
Chapter 3 : Cohomology
I recommend Hatcher's intro "The idea of cohomology", pages 186-189.

-Section 3
.

1 Cohomology of spaces
W

(later we return to the universal coefficient theorem. Running example Cr + b

X =(empty)

For X a A-complex, recall simplicial homology : i av

...

- An(x)* An(x)=Am(x)+
...

- A(x)=S
,
(x)= 10(x)- 0

.

↓3

Let G be an abelian group (think G =7)
·

Def The n-cochains with coefficients in G is the group &(XG) = Hom (An(X)
, G) .

Rmk For A
,
B abelian groups, Hom(A

,
B) Ex For X above

,
S'(X : 1)= [x[x1= 1*,

is the group of homomorphisms f : A + B
.

with feS(X : 2) determined by
Group structure : For E

,gEHom(A,
B)

,
we have f(u)

,
f(b)

, f(c) EL
·

(f + g) : A + B by (f +g)(a) = f(a) +g(a) VaEA
.

Indeed
,
f(17a- 3c) = 17 f(a) - 3 f(c)·



We have a cochain complex

·.*(XiG) :6) IG... :GS'(X:6)'I x3 (G = 2)
where the coboundary map 5 : A(X : G)- A

**

(XiG)
is defined

,
for FEA"(XiG)

, by of 50 ·
(8"f = f(n+ 1) An+ (X)= An(X)= G

-
W
-

of : = fG

Ex X = cab

(empty)

i av

Let feA%Xi1) with flul= 3
,
f(v)= 7

,
f(w)= -2.

W

Then Of ES'(X; 2) satisfies -

-2

Of(a) = f0(a) = f(v- u) = f(r) - f(u) = 7 - 3 = 4
.

C

-93b
Jf(b) = f((b) = f(w- v) = -2 - 7 = - 9

.

5f(c) = f0(c) = f(u - w) = 3 - (-2)= 5
.

u
.37.



More generally ,
for feA(XiG) and r : A

*

=X

an (n+ 1)- simplex in the S-complex X,
we have

5f(r) = fa(t) = f(z(-1)"NEvo,...., . . ., un +1)
= Z (-1)"5(5)[v

,
000,i , 000

,
Un +1) ·

Note God= 0 since God = 0
.

More explicitly,
for FEA(XiG)

,
we have

Gn+ y f = Gn+

f(n+ 1
= f(n+On+ = 0

.

Def The (simplicial) cohomology group H
* (X : G)

of X with coefficients in G is Kerlon)/Im(8%)
·

For a cochain FEA(XiG) to be a cocycle means

of = fant = O
,

i
.
e. - vanishes on boundaries.



W

ExX =

a
- b ... :G)1'(X: 6) 5%:6) 8

(empty) Il Il

Hom(1z(x), G) Hom(1
,
(x)

,
G) Hom(1o(X)

,
G)

a IISa v

Hom Hom*3, 6) Hom"(*3

,
G)

*x3 *x3

H(X; 4) :== Ker5 = L

since if fe1X;1) with Of = 0
,
then

0 = Jfa = f(a = f(v) - f(u) => f(v)= f(u)
0= Ofb = fab = f(r) - f(v) = f(w) = f(v) (Seen spanning tree)
0= Jfc = fac = f(u) - f(w) = f(u)= f(w) (Not a new constraint

.
)

So f (with f(u) = f(r) = f(w)= c)
is determined by a single CEL . (Constant on each connected component.)

More generally For X a S-complex,
H° (X ;2) = X

* (# connected components of X)

H
°

(X ; G) = GX(# connected components of X

·



W
-

Ex X = cab ...XiG)* 1'(X: G)5%X: 6) y
(empty) ' E Fees
i av

H(X ; 2) =Eer1 .

W
-

Cr ab Spanning
To understand this quotient, (empty) tree
choose a spanning tree for X

.

i a v

Let gEA(Xi2) .
We can find fea(Xit) with 80f(b) = g(b) and 80f(c)= g(c)
by choosing flu)

,
f(v)

,
flu) so that f(w)-f(v)= g(b), f(u)-f(w)= g(c) ·

These choices determineof (a) = f(v)-f(u),
which need not be equal to gla) 1.

