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1. Introduction

1.1. JPlex. JPlex is a Java software package for computing the persistent homology of filtered simplicial
complexes, often generated from point cloud data. The authors are Harlan Sexton and Mikael Vejdemo
Johansson. This is a tutorial for using JPlex with Matlab. There is a similar document for using JPlex
with BeanShell. Please email Henry with questions about this tutorial. Some of the exercises are borrowed
from Vin de Silva’s Plexercises at http://comptop.stanford.edu/u/programs/Plexercises2.pdf. Other
sources of information about JPlex are the javadoc tree for the JPlex library (http://comptop.stanford.
edu/programs/jplex/files/javadoc/index.html) and the CompTop website (http://comptop.stanford.
edu/programs/).

If you are interested in JPlex, then you may also be interested in two other software packages that compute
persistent homology. The first is Dionysus (http://www.mrzv.org/software/dionysus) by Dmitriy Moro-
zov. The second is Javaplex (http://appliedtopology.github.io/javaplex/) by Andrew Tausz, Mikael
Vejdemo Johansson, and Henry Adams. Andrew Tausz and I have written a similar tutorial for Javaplex,
available at http://www.math.duke.edu/~hadams/research/javaplex_tutorial.pdf.

1.2. Accompanying files. This tutorial should be accompanied by the following files, available at the
TMSCSCS website above.

(1) betti2vect.m

(2) commandListMatlab.rtf

(3) coreSubset.m

(4) dct.m

(5) eulerCharacteristic.m

(6) exerciseAnswersFigures.pdf

(7) exerciseAnswersMatlab.rtf

(8) interval2mat.m

(9) kDensitySlow.m

(10) maxminLandmarks.m

(11) PlexMatlabTutorial.pdf

(12) pointsFigure8.m

(13) pointsRange.mat

(14) pointsTorus.m

(15) startJPlex.m

PDF file (11) is this tutorial. Text file (2) lists all commands in this tutorial, so that you may copy and
paste commands into the Matlab window, or into a Matlab m-file script. Text file (7) has answers for the
exercises in this tutorial, and PDF file (6) contains some figures to accompany the answers.

The remaining files are Matlab files. M-file (15) is a script: it is simply a shortcut that calls a sequence of
Matlab commands. M-files (1), (3)-(5), (8)-(10), (12), and (14) are functions: they accept input and produce
output. Writing your own such scripts or functions can be very useful. MAT-file (13) contains data.

1.3. Installation for Matlab. Open Matlab and check which version of Java is being used. In this tutorial,
the symbol >> precedes commands to enter into your Matlab window.

>> version -java

ans = Java 1.5.0 13 with Apple Inc. Java Hotspot(TM) Client VM mixed mode, sharing

JPlex requires version number 1.5 or higher.

Copy Matlab files (1), (3)-(5), (8)-(10), and (12)-(15) from §1.2 into the current Matlab directory.
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Copy plex.jar into a directory of your choice. If you choose the current Matlab directory, then you do not
need to edit m-file startJPlex.m and can skip the rest of this paragraph. Suppose instead you have chosen
the directory /Users/myName/. Open the m-file startJPlex.m, which contains the following lines.

javaaddpath(’plex.jar’)

import edu.stanford.math.plex.*;

Replace ’plex.jar’ above with ’/Users/myName/plex.jar’ (substitute the path of your chosen directory).
Save startJPlex.m.

Run the startJPlex.m file.

>> startJPlex

Installation is complete. Confirm that JPlex is working properly with the following command.

>> Simplex.makePoint(1, 2)

ans = <(2) 1> % You should get this answer

Each time upon starting a new Matlab session, you will need to run startJPlex.m.

Note: for fairly trivial technical reasons, the version of plex.jar that you downloaded from the TMSCSCS
website may not give you the correct answers for the circle and 6-sphere examples in §3.2. If this is the case,
please email Henry at henry.adams@colostate.edu to get a different plex.jar file which will give you the
correct answers for these (and all other) examples.

2. Math review

Below is a brief math review. For more details, see [2, 5, 7, 10].

2.1. Simplicial complexes. An abstract simplicial complex is given by the following data.

• A set Z of vertices or 0-simplices.
• For each k ≥ 1, a set of k-simplices σ = [z0z1...zk], where zi ∈ Z.
• Each k-simplex has k + 1 faces obtained by deleting one of the vertices. The following membership

property must be satisfied: if σ is in the simplicial complex, then all faces of σ must be in the
simplicial complex.

