Persistent equivariant cohomology arXiv 2408.17331

Henry Adams University of Florida

Joint with Eugeniya Lagoda, Michael May, Nikola Sadovek, Adi de Saha

Early reference: Maia Fraser, arXiv 2015 Loring Tu: "What is equivariant cohomology?"

Setup Ex $H_{G}^{*}(pt) = H^{*}(I^{EG \times pt})/G) = H^{*}(I^{EG}/G) = H^{*}(BG),$ G a topological group Filtration of G-spaces $Y_1 \hookrightarrow Y_2 \hookrightarrow \dots \hookrightarrow Y_{k-1} \hookrightarrow Y_k$ BG is called a <u>classifying space</u> $G \rightarrow EG$ Apply G-equivariant cohomology Since every principal G-bundle is a pullback of $H^{*}(Y_{1}) \leftarrow H^{*}(Y_{2}) \leftarrow \dots \leftarrow H^{*}(Y_{k-1}) \leftarrow H^{*}(Y_{k})$ ΒG Ex X a G-metric space $\gamma \rightarrow pt$ gives $H_{g}^{*}(\gamma) \leftarrow H_{g}^{*}(pt) = H^{*}(BG)$ (\mathbf{A}) $VR^{m}(X;r_{i}) \hookrightarrow VR^{m}(X;r_{i}) \hookrightarrow ... \hookrightarrow VR^{m}(X;r_{h})$ a module structure over the ring H*(BG). This is realized by \bigotimes when $Y_{ik} \ge \text{diam}(X)$. Borel equivariant cohomology GAY. When action is free, $H_{4}^{*}(Y) = H^{*}(Y_{4})$. More generally, let EG be a contractible space on which G acts freely. The diagonal action of G on EGXY is free Define Borel equivariant cohomology as $H_{G}^{*}(Y) := H^{*}((E_{G} \times Y)/G)$

.

An incorrect guessCorrect theorem
$$S' \in \mathbb{C}$$
 acts freely on $S^{2h+1} \in \mathbb{C}^{k+1}$ by multiplication: $\lambda(z_1, ..., z_{k+1}) = (\lambda z_1, ..., \lambda z_{k+1})$. $H_{S'}^*(VR^*(S';r)) \cong (\frac{\mathbb{Z}[u]}{13\cdot 5 \cdots (2k+1)u^{k+1}} + \frac{2\pi r}{2k+3} = r - \frac{2\pi (k_1)}{2k+3})$ $S' \hookrightarrow S^3 \hookrightarrow S^5 \hookrightarrow S^7 \hookrightarrow ... \hookrightarrow S^\infty \cong *$ where $deg(u) = 2$. $Z[u]$ if $r \ge r_r$. $S' \hookrightarrow S^3 \hookrightarrow S^5 \hookrightarrow S^7 \hookrightarrow ... \hookrightarrow S^\infty \cong *$ where $deg(u) = 2$. $E[ements of proof$ $F' = S^\infty$ $BS' = S^\infty/S' = \mathbb{C} P^\infty$ $S^{2k+1}/S' = \mathbb{C} P^k$ $H_{S'}^*(S^{2k+1}) = H^*(\mathbb{C} P^k) = (\mathbb{Z}[u]/u^{k+1} + k < \infty)$ $E[ements of proof$ $H_{S'}^*(S^{2k+1}) = H^*(\mathbb{C} P^k) = (\mathbb{Z}[u]/u^{k+1} + k < \infty)$ $E[ements of proof$ $Where deg(u) = 2$. $VR^m(S'; r) \cong S_1^* + S_2^* + S_3^* + ... + S_{2k-1}^{1}$ $= S(\mathbb{C}^{k}_{1,3,...,2k-1})$ $= S(\mathbb{C}^{k}_{1,3,...,2k-1})$ $H_{S'}^*(VR^m(S'; r))$ looks like ?where $\lambda(z_1,..., z_k) = (\lambda z_1, \lambda^2 z_2, ..., \lambda^{2k-1} z_k)$.No; the action is not free. $Serre$ spectral sequence e Gysin homomorphism (Gradurilie pot)

