq H_{n-1}$, then $H^n(C;\mathbb{Z}) \cong (H_n/T_n) \oplus T_{n-1}$.

• Why is
$$\operatorname{Ext}(\mathbb{Z}/n\mathbb{Z}, G) \cong G/nG$$
?
Free resolution F: $0 \to \mathbb{Z} \xrightarrow{n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \to 0$
Remove $A = \mathbb{Z}/n\mathbb{Z}$ and dualize: $0 \stackrel{\delta'}{\leftarrow} \operatorname{Hom}(\mathbb{Z}, G) \stackrel{\delta''}{\leftarrow} 0$
 $\| \| \| S \| S \|$
 $0 \stackrel{\delta''}{\leftarrow} G \stackrel{n}{\leftarrow} O$
 $\operatorname{Ext}(\mathbb{Z}/n\mathbb{Z}, G) := \operatorname{H}'(F; G) = \operatorname{Ker} \frac{\delta'}{\operatorname{Im}} \delta^{\circ} \cong \frac{G}{n} G.$

Why is
$$H^{\circ}(F;G) \cong Hom(A,G)$$
?
Since $Hom(-,G)$ is left exact, the augmented sequence
 $O \rightarrow Hom(A,G) \rightarrow Hom(F_{o},G) \xrightarrow{Si^{*}} Hom(F_{i},G)$ is exact, yielding

 $\mathbb{H}^{0}(\mathsf{F};\mathsf{G})\cong\mathsf{Ker}(\mathsf{F}^{*}_{\mathsf{L}})\cong\mathsf{Hom}(\mathsf{A},\mathsf{G}).$

$$\frac{Proof}{define} (a) \quad For each basis element x \in Fo, \\ define \quad \alpha_0(x) = x' \quad for some \quad x' \in Fo' \quad with \quad Fo'(x') = \alpha f_0(x) \quad [fo' surjective].$$

Inductively, for each basis element
$$x \in F_i$$
,
define $\alpha_i(x) = x'$ for some $x' \in F_i'$ with $f_i'(x') = \alpha_{i-1}f_i(x)$,
which exists since $\operatorname{Im} f_i' = \operatorname{Ker} f_{i-1}'$ and $f_{i-1}' \alpha_{i-1}f_i = \alpha_{i-2}f_{i-1}f_i = 0$.

$\begin{array}{c|c} \underline{\text{Lemma 3.1}} \\ \hline (a) & \text{Given free resolutions F and F' of A and A', ... \rightarrow F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_0} A \rightarrow O \\ \hline (a) & \text{Given free resolutions F and F' of A and A', ... \rightarrow F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_0} A \rightarrow O \\ \hline (a) & \text{Given free resolutions F and F' of A and A', ... \rightarrow F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_0} A \rightarrow O \\ \hline (a) & \text{Given free resolutions F and F' of A and A', ... \rightarrow F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_0} A \rightarrow O \\ \hline (a) & \text{Given free resolutions F and F' of A and A', ... \rightarrow F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_0} A \rightarrow O \\ \hline (a) & \text{Given free resolutions F and F' of A and A', ... \rightarrow F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_0} A \rightarrow O \\ \hline (a) & \text{Given free resolutions F and F' of A and A', ... \rightarrow F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_0} A \rightarrow O \\ \hline (a) & \text{Given free resolutions Given free resolutions F and F' of A and A', ... \rightarrow F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_1} F_1 \xrightarrow{S_1} F_2 \xrightarrow{S_0} A \rightarrow O \\ \hline (a) & \text{Given free resolutions fre$

Proof (a) Suppose we have two chain maps
$$\alpha_i$$
, α'_i extending α .
Their difference $\beta_i = \alpha_i - \alpha_i'$ is a chain map extending $\beta = \alpha - \alpha = 0$.
Goal Define $\lambda_i \colon F_i \longrightarrow F_{i+1}$ with $\beta_i = \alpha_i - \alpha_i' = f_{i+1}\lambda_i + \lambda_{i-1}f_i$.

For i=0, let
$$\lambda_{-1}=0$$
. For each basis element $x \in F_0$,
define $\lambda_0(x) = x' \in F_1'$ with $f_1'(x') = \beta_0(x)$,
which exists since $\operatorname{Im} f_1' = \operatorname{Ker} f_0'$ and $f_0' \beta_0 = \beta f = 0$.

Inductively, for each basis element
$$x \in F_i$$
,
define $\lambda_i(x) = x' \in F_{i+1}$ with $f_{i+1}(x') = \beta_i(x) - \lambda_{i-1}f_i(x)$,
which exists since $Im f_{i+1} = Ker f_i'$ and
 $f_i'(\beta_i - \lambda_{i-1}f_i) = \beta_{i-1}f_i - f_i'\lambda_{i-1}f_i = (\beta_{i-1} - f_i'\lambda_{i-1})f_i = \lambda_{i-2}f_{i-1}f_i = 0$.
 $\beta_{i-1} = f_i'\lambda_{i-1}f_i + \lambda_{i-2}f_{i-1}$ by induction