We think of 0-simplices as vertices, 1-simplices as edges, 2-simplices as triangular faces, and 3-simplices as
tetrahedrons.

2.2. Homology. Betti numbers help describe the homology of a simplicial complex X. The value Bettik,
where k ∈ N, is equal to the rank of the k-th homology group of X. Roughly speaking, Bettik gives the
number of k-dimensional holes. In particular, Betti0 is the number of connected components. For instance,
a k-dimensional sphere has all Betti numbers equal to zero except for Betti0 = Bettik = 1.

2.3. Filtered simplicial complexes. A filtration on a simplicial complex X is a collection of subcomplexes
{X(t) | t ∈ R} of X such that X(t) ⊂ X(s) whenever t ≤ s. The filtration time of a simplex σ ∈ X is the
smallest t such that σ ∈ X(t). In JPlex, filtered simplicial complexes are called streams.

2.4. Persistent homology. Betti intervals help describe how the homology of X(t) changes with t. A
k-dimensional Betti interval, with endpoints [tstart, tend), corresponds roughly to a k-dimensional hole that
appears at filtration time tstart, remains open for tstart ≤ t < tend, and closes at time tend. We are often
interested in Betti intervals that persist for a long filtration range.

Persistent homology depends heavily on functoriality: for t ≤ s, the inclusion i : X(t) → X(s) of simplicial
complexes induces a map i∗ : Hk(X(t))→ Hk(X(s)) between homology groups.
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3. Streams

3.1. Class SimplexStream. In JPlex, filtered simplicial complexes are called streams and are implemented
by the class SimplexStream. The subclass ExplicitStream allows us to build a SimplexStream instance from
scratch. In §5 we will learn about subclasses RipsStream, WitnessStream, and LazyWitnessStream, which
construct SimplexStream instances from point cloud data.

3.2. Subclass ExplicitStream and homology. Since JPlex is designed to compute persistent homology,
it is not the most efficient software (notationally or computationally) for computing homology.

Circle example. Let’s build a simplicial complex homeomorphic to a circle. We
have three 0-simplices: [1], [2], and [3], and three 1-simplices: [12], [23], [31]. To
build a simplicial complex in JPlex we simply build a stream in which all filtration
times are zero. First we get an empty ExplicitStream instance.

>> s1 = ExplicitStream;

Many command lines in this tutorial will end with a semicolon to supress un-
wanted output as below.

>> s1 = ExplicitStream

s1 = edu.stanford.math.plex.ExplicitStream@b138fc

Next we add simplices using the method add. Two inputs are required: a matrix
whose rows contain the simplices to be added, and a vector listing the corresponding filtration times. We
choose all filtration times to be zero as we are building a simplicial complex instead of a stream.

>> s1.add([1;2;3], [0;0;0]) % adds 3 vertices: [1], [2], and [3]

>> s1.add([1,2;2,3;3,1], [0;0;0]) % adds 3 edges: [12], [23], and [31]

Let’s inspect what we’ve built. The object s1.dump(k) contains information about the k-simplices of s1.
We display the 1-simplices and their filtration times.

>> s1.dump(1).C % C stands for cell

ans =

1 2

1 3

2 3

>> s1.dump(1).F % F stands for filtration

ans =

0

0

0

Our s1, like any ExplicitStream instance, has two states: open or closed. The state is automatically set
to open whenever we edit or view the simplices of s1. We must manually close s1 before computing its
homology.

>> s1.close

The strange command names for computing homology will make sense later when we compute persistent
homology.

>> intervals = Plex.Persistence.computeIntervals(s1);

>> Plex.FilterInfinite(intervals)

ans = BN{1, 1}
The result BN{1, 1} means that s1 has Betti0 = 1 and Betti1 = 1, which are the Betti numbers of a circle.
(If you instead get BN{1}, email Henry at henrya@math.stanford.edu to get a different plex.jar file.)
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6-sphere example. Let’s build a 6-sphere, which is homeomorphic to the boundary of a 7-simplex. Adding
the simplices manually as we did in the circle case would be very tedius: there are 8 vertices, 28 edges, 56
triangles, etc. Instead, we start with a 7-simplex that has no faces. We add its faces using the method
ensure all faces. Then, we remove the 7-simplex, leaving only its boundary.

>> s6 = ExplicitStream;

>> s6.add(1:8, 0) % 1:8 is the matrix [1,2,...,8]

% adds the 7-simplex

>> s6.ensure all faces

>> s6.remove(1:8)

How many 3-simplices did we avoid adding manually?