~ spanning
More generally For X a graph with forest

R edges not in a spanning forest, -
r

H(X ;2) = +R - H(X :2)=[*

H'(X ; G) = GXm
.

r

-
-



Generators for cohomology

For X a graph, H'(X : 2) is generated X=

and no, at d
by the cocycles assigning as
I to a single oriented edge not in a spanning forest

O to every other edge .

andAs

Ex H(Xi) is generated by fac
, face Kerd' = 1'(Xiz),

where fai : S
, (X) -> I by Falcia +... + (az) = C

and fao : 1
. (x)+ 1 by faolGart ...

+ (797) = 16 ·

Here faolad = 1 (so faotao) = -1) ·
We say fac is the dual cochain to the edge 96 .

Notation Fac =a

For X a 1-complex with R-simplex 5,

the dual cochain &
*

is a cocycle (i . e, in Ker Sb)
if t is maximal (i . e . has no cofaces &ET) ·



Ex X = 2-dimensional A-complex ·
H'(X : 2) is generated by the cocycle f intf
assigning 1 to each blue edge and O otherwise. :g is not a cocycle
To see fekerd' , note 5'g + 0

5'f(T) = 1 - 1 +0 -0 if T is a 2-simplexE bordering two blue edges
8 otherwise.

This generator [f] for H'(X : 1)
is dual to a generator E] for H

,
(X : 1) ·

z.Note f(z)= 1 even if we replace z with a

homologous cycle, or g
with a cohomologous cocycle.



Rmk For singular H'(X :2) where X is the

Tannulus
,

a generating cocyclef assigns to each

singular edge an "oriented count" of the # of times

it crosses the blue line.

florange edge) = 1
f(green edge) = 1- 1 = 0

I

Ex X = torus
.

Ex X=SxI
.

:

----------

Simplicial H'(X : 2) generated Simplicial H'(Xi)=X. ---------- ......

by cocycles- and g .

-
Generating cocycle

- s Sekerd2
-

Each tetrahedron T satisfies

5'f(T) =

G1- 1 + 0 - 0 if T borders two
blue triangles

0 -0 + 0 - 0 otherwise.



Example simplicial cohomology computations ou = b -

c + a

: L =

a - c + b
Ex A-complex X is a torus

,

2-cochains 1-cochains O-cochainsCochain complexcoiX:71' ( :2)5( : 1)= 0

Hom(is(x),) IIS IIS

G* ( +, a+ 12b ++3) = v*G, (t , a+ +2b+13c) Hom([*2
, 1) 2

*

↳
= v

* (t , (v- v) +((v- v) + +y(r-v)) = v
* (0) = 0

.
x2

So G °
= 0

. Gen
. by U* L* Gen. by a* b*c

* Gen
. by

*

d'a* (x
,
u++2))= a

*Gz(t ,
k+ +2) U*EA

2 (Xik) defined by U* (t
,
U++2)= 1 .

= a
* (t , (b - c+ a) + +z(a- c + b)) = t

,
+12

so J'a* = U*
+ L*. We compute H°X;) = Ker5o = 1 Gen

. by*
T⑧

Similarly ,

G'b= U
*

+ L* and S'c* -H*-L*.

H(X;<)= Er = Ker &' = &* Gen
. by a** b**

52=0 since 1(Xi2)= 0. - Gen.
En*, L* or SU*, U* +L*

H2 (Xi2) = Er 52(X:2)
=L Gen

. by Su*3 (for example)·Im &
↑ Gen.

[U*+ L*3



Example simplicial cohomology computations ou = b -

c + a

: L =

a - b + c

Ex A-complex X is a Klein bottle
.

2-cochains 1-cochains O-cochainsCochain complexcoiX:71' ( :2)5( : 1)= 0

Hom(is(x),) IIS IIS

G* ( +, a+ 12b ++3) = v*G, (t , a+ +2b+13c) Hom([*2
, 1) 2

*

↳
= v

* (t , (v- v) +((v- v) + +y(r-v)) = v
* (0) = 0

.
x2

So G °
= 0

. Gen
. by U* L* Gen. by a* b** Gen

. by v
*

d'a* (x
,
u++2))= a

*Gz(t ,
k+ +2)

= a
* (t , (b - c+ a) + +z(a=b + c)) = 1

,
+12

so J'a* = U*
+ L*. We compute HX;) = Ker° = 1 Gen

. by v*

Similarly ,

G'b= U
*
-L* and S'c* -H*L*

H(Xi2)= Er = Kero' = L Gen
. by b*c*

52=0 since 1(Xi2)= 0. - Gen.
En*, L* or SU*, U* +L*

H2 (Xi2) = Er 52(X;2) Gen . by U*

Im &

"Gen
. EUF-L*, U* + L*3 or EZU*, U* L*



This is the first example we've seen where

cohomology is not isomorphic to homology ,
since for

X = Klein bottle we had i= 0

Hi(Xi2) =Ei=
i ?Z

That torsion has "jumped" from H
.
(X ; 1)

to H(Xi2) is related to Corollary 3
.
3

. i
i

a = H
, (X; 2)

U*CH2(Xik) with 2a = 0

with 2U*
=0

.

