
Section 3
.
2 Cup Product

Thepicture
of

ey
a

0 O
Let X be a space.
Let R be a ring (often IR

,
Q

,
or7).

·
VI

We'll define a cup product structure 02 V

HR(X : R) = He (XiR) = HR+ (Xi R), · Vz
·

VI

making H*XR) a (graded) ring .

1 1 v

First
,

define(R(X; R)x("(XiR)= C
Me(X: R) with

V..
-> X

(6 , 4) < buy

guy acting on a singular simplex :X by 1 Z v

(eop)(f) = 4) dive ....3) y (W.... Vote])
.

· Vz

4 Vz .

product in R

13 V, · V3

The product on cochains feels unnatural
,

V. V4

but we'll it induces a map on cohomology.

Vz .

Certainly Cry * = Uvry eCre(X; R)
.

22 V, · V3

But for R commutative andHR(XiR)
,

BeHe(XiR), V. V4

we'll see dub = (1)reBud .



Lemma 3
.
6 Glyup)= (5vp)+ (1)

*

(avop) Aside : O(Xxy)= (0X+Y) v(Xx y)
for yeCR(XiR) and yeCl(XiR) ·

Y

Pf Let r : Arte+
-> X

.
Note

X

Glaup)(r) = (avy)(dr) Consequences
=[R()(4)(Nivo,..,...,Va+e+]) If 4 and y are cocycles,
=Zo (1)" patro ........Vrai) 4/svra

, .... vm+e) then so is very since

(D" p(svo
, ..., Vm])4(5/Evr, ...,

,
. . .,

Vi+e+
1)
· 5(yup)= (5vp)+ (1) (avy) = 0

.

" ↳

Note (Gevp)(r) = Ge (stro
...,

vm+) 4) vra ...,
Va+e +1) The cup product of a cocycle and

=Z-1")utvo
, ........Vre])4(Svr....text)

. a coboundary is a coboundary .

Case 1 -Oy = G(yup) if S= 0
.

Note (1)*(yudy)(r)= (-1)y(utvo
, ...,

vr]) Gy (fivm
..... va+ e+) cocycle coboundary

= (p(utvo
, ...,
vm])[(-1)*(tm........,Va+ e+) Case] Jyru =(eup) if Ey= 0

.

=I putvo...Vr])y(tm
, ...,,...,

Vr+ e+)
.

coboundary cocycle

Hence we get an induced map on cohomology:
Hence we're done after observing the HR(XiR) = He (X; R) v

, HR+e(X ; R) ·
i= k+ 1 term in Jery cancels with the Associative and distributive (also on cochains)

.

i= term in C-1R(v84).



Example 3.
7 M orientable surface genus g . = Simplicial 4

By UCT or Theorem 3
.
5 Con cellular cohomology), ⑧

H(MiL)= Hom(HilM)
,
G)=Syng -singular UI

= simplicial 4,

What is the cup product H'(M:)xH(M :2) H2(M;1) ?

singular e
H

,
(M) generated by cycles a

,
b,
..., ag , by .

&

H'(Mil) generated by dual cocycles 41 , Y, . .

., 4g , Yg ·

Simplicial Hu(M) generated by cycle ?
the sum of a -simplices with t signs indicated.

Simplicial H(M:) generated by dual cocycle &

mapping one such I-simplex to its sign.

(e , up.
)(c) = 1 generating [ = [vi)-[4) = [v] Dan h

(p
,
vq)(c) = - 1 => [4 , ]v [n] =

- [r]
.



More generally, = Simplicial 4

⑭
InrItiS = S[] =-I =singular Ur

[i]vni] = 0 Vij · =simplicial 4,

[Ni]vIN] = O Vij . singular e
By distributivity ,

this determines ⑭
A

H'(M:2)xH(M :2) H2(Mil) completely .

Rmk Nonzero cup products occur here precisely

This works even for [Gi]v[n] = 0 after deforming

when the corresponding singular "loops" intersect.

Diant
one copy to be disjoint from the other

.



Example 3.
8 N nonorientable surface genus g .

i = 0 ⑨
Recall HilN)eSi= 43

Uz

i ? 2
.

· ·
Cellular homology with */22 coefficients gives 44

4/2t i = 0 Hi

Hil: )=S genby ana
O

By the UCT, we have a split SES
0- Ext(Hn- (N)

,
G)- H(NiG)-> Hom(Hn(N)

,
G)+ 0

. Choosing G=*/24 gives

Recall Ext(EiG)= O since I is free· HeSgenby-Recall Ext(/zi G)=/2G
.



Example 3.
8 N nonorientable surface genus g .

What is the cup product 43
⑨

H'(N;*(x) xH'(N ;
*(2) v

< H2(N;x) ? Uz

(vii) (c) = 1 => [i]ue]= [2]. ·
44

For itj
,
live; =O on all 2-chains a=> [li] [ej] = 0

.

Rmk Nonzero cup products occur here precisely
when the corresponding singular "loops" intersect.