>> size(s6.dump(3).C)

ans = 70 4 % 70 3-simplices

We compute the homology.

>> s6.close

>> intervals = Plex.Persistence.computeIntervals(s6);

>> Plex.FilterInfinite(intervals)

ans = BN{1, 0, 0, 0, 0, 0, 1}
We get nonzero Betti numbers Betti0 = Betti6 = 1. (If you instead get BN{1}, email Henry at henrya@

math.stanford.edu to get a different plex.jar file.)

The following command tells us that we have been computing homology over the coefficient field Z11.

>> Persistence.baseModulus

ans = 11

We can instead compute over modulus 13 (or any other prime between 2 and 251).

>> Persistence.setBaseModulus(13)

Exercise 3.2.1. Build a simplicial complex homeomorphic to the torus. Compute its Betti numbers. Hint:
You will need at least 7 vertices [7, page 107]. I recommend using a 3× 3 grid of 9 vertices.

Exercise 3.2.2. Build a simplicial complex homeomorphic to the Klein bottle. Check that it has the same
Betti numbers as the torus over Z2 coefficients but different Betti numbers over Z3 coefficients.

Exercise 3.2.3. Build a simplicial complex homeomorphic to the projective plane. Find its Betti numbers
over Z2 and Z3 coefficients.

2 JPLEX WITH BEANSHELL TUTORIAL

Please email henrya@caltech.edu with questions about this tutorial or with sug-
gestions for how to improve it.

1.2. Installation for BeanShell. This section is a summary of the more detailed
installation instructions in overview.htm, which in particular also discuss logging
capabilities and increasing available memory.

First, you must have a Java Virtual Machine installed. Copy jplex.jar to your
home directory or a subdirectory thereof. In a command window or shell, enter the
following command.

java -cp plex.jar JPlex

A Graphical User Interface (GUI) window pops up that is a slightly modified version
of BeanShell. The prompt in this window is plex>. Confirm that JPlex is working
with the following command.

plex> Simplex.makePoint(1,2);

<<(2) 1>>

All output that BeanShell prints will be wrapped in “< >”. Some methods in this
tutorial print superfluous output, say of the form <[[I@b3236f> or
<[Ledu.stanford.math.plex.PersistenceInterval$Float;@916ab8>. Such out-
put is not included in the text of this tutorial, even though it will appear in your
GUI window.

1.3. Persistent homology. One way to describe the topology of a simplicial com-
plex X is with Betti numbers. The value Bettik, for k ∈ N, is equal to the rank
of the k-th homology group of X. Roughly speaking, Bettik equals the number of
k-dimensional holes of X, and in particular Betti0 equals the number of connected
components. For instance, a n-dimensional sphere has all Betti numbers equal to
zero except for Betti0 = Bettin = 1.

A filtration on a simplicial complex X = X∞ is a collection of subcomplexes
{Xt | t ∈ R} such that Xt ⊂ Xs whenever t ≤ s. The filtration time of a sim-
plex σ ∈ X is the smallest t such that σ ∈ Xt. Betti intervals describe how the
topology of Xt varies with t. A k-dimensional Betti interval, with endpoints [tstart,
tend), corresponds to a k-dimensional hole that appears in the filtration at time
tstart, remains open for tstart ≤ t < tend, and closes at time tend.

2. Streams

2.1. Class SimplexStream. In JPlex, a filtered simplicial complex is called a
stream, and streams are implemented by the class SimplexStream. The subclass
ExplicitStream allows us to build or edit a SimplexStream instance by hand.

2.2. Subclass ExplicitStream. Let’s build from scratch a
stream representing this house. First we get an empty Explicit-
Stream instance.

plex> ExplicitStream house = new ExplicitStream();

3.3. Subclass ExplicitStream and persistent homology. Let’s build a stream with
nontrivial filtration times. We build a house, with the square appearing at time 0, the
top vertex at time 1, the roof edges at times 2 and 3, and the roof 2-simplex at time 7.

>> house = ExplicitStream;

>> house.add([1;2;3;4;5], [0;0;0;0;1])

>> house.add([1,2;2,3;3,4;4,1;3,5;4,5], [0;0;0;0;2;3])

>> house.add([3,4,5], 7)

We compute the Betti intervals.

>> house.close

>> intervals = Plex.Persistence.computeIntervals(house);

There are four intervals.

>> length(intervals)

ans = 4
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The fourth interval is a Betti1 interval, starting at filtration time 3 and ending at 7.