More generally ,
for M a closed connected

nonorientable n-manifold
,

we have

H" (M ; 2) = EI if M orientable

/2 if M nonorientable.



Singular cohomology
For X a topological space, recall singular homology :

...

- (n
+
(x)* (n(x)+ (n+ (x)+

...

- G(x)= (
,
(x)=((x)- 0

.

Let G be an abelian group (think G =7)
·

Def The n-cochains with coefficients in G is the group CY(XG) = Hom (Cn(X)
, G) .

We have a cochain complex

...(
*

(X;G)(XiG)(iG)... IG) ('(X:G)(XiG) O

where the coboundary map : ("(X : G)- (**

(XiG)
is defined

,
for FEC"(XiG)

,
by8f = -On+ 1 ·

Note God = 0 since 800 = 0.

Def The (singular) cohomology group H
* (X : G)

of X with coefficients in G is Kerlon)/Im(8%)
·



The main features of singular and simplicial homology extend
to cohomology ,

even though maps reverse directions.

Reduced cohomology : Apply Hom( ,
G) to the augmented chain complex
... C

, (x)+ (o(X)= - 0

#(XiG) = H" (X
. G) for > O

·
[CiVi[Ci

F(X ; G) x G = Hi (X, G) .

Relative cohomology and the LES of a pair (X ,
A)

Apply Homb-iG) to the SES O-Cn(A)= (n(X) = (n(X
,
A)- 0

to get the SES
O = (lAiG)GAG)0

Hom (Cn"(X
,
1)

, G)

This is in fact a SES of cochain complexesegti and j commute with 5
.

The snake lemma gives a LES

#



I

↑ ~ 14
O

>
2

Induced homomorphisms ↓ Ti

u X (n(X) ((n(X)
-

A map of spaces fix-Y ..............Ginduces # : C"(YiG) -+ ("(XiG) ↓ f

Hom((n(Y), G)
a

**
-> (n+ (X)((x) +

...

Since fr : C
.
(X) -C.

(X) is a chain map (Fro = Oft)
,

"

↓ ↓

...

- (n+
(X) (n(Y) +...

Apply Hom ,
G)

... (*(X ;G)(( i6)
...

f : ((X) + ((X) is a cochain map (of#= f# 5)
.

↑f & ↑f

& Ob

= (h+ (X:G) =
F ("(XiG) =...

So f maps Kerd to Kerdy and Im G to Im G
hence inducing f* H"(X; G)+ H"(X ; G) .

Contravariant functor from spaces to groups.



Homotopy invariance : If f=

g
: X+ Y, Apply Hom)-, G),

then f* g
*: H"(X) + HY(X) · distributes over +:

9
J

Yes...
Get a cochain homotopy

E ! -

In X -- pr+y +&" = gt - f.

F Y Cr*(XiG) (XiG)e (r(XiG)
=-

AxI XxI P
(

** (XiG) ((XiG) @ (H+(YiG)
We defined a chain homotopy &P= g #

- f - PG

OnPn + Pn-in = g - f top bottom sides On cocycles, g* and #
....:

Wa differ by a coboundary,

...

+Cm(X)GCm(X
... No m

hence inducing g
* = f*.

Pr /9 Pn-1
1

..CmCCm(Y+... vor



· Excision
· Axioms for cohomology
· Singular, simplicial, and cellular cohomology

Mayer-Victoris LES
. X = int(A) vint(B)

:
Sh+

E= A bedAb



The universal coefficient theorem (for cohomology)

Cohomology groups are determined algebraically by homology groups.

It is subtle! Derived functors (Ext)
.

Ring (cup) product structure on cohomology not determined by homology.

Ex Applying Hom(-
,
2) to the chain complex (

0- 2= 4-181 , 8 Hn(c)=Si n = 0,3

" n = 1

O. Wo

gives the cochain complex E H =

Get n = 0
,
3

O= 2004-201 : 0 n = 2

" O
. W

.