This works even for [i] vin) = 1 since any
deformation has at least one intersection point.

dimension or degree
4/2

Rmk When g = 1
,

we get H
*

(RP2;)= EE]/(02) where 181=1 (OCH'IP" : [2)) ·
More generally,

H* (IRP" ; (2) = Xz[o]/lot) and H*PO; 12)= Dzto] where 10) = 1 (Thm 3
.

19).



Prop 3
.

10 For a map fix
+Y,

the induced maps
&* H"(XiR)- H

" (X ; R)

satisfy f
* (0uB) = f* (d) v f* (B) .

X= S'xSxS'

Y= SxS

f·
It

.
En

.Fa)t(t· f)

& B

Pf This follows from the cochain-level formula
(f +y - f+ 4)(u) = f +(t(tro ,...,

vn]) f*P(rEvm,..., va+es)
= e(fuivo

, ...,vn])y(fulsvm ...., va+e)
= (u -y)(fr)
= f (u - 4)(r) .



Thm 3
.

11 For R a commutative ring,
Cn+ (x)

0
< Cn(X)0 > (n+ (X)

ruB = (1) reBur for all reHR(XiR)
,
BeH(XiR) .

te is ↓

Cn+ (x)" o < (n(X)"os(n+ (X)
PS We'll build a chain map g : Cn(X) -Cn(X),
chain homotopic to the identity (1 pg proof in Hatcher)

Chence 9
* ("(X)-> ("(X) is chain homotopic to the identity), (

**

(x) +
o ("(X) +

0 C"(x)

satisfying g
*

y vg
*

p
= (1) reg* (p -4)

·

l*
*

/g*
-

le*

(
**

(x) =

-
("(X)= C"(x)

Passing to cohomology gives [M]v[t] = (DRe[H]v[n]
·

How to define g
: Cn(X)-> Cn(X) ? Note

The linear map Evo.....]-I, ....
vo] (g*

yug
*4)(r)

is a product oft transpositions/reflections
.

=

g
*(avo

....,
vs) p

*y(rivm....,
va+e])

Forw a singular n-simplex, let o be = ()4(Herm ....
vo) (1) Private

....,
vns)

- precomposed with this linear map. Private
....

vn3) 4 (werm
....

vos) [R commutative]
Let g(r) = (1)*F urme

....
r)) 4(Herm ....

vos) [Reyme = 1)
.1 1 = (1)kg* (yvy)(r) .

3 reflections ↓
· X

022 ↑

J



Thm 3
.

11 For R a commutative ring, ⑭
ruB = (1) reBur for all reHR(XiR)

,
BeH(XiR) .

Ex For R odd anda= BeH
*
(XiR),

210rd) = 202 = 0 in H2(Xi R).
So if H2

R (X ; R) has no elements of ⑭
order two

,
then a = 0

.

Ex d= 0 for any
del' (M ; 1) for

M an orientable surface of genus g.

[i]vni] = 0 Vij ·
[Ni]vIN] = O Vij .

Ear =-I fican
is

For example,
(Ini] +[vi])= [4:]2 + (MiSc[U;] + (vi) [y:] + [xi] = 0.



The cohomology ring

Define H*(X : R)=o
H

: (X; R)
Elements Zio : are finite sums

,
diH'(XiR).

Addition : Zidi + ZiBi = ZiditBi
Multiplication : (Zidi) (ZiBi) =Zid= ZrzoZi diuBi .

This makes H* /X: R) a ring ,
with an identity if R has an identity .

It is a graded ring: AE Am with Are Arte
.

An element atAm has dimension or degree lal= k
. ruB = (1) reBud for

Many elements of A do not live in some Am .
deHR(XiR)

,
BeHP(XiR)

,- R commutative .

If ab = (1) ba for actial
,
betia

,
as in Thm 3

.

Il
,

then the graded ring A is referred to as

commutative
, graded commutative

,
anticommutative

, or skew commutative
.



What are some example graded commutative rings ?

Ex 3
.
12 Polynomial rings RIG] and RIO/(at) with 1 even or 2=0 in R.

-

Recall from Ex3
.

8 (with genus g= 1) that H(RP" ; 42) = &En i= 0
,

1
,
2

an= [n]
sa

O . W .

where if a generates HLRP2 ; [2), then o generates HRP2 ; [2)·
I

H
*

(RP2;)= 32d + 2
,
0 + colcieta (cd+ (

,
++ c)(d20+ d

,
d+ do)

= []/(d where 1 = 1
.

= (ado + C ,
d

,
+ Code) d +(,

do + Codi) a + Codo

Economic representation.

H* (IRP" ; (2) = z[o]/at and H */RPO ; 12)= Dzto] where 10) = 1 (Thm 3
. 19) ·

H* (CP2 ; 2)=[a]/a+ and H*CPO; LEDto] where 10) = 2 (Thm 3
. 19) ·

H
* )TERPO ; [2) = Kild

.....
en] where (d) = 1 (Example 3

.20).



Ex3
.
13 Exterior algebras Apto, ...,

in] with Idi odd
.

Let R be a commutative ring with identity 1 .

The exterior algebra ApId ...., an] is the free R-module

with basis the finite products Ordin ... din
,

i.e ... in

with associative
,
distributive multiplication defined by

did; = -4; % for it; and ? = 0.