>> intervals(4).dimension

ans = 1

>> intervals(4).start

ans = 3

>> intervals(4).end

ans = 7

We can display the fourth interval all at once.

>> intervals(4)

ans = [1: (3.000000, 7.000000)]

This 1-dimensional hole is formed by the three edges of the roof. It forms when edge [4, 5] appears at filtra-
tion time 3 and closes when 2-simplex [3, 4, 5] appears at filtration time 7.

Or, using the m-file interval2mat.m, we can display all of the intervals at once.

>> interval2mat(intervals)

ans =

0 0 Inf

0 1 2

1 0 Inf

1 3 7

One Betti0 interval and one Betti1 interval are semi-infinite.

>> Plex.FilterInfinite(intervals)

ans = BN{1, 1}

The method Plex.plot lets us display the intervals as a Betti barcode. The three inputs are intervals, a
string to appear as a label, and the maximum filtration time (which may be adjusted ±10%) for the plot.

>> Plex.plot(intervals, ’house’, 8)

JPLEX WITH BEANSHELL TUTORIAL 5

This 1-dimensional hole is formed by the edges of the roof triangle. It is formed
when edge [4, 5] appears and closes when 2-simplex [3, 4, 5] appears.

The following command tells us that one Betti0 interval and one Betti1 interval
are semi-infinite.

plex> Plex.FilterInfinite(intervals);

<BN{1, 1}>

The method Plex.plot lets us display all intervals as barcodes. The three inputs
are of type PersistenceInterval.Float[], a string to appear as a label, and the
maximum filtration time (±10%) for the plot.

plex> Plex.plot(intervals,"house",8);

Figure 1. Barcodes for house

The Bettii number of Xt is the number of intervals in the dimension i plot that
intersect the vertical line through t. Check that the displayed barcodes agree with
the filtration times we built into the stream house. At time 0, a connected com-
ponent and a 1-dimensional hole form. At time 1, a second connected component
appears, which joins to the first at time 2. A second 1-dimensional hole forms at
time 3, and closes at time 7.

The method Plex.scatter displays the same information as Plex.plot but in a
different format: the intervals are now displayed as points.

plex> Plex.scatter(intervals,"house",8);

The produced figure is fairly large and so it is not included in this tutorial. For
more information on scatter plots, see [5], especially Figure 7.

3. Point cloud data

3.1. Class PointData. In JPlex, point cloud data is implemented by the class
PointData. We detail three subclasses that build a PointData instance from differ-
ent representations of point cloud data. This is the first step in building a stream
from a point cloud. The second step is covered in section 4.

3.2. Subclass EuclideanArrayData. Let’s give coordinates to the points of our
house.
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different format: the intervals are now displayed as points.

plex> Plex.scatter(intervals,"house",8);

The produced figure is fairly large and so it is not included in this tutorial. For
more information on scatter plots, see [5], especially Figure 7.

3. Point cloud data

3.1. Class PointData. In JPlex, point cloud data is implemented by the class
PointData. We detail three subclasses that build a PointData instance from differ-
ent representations of point cloud data. This is the first step in building a stream
from a point cloud. The second step is covered in section 4.

3.2. Subclass EuclideanArrayData. Let’s give coordinates to the points of our
house.

The filtration times are on the horizontal axis. The Bettik number of the stream at filtration time t is the
number of intervals in the dimension k plot that intersect a vertical line through t. Check that the displayed
intervals agree with the filtration times we built into the stream house. At time 0, a connected component
and a 1-dimensional hole form. At time 1, a second connected component appears, which joins to the first
at time 2. A second 1-dimensional hole forms at time 3, and closes at time 7.

The method Plex.scatter displays the same information as Plex.plot but in a different format: an interval
starting at start and ending at end is plotted as the point (start, end) in R2, which is necessarily above the
diagonal.

>> Plex.scatter(intervals, ’house’, 8)

The produced figure is fairly large and so it is not included in this tutorial. For more information on scatter
plots, see [6], especially Figure 7.
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3.4. ExplicitStream details. We mention two remaining details about subclass ExplicitStream.

The methods add and remove do not necessarily enforce the definition of a stream. They allow us to build
inconsistent streams in which some simplex σ ∈ X(t) contains a subsimplex σ′ /∈ X(t), meaning that X(t)
is not a simplicial complex. The method verify(1) returns 1 if our stream is consistent and returns 0 with
explanation if not.

>> house.verify(1)

ans = 1

>> house.add([1,4,5], 0)

>> house.verify(1)

Simplex <1, 4, 5> is present, but its face <1, 5> is not.