In general, H"(Cit) Hn(c) and H"(( :2) Hom (Hn(c) , 2) ·



Thm3
.
2 Universal coefficient theorem (for cohomology)

For a chain complex (of free abelian groups,
the cohomology H"(( ; G) of the cochain complex Hom(Cn

,
G)

is determined by the split SES

O Ext(Hn(C)
,

G) - H" (C:G)- Hom(Hn(C)
,
G)

·

· Ext(A
,
G) = 0 if A is free

If Hn+ (2) is free
,

then h is an isomorphism.

If group A is finitely generated, A = [Q(0/miz)
then Hom(A

,
I) = free part of A I

and Ext(A
,
1) = torsion part of A , giving

: ①mi

Cor3
.
3 If a chain complex C of free abelian groups has

finitely generated homology Hn and Hn
,
with torsion subgroups

ThEHn and TrHn
,

then Hr(C:) = (Hn/Tn) Th
.



Let Zni-KerOnECn and Bri= ImOnECn
.

Define h : H" (CiG)- Hom(Hn(c)
,

G) as follows.
Let [r]eH"(CiG)

·

So 4 : Cn + G with O=G= 10,
so a vanishes on Bn .

The restriction 40
: En+ G induces Go : En/Bn - G

,
i .

e.-Hom(Hn(C), G)
· itHu(c)

If He Im, say U=y = 40,
then 4 is zero on En

,
soTo = 0.

Hence h : H"(( ; G) + Hom(Hn(C) , G) is well-defined

[m] 114o

(Also a homomorphismal



To see h is surjective,
note the SES

0- ZnaCn= Brg

B .

so Free

splits since Bn- is free Labelian)
,

as a subgroup of Cn+.

Hence 7 projection p : (n-> En restricting to identity on En
.

Extend 40 : En+ G vanishing on Bn to Hop
: (n- > G vanishing on Bn .

This extends homomorphisms Hn)C)->G to elements of Ker 8

Get Hom(Hn(C)
,
G)-> Kero-ro = H"(C;G)

·

0 - Kerh-H" (C : G)= Hom(Hn(c)
,
G)- 0

F.........

Note hs = 1 (extend and then restrict)
·

Hence h is surjective and the above SES splits .



Ext(
, G) is the (first) derived functor of Hom

,
G)

Let G be an abelian group.

Hom(-
,
G) is left exact (Hatcher Ex pg 193) :

If A + B+-O is exact
,

then so is

0- Hom(C
, G) - Hom(B

,
c) - Hom(A

, C).

Hom(-
,
G) is not exact

,
however.

Maps SES's
*

to SES's
.

Ex Applying Hom)-
·
2) to 0- 1=-hi+ 0

yields 0 -0-7*+O
,

which is not exact.

However
,
Hom(- ,

G) is exact on free abelian groups :

If O+ A + B + C-O is a SES of free abelian groups,
then so is 0-Hom(C

, G) + Hom(B
,
c) - Hom(A

, C) -> 0.



A free resolution of an abelian group A is a chain complex
..
- F2+ F+ Fo+ 0

of free groups with a map Fo-A such that

..
- F2+ Fi+ FoxA + 0 is exact

.

This replaces a (complicated) abelian group A (Later : Can choose F2 =0
.)

with simpler groups on which Hom(-
,
G) is exact.

Let H " (FiG) be the cohomology of the cochain complex
0- Hom(Fo

,
G)- Hom(F

,
G) + Hom (Fz

,

G)+ ...

Language H"(- : G) is the n-th derived functor of Hom)-,
G) .

Exercise HFiG)= Hom(A,
G).

Lemma 3.
(a) Given free resolutions F and F' of A and Al ...

- F - F
,
+ Fo + A+ 0

every homomorphism &: A +A extends to a ↓ a I v h
chain map from F to Fl

...

- F+ Fi + Fo+ A+ 0

Any two such chain maps are chain homotopic .

(b) For any two free resolutions F
,
F' of A,

there are canonical isomorphisms H " (FiG) = H
*

(FG) An
.



a

Def For abelian groups A and G
,

-
Ext(A

, G) := H (FiG) ↓

for F any free resolution of A
.