The empty product of dis is the identity,
denoted 1

.

Arld ,..., an] is graded commutative if Idi is odd Vi
.

sH* (Sixs' : 2) = Ax[o ,
B) with InFlBl = 1 (EX3.

7)
.

& B

The cohomology of it is not of this form-why ?

H * ((S)"ik) = Azto
, ....n] with 10 :11 Vi (Ex 3

. 16).

Product of odd spheres
H* (Th Sit) = Asta, ...,

an] with 10) = 2ki + 1 Vi.



Recall induced homomorphisms are ring homomorphisms (Prop 3. 10)
.

For example :

Ex 3
.
14 The inclusions is : Xo-> Lok

induce a ring isomorphism H* (HoXoiR) < ToH *(XoiR)
coordinate-wise multiplication

Similarly FF* (VoXoi R) =
c MoF*(XoiR) as rings.

Realization problem
Reduced cohomology is cohomology relative a basepoint .

Which graded commutative
To get = we assume basepoints foo are deformation R-algebras occur as cup

retracts of neighborhoods,
i

.

.e
.,
the (X+

,
20) are good pairs. product rings H* (X; R)

for some space X ?

Ring structures can distinguish spaces from wedge sums. · R=Q
, essentially all

Consider CP2= S'UgD" with f : 53-52 the Hopf map (Quillen 1969)

and S2 vS4
.

R= Xp , p prime ?
Hi (S2 -SY) = (7i= 0

,
2

, 4) = H
: (CP : 4) · R= ??

O O . W.

Note H*(CP2;)=F[d]/(03) with 161=2 has nontrivial cup products (d + 0),
whereas SivS" does not (F*SS" ; 2) = #

*(5 ; 1) F*S":1)
·



More generally (see S4
.
B on the Hopf invariant), Furthermore

,

H:m(s")+I
let n =2

.
For f :S+S"

,
let Cs : S"vfD2 is a homomorphism (Prop.

4B
. 1)

and Izn-(S") contains I as

For fig :S"
-S"

,
if fig ,

then Ca = (g . a direct summand for n even

Conversely , CfFCg implies FFg . (Cor 4B.2) ·

LetdeH"(Cfik)= 1 and BeH"(Cit)=[ Thm (J
.

F
.

Adams
,
1960) A map

be generators (choose the sign of B carefully)· figin-1-g" with Hopf invariant
The Hopf invariant of f is the integer H(f)= 1 exists only when n = 2

,
4

,
8·

H(f) satisfying & = H(f)B.
an algebra over a field with

Consequences / division (except by 0

f nullhomotopic => Cf = S"vSE and H(f)= 0
.

IR" is a division" algebra only for n= 1
,
2

,
4
,

8.
.

f:S+ 92 the Hopf map = (f = CP2 and H(f)= 1
.

S" is an H-space only for n= 0
,

1
,
3
,
7·

· For n odd
,

d = -&, hence d= 0 and H(5) = 0. S"hasa linearly independent rector

For n even
,
the Hopf invariant distinguishes infinitely fields only for n= 0

,
1
,

3
,

7.

many homotopy classes of maps Sin-> S · The only fiber bundles SP+59-st

Soen-(S4) is infinite for n even occur when (p ,g, r) = 10,
1
,

1)
,

(1
,
3
,

2),
(3

,
7

,
4)

,
and (7,

15
,

8).



E

A kunneth formula ↓ Pi
Is the cross product an isomorphism ?
Not even a ring homomorphism ,

since

R a commutative ring and X
,
X spaces. r(a

,
b) = (ra, rb)1 <

< rp*(a) vrp*(b) = r(axb)
·

Projections p: xxy+X P . (v, y)=v

P : XXy+ y Pc(x, y) =

y Transform this R-bilinear map into an

R-linear one by replacing H*(X:R)xH*XIR)
The cross product is the map with the tensor product H* (X;ROH*(X; R)

·

↑
H*(X: R) x H*(X: R) -c H *(X+Y, R) given by not yet defined

(a
,
b) 1 (axb := p(a)up(b) .

Thm 3
.
15 The cross product

Since the cup product v is distributive, H*(X; R) @pH*(X: R) =c H *(X+Y; R)
the cross product X is bilinear :

gen .
(a

,
b) i caxb := p(a) up(b)

(ra+ r'a)) x b = r(axb) + r' (a x b) is a ring isomorphism if
ax (rb+ r 'b') = r(axb) + r'(a+b) X

, X are CW complexes and H*(X; R) is

FreR
,

at H*(XiR)
,
beH* (YiR)

.
a finitely generated free R-module XR.

&E (ratra) xb = p .

* (ra+ r'a) vp.* (b) = (rp , * (a) + r'p,(a)) upc
*(b)

= r(p .

* (a) up* (b)) + r'(p# (a)+ p=(b)) = r(a + b) + r' (a x b)
.



Universal property
For M and N R-modules,
the tensor product MORN is an R-module

equipped with a bilinear map MXNMORN
such that

aMQrN

MXNa Le
- P

for each bilinear MxM B
:

P.