Simplex <1, 4, 5> has value 0.0000, but face <4, 5> has value 3.0000.

ans = 0

In §5 we will create SimplexStream instances that, unlike house, are not also ExplicitStream instances. To
display or edit such streams, we will first need to use the method makeExplicit. See Exercise 5.1.1.

4. Point cloud data

4.1. Class PointData. A point cloud is a finite metric space, that is, a finite set of points equipped with
a notion of distance. In JPlex, point cloud data is implemented by the class PointData. We detail two
subclasses, EuclideanArrayData and DistanceData, that build PointData instances from different represen-
tations of a point cloud. In §5 we will learn how to build streams from a PointData instance.

4.2. Subclass EuclideanArrayData. This subclass is for a point cloud in a Euclidean space.

Let’s give coordinates to the points of our house.

Figure 1. The house point cloud, stored in PointData instance pdataHouse

We create a PointData instance using these coordinates. The input to the EuclideanArrayData constructor
is a matrix whose i-th row lists the coordinates of the i-th point.

>> pdataHouse = EuclideanArrayData([-1,0;1,0;1,2;-1,2;0,3]);

Any PointData instance can display the number of data points and the distance between, say, points 1 and
3.

>> pdataHouse.count

ans = 5

>> pdataHouse.distance(1, 3)

ans = 2.8284

The method dimension returns the dimension of the Euclidean space containing our points.

>> pdataHouse.dimension

ans = 2
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The method coordinate(i,j) returns the j-th coordinate of point i. Points are indexed starting at one but
coordinates are indexed starting at zero. We display the coordinates of point 5.

>> pdataHouse.coordinate(5, 0)

ans = 0

>> pdataHouse.coordinate(5, 1)

ans = 3

The m-files pointsFigure8.m and pointsTorus.m each create a matrix of points which can be input into
subclass EuclideanArrayData.

Figure 8 example. The first command below selects 100 points randomly from a figure eight (the union of
unit circles centered at (0,1) and (0,-1)), and then adds noise to each point. The second command plots
these points. The third command creates a PointData instance.

>> pointsF100 = pointsFigure8(100);

>> plot(pointsF100(:,1), pointsF100(:,2), ’.’), axis equal

>> pdataF100 = EuclideanArrayData(pointsF100);

Torus example. The first command below selects 202 points from a 20 × 20 grid on the 2-dimensional unit
torus in R4, and then adds noise to each point. The second command plots the third and fourth coordinates
of these points; the plot should be a circle. The third command creates a PointData instance.

>> pointsT20 = pointsTorus(20);

>> plot(pointsT20(:,3), pointsT20(:,4), ’.’), axis equal

>> pdataT20 = EuclideanArrayData(pointsT20);

4.3. Subclass DistanceData. This subclass creates a PointData instance using a distance matrix. For a
point cloud in Euclidean space, subclass DistanceData is generally less convenient than subclass Euclidea-
nArrayData. However, subclass DistanceData can be used for a point cloud in an arbitrary metric space.

The matrix distances summarizes the metric for our house points in Figure 1: entry (i, j) is the distance
from point i to point j. Don’t forget you can copy and paste commands from commandListMatlab.rtf into
the Matlab window, or enter them using a script!

>> distances = [0,2,sqrt(8),2,sqrt(10);

2,0,2,sqrt(8),sqrt(10);

sqrt(8),2,0,2,sqrt(2);

2,sqrt(8),2,0,sqrt(2);

sqrt(10),sqrt(10),sqrt(2),sqrt(2),0]

distances =

0 2.0000 2.8284 2.0000 3.1623

2.0000 0 2.0000 2.8284 3.1623

2.8284 2.0000 0 2.0000 1.4142

2.0000 2.8482 2.0000 0 1.4142

3.1623 3.1623 1.4142 1.4142 0

We create a PointData instance from this matrix.

>> pdataHouseDD = DistanceData(distances);

Check that the methods count and distance return the same output with pdataHouseDD as with pdataHouse.
The methods dimension and coordinate are not functional with the DistanceData subclass.
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5. Streams from point cloud data

In §3 we built instances of the class SimplexStream from scratch. In this section we construct streams from
a point cloud Z. We use the three subclasses RipsStream, WitnessStream, and LazyWitnessStream, which
build the Vietoris-Rips, witness, and lazy witness streams. See [4] for additional information.