0-- - F- 0
So Ext)-

,
G) is the first ↓ ↓ ↓

derived functor of Hom)-
,

G). 0 - F1 -> F- F +0

↓ ↓ ↓

Proposition 3F. I j j j
If O+A+ B+-O is an exact

sequence of abelian groups, then so is Applying Hom(-G) gives a SES of chain complexes
Snake lemma gives a LES in cohomology:

Hom+0

Pf The SES O+ A+ B+ (+O ·
extends to a SES of chain complexes



Now
,
recall HO(F*; G)= Hom(A,

G),
and H'(ft ; G) =: Ext(A

, G) .

Also
, H2(FA;G) = 0

since each abelian group has a free

resolution 0+ F,
-> Fo + A+ 0

with F2 = 0
.

#

Indeed
,
let For-A be surjective where

free abelian group Fo has basis in correspondence
with a generating set of A.
The Kernel F, of this map,

as a subgroup
of a free abelian group,

is free abelian.

Hence O+F
,
+ Fz +A is exact.



Thm3
.
2 Universal coefficient theorem (for cohomology)

For a chain complex (of free abelian groups,
the cohomology H"(( ; G) of the cochain complex Hom(Cn

,
G)

is determined by the split SES

O Ext(Hn(C)
,

G) - H" (C:G)- Hom(Hn(C)
,
G)

·

· Ext(A
,
G) = 0 if A is free Consider the free resolution O -A+A+ 0.

· Ext(A*A,G) = Ext(A
,
G)Ext(A ! G) Direct sum of free resolutions + F

1
+ Fo -> A+ 0

Ext(#, G) = G/nG (Next page .) --+ 0

If group A is finitely generated, A = [Q(0/miz)
then Hom(A

,
I) = free part of A I

and Ext(A
,
2) = torsion part of A , giving

: ①mi

Cor3
.
3 If a chain complex C of free abelian groups has

finitely generated homology Hn and Hn
,
with torsion subgroups

ThEHn and TrHn
,

then Hr(C:) = (Hn/Tn) Th
.



Why is Ext(#, G) = G/nG ?
Free resolution F : 0-27+ 4/2+ 0

Remove A= and dualizes O Hom(I
,
G)Hom(

,
G)- O

Il Il

Or = so
Ext(

, G) : = H(F ;G)er/Im50EYnG .

Free resolution -> F2*,F Fo A
.

Recall H*(FiG) is the cohomology of the cochain complex
0- Hom(Fo

,
G)# Hom(F

,
G)) Hom(Fz

,

G)+ ... Language n-th derived functor

Why is HOFiG)= Hom(A,
G) ?

Since Hom(-
,
G) is left exact

,
the augmented sequence

0- Hom(A
,
G) -> Hom(Fo

,G)Hom(Fi , G) is exact
, yielding

Ho(FiG) = Ker(f) = Hom(A, G) .



Lemma 3. ↑ e
fo(a) Given free resolutions F and F' of A and Al ...

- F2 * F,
E Fo + A+ 0

every homomorphism &: A +A extends to a Hm 10.1 How ha
chain map from F to Fl. ...FFiF A+ 0

Any two such chain maps are chain homotopic .

(b) For any two free resolutions F
,
F' of A,

there are canonical isomorphisms H " (FiG) = H
*

(FG) An
.

Proof (a) For each basis element = Fo
,

define do(z)= z' for some 'EFo' with folk')= &fold) [fo surjective]
·

Inductively ,
for each basis element Fi,

define di(z)= z' for someFi with Fi(z)= dinfila,
which exists since Imfi = Kerfit and Fitti = dizfitfi = 0.



Lemma 3.
(a) Given free resolutions F and F' of A and Al ...

- F * F,
Es FoA+ 0

ti

every homomorphism &: A +A extends to a 1 B2 13 ,

to 1Bot 130
chain map from F to Fl. ...FiForA+ 0

Any two such chain maps are chain homotopic .

Proof (a) Suppose we have two chain maps do
,
d. extending.

Their difference B := -! is a chain map extending B =

a - = 0
.

Goal Define12: FitFit with Bi = did = Fili + Liti ·

For i=0
,
let 1-1 =0

.
For each basis elementFo

,

define to(z)= x'EFi with filz)= Bolz),
which exists since Imfi = Ker to and foBo = Bf = 0.

Inductively ,

for each basis element Fi,
define tilt) = r'eFil with file)= Bila)-ti-fild),
which exists since Im fit = Kerf: and

Filbi-mfil = Brifi-fitti = (Bi-fitfitiz fin fi = 0 .

Bit = fitz-izfi1 by induction