All three subclasses take four of the same inputs: the granularity δ, the maximum dimension dmax, the maxi-
mum filtration time tmax, and a point cloud Z stored as a PointData instance. The first three inputs allow the
user to limit the size of the constructed stream, for computational efficiency. No simplices above dimension
dmax are included. The persistent homology of the resulting stream can be calculated only up to dimension
dmax−1 (do you see why?). Also, instead of computing complex X(t) for all t ≥ 0, we only compute X(t) for
t = 0, δ, 2δ, 3δ, ..., Nδ, where N is the largest integer such that Nδ ≤ tmax. In this tutorial we use δ = 0.001.

When working with a new dataset, don’t choose dmax and tmax too large initially. First get a feel for how
fast the complexes are growing, and then raise dmax and tmax nearer to the computational limits. If you
ever choose dmax or tmax too large and Matlab seems to be running forever, pressing the “control” and “c”
buttons simultaneously sometimes halts the computation.

I am currently working with Jan Segert on interactive visualizations of the Rips and Witness filtrations for
the Wolfram Demonstrations Project. We have preliminary drafts of the demonstrations. Please email me
if you’d like to check them out; in particular, the witness filtrations can be hard to visualize.

5.1. Subclass RipsStream. Let d( · , · ) denote the distance between two points. A natural stream to
build is the Rips stream. The complex Rips(Z, t) is defined as follows:

• the vertex set is Z.
• for vertices a and b, edge [ab] is in Rips(Z, t) if d(a, b) ≤ t.
• a higher dimensional simplex is in Rips(Z, t) if all of its edges are.

Note that Rips(Z, t) ⊂ Rips(Z, s) whenever t ≤ s, so the Rips stream is a filtered simplicial complex. Since a
Rips complex is the maximal simplicial complex that can be built on top of its 1-skeleton, it is a flag complex.

Let’s build a Rips stream instance ripsHouse from the PointData instance pdataHouse. Note this stream
is different than the ExplicitStream house we built in §3.3.

>> ripsHouse = Plex.RipsStream(0.001, 3, 4, pdataHouse);

The order of the inputs is RipsStream(δ, dmax, tmax, Z). Since dmax = 3 we can compute up to second
dimensional persistent homology. For a Rips stream, the parameter tmax is the maximum possible edge
length. Since tmax = 4 is greater than the diameter (

√
10) of our point cloud, all edges will eventually form.

We compute and display the Betti intervals. Typically the last input for the method Plex.plot will be tmax,
since there is no reason to display filtration times that we haven’t computed.

>> intervals = Plex.Persistence.computeIntervals(ripsHouse);

>> Plex.plot(intervals, ’ripsHouse’, 4)

8 JPLEX WITH BEANSHELL TUTORIAL

• A higher dimensional simplex is in Xt if all of its edges are.

Note that Xt ⊂ Xs whenever t ≤ s. In practice, only the dmax-skeleton of any Xt

is computed.

Let’s build the Rips stream from the point data pdataHouse.

plex> ripsHouse=Plex.RipsStream(0.01, 3, 4, pdataHouse);

The order of the inputs is RipsStream(δ, dmax, tmax, Z). We choose dmax = 3 so
that we can compute up to second dimensional persistent homology. For a Rips
stream, the parameter tmax equals the maximum possible edge length. In this ex-
ample we choose tmax = 4 so that all edges will form.

We compute the persistent homology intervals and display them. Typically the last
input for the method Plex.plot will be tmax.

plex> intervals=Plex.Persistence().computeIntervals(ripsHouse);

plex> Plex.plot(intervals, "ripsHouse", 4);

Figure 2. Barcodes for ripsHouse

The second dimensional Betti plot does not appear because there are no Betti2
intervals of positive length. Check that these plots are consistent with the Rips
definition: edges [3, 5] and [4, 5] appear at t =

√
2; the square appears at t = 2; the

square closes at t =
√

8.

Change ripsHouse into an explicit stream and check that you can display its sim-
plices, display its filtration times, and edit the stream using the methods of section
2.2.

plex> ripsExpl=Plex.makeExplicit(ripsHouse);

Try the following sequence of commands:

plex> tor20=Plex.Torus(20,2);

plex> ripsTor20=Plex.RipsStream(0.01, 3, 0.5, tor20);

plex> intervals=Plex.Persistence().computeIntervals(ripsTor20);

plex> intervals.length;

<802>

plex> Plex.FilterInfinite(intervals);

<BN{1, 2, 1}>
plex> Plex.plot(intervals, "ripsTor20", 0.5);
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Change ripsHouse into an explicit stream and check that you can display its sim-
plices, display its filtration times, and edit the stream using the methods of section
2.2.

plex> ripsExpl=Plex.makeExplicit(ripsHouse);

Try the following sequence of commands:

plex> tor20=Plex.Torus(20,2);

plex> ripsTor20=Plex.RipsStream(0.01, 3, 0.5, tor20);

plex> intervals=Plex.Persistence().computeIntervals(ripsTor20);

plex> intervals.length;

<802>

plex> Plex.FilterInfinite(intervals);

<BN{1, 2, 1}>
plex> Plex.plot(intervals, "ripsTor20", 0.5);

The second dimensional Betti plot does not appear because there are no Betti2 intervals. Check that these
plots are consistent with the Rips definition: edges [3, 5] and [4, 5] appear at filtration time t =

√
2; the
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square appears at t = 2; the square closes at t =
√

8.

Exercise 5.1.1. Change ripsHouse into an explicit stream

>> ripsExpl = Plex.makeExplicit(ripsHouse);

Check that you can display and edit stream ripsExpl using the methods of §3.

Torus example. Try the following sequence of commands. We select a 20 × 20 grid of noisy points from a
torus and build the RipsStream ripsT20. The fourth command returns the total number of simplices in
ripsT20.

>> pointsT20 = pointsTorus(20);

>> pdataT20 = EuclideanArrayData(pointsT20);

>> ripsT20 = Plex.RipsStream(0.001, 3, 0.9, pdataT20);

>> ripsT20.size

ans = 82831 % Generally close to 80000

>> intervals = Plex.Persistence.computeIntervals(ripsT20);

>> Plex.FilterInfinite(intervals)

ans = BN{1, 2, 1}
>> Plex.plot(intervals, ’ripsT20’, 0.9)

We do not include the Betti intrervals because the plots are very tall. The diameter of this torus (before

adding noise) is
√

8, so choosing tmax = 0.9 likely will not show all homological activity. However, the
torus will be reasonably connected by this time. Note the semi-infinite intervals match the correct numbers
Betti0 = 1, Betti1 = 2, Betti2 = 1 for a torus.

This example makes it clear that the computed “semi-infinite” intervals do not necessarily persist until
t = ∞: in a Rips stream, once t is greater than the diameter of the point cloud, the Betti numbers for
Rips(Z, t) will be Betti0 = 1, Betti1 = Betti2 = ... = 0. The computed semi-infinite intervals are merely
those that persist until t = tmax.

Exercise 5.1.2. Slowly increase the values for tmax, dmax, or the grid length (20 above) and note how quickly
ripsT20.size and the computation time grows. Separately increasing tmax from 0.9 to 1, dmax from 3 to
4, or the grid length from 20 to 22 each roughly doubles ripsT20.size.

Exercise 5.1.3. Find a planar dataset Z and a filtration value t such that Betti2(Rips(Z, t)) 6= 0. Build a
RipsStream to confirm your answer.

Exercise 5.1.4. Find a planar dataset Z and a filtration value t such that Betti6(Rips(Z, t)) 6= 0. When
building a RipsStream to confirm your answer, don’t forget to choose dmax = 7.

5.2. Landmark selection. For larger datasets, if we include every data point as a vertex, as in the Rips
construction, our streams will quickly contain too many simplices for efficient computation. The witness
stream and the lazy witness stream address this problem. In building these streams, we select a subset
L ⊂ Z, called landmark points, as the only vertices. All data points in Z help serve as witnesses for the
inclusion of higher dimensional simplices.

There are two common methods for selecting landmark points. The first is to choose the landmarks L ran-
domly from point cloud Z. We select 25 random landmarks from figure eight PointData instance pdataF100.

>> L1 = WitnessStream.makeRandomLandmarks(pdataF100, 25);

>> length(L1)

ans = 26
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Vector L always has first entry zero. The remaining 25 entries contain the indices of the random landmark
vertices.

The second method for selecting landmark points, called sequential maxmin, is a greedy inductive selection
process. Pick the first landmark randomly from Z. Inductively, if Li−1 is the set of the first i−1 landmarks,
then let the i-th landmark be the point of Z which maximizes the function z 7→ d(z, Li−1), where d( · , · )
is the distance between the point and the set.

Landmarks chosen using sequential maxmin tend to cover the dataset and to be spread apart from each other.
A disadvantage is that outlier points tend to be selected. Sequential maxmin landmarks are used in [1] and [3].

JPlex does not yet have a command for sequential maxmin landmark selection, so we use the m-file
maxminLandmarks.m. The first input is a matrix and the second input is the number of landmarks to
be selected. The third input is either the character ’e’ or ’d’. Use ’e’ in the EuclideanArrayData case
where the first input should be interpreted as an N × n matrix of N points in Rn. Use ’d’ in the Dis-
tanceData case where the first input should be interpreted as an N ×N distance matrix for N points in an
arbitrary metric space.

Case EuclideanArrayData. Recall the figure eight example.

>> pdataF100 = EuclideanArrayData(pointsF100);

We select 25 sequential maxmin landmarks.

>> L2 = maxminLandmarks(pointsF100, 25, ’e’);

Plot landmark points L1 and L2 to see the difference between random and sequential maxmin landmark
selection.

>> pointsL1 = pointsF100(L1(2:end),:);

>> plot(pointsL1(:,1), pointsL1(:,2), ’o’), axis equal

>> pointsL2 = pointsF100(L2(2:end),:);

>> figure; % This makes our next plot appear in a new window

>> plot(pointsL2(:,1), pointsL2(:,2), ’o’), axis equal
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(a) Random landmarks
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(b) Sequential maxmin

Sequential maxmin seems to do a better job of choosing landmarks that cover the figure eight and that are
spread apart.

Case DistanceData. Recall the house example.
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>> pdataHouseDD = DistanceData(distances);

We select 3 sequential maxmin landmarks.

>> L = maxminLandmarks(distances, 3, ’d’)

L =

0

3

1

2

Given point cloud Z and landmark subset L, we define R = maxz∈Z
{
d(z, L)

}
. Number R reflects how finely

the landmarks cover the dataset. We often use it as a guide for selecting the maximum filtration value tmax
for a WitnessStream or LazyWitnessStream instance.

Exercise 5.2.1. Let Z be the point cloud in Figure 1 from §4.2, corresponding to PointData instance
pdataHouse. Suppose we are using sequential maxmin to select a set L of 3 landmarks, and the first
(randomly selected) landmark is (1, 0). Find by hand the other two landmarks in L.

Exercise 5.2.2. Let Z be a point cloud and L a landmark subset. Show that if L is chosen via sequential
maxmin, then for any li, lj ∈ L, we have d(li, lj) ≥ R.

5.3. Subclass WitnessStream. Suppose we are given a point cloud Z and landmark subset L. Let mk(z)
be the distance from a point z ∈ Z to its (k + 1)-th closest landmark point. The witness stream complex
W (Z,L, t) is defined as follows.

• the vertex set is L.
• for k > 0 and vertices li, the k-simplex [l0l1...lk] is in W (Z,L, t) if all of its faces are, and if there

exists a witness point z ∈ Z such that max
{
d(l0, z), d(l1, z), ..., d(lk, z)

}
≤ t+mk(z).

Note that W (Z,L, t) ⊂W (Z,L, s) whenever t ≤ s. Note that a landmark point can serve as a witness point.

Exercise 5.3.1. Let Z be the point cloud in Figure 1 from §4.2, corresponding to PointData instance
pdataHouse. Let L = {(1, 0), (0, 3), (−1, 0)} be the landmark subset. Find by hand the filtration time
for the edge between vertices (1, 0) and (0, 3). Which point or points witness this edge? What is the filtra-
tion time for the lone 2-simplex [(1, 0), (0, 3), (−1, 0)]?

Torus example. Let’s build a WitnessStream instance for 1002 points from a noisy torus, with 50 random
landmarks. The fourth command returns the landmark covering measure R from §5.2. The fifth command
returns our witness stream. The order of inputs is WitnessStream(δ, dmax, tmax, L, Z). Often the value
for tmax is chosen in proportion to R.

>> pointsT100 = pointsTorus(100);

>> pdataT100 = EuclideanArrayData(pointsT100);

>> L = WitnessStream.makeRandomLandmarks(pdataT100, 50);

>> R = WitnessStream.estimateRmax(pdataT100, L)

R = 1.3188 % Generally close to 1.2

>> witT100 = Plex.WitnessStream(0.001, 3, R/8, L, pdataT100);

>> witT100.size

ans = 3320 % Generally close to 3000

We plot the Betti intervals.

>> intervals = Plex.Persistence.computeIntervals(witT100);

>> Plex.plot(intervals, ’witT100’, R/8)
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The idea of persistent homology is that long intervals should correspond to real topological features, whereas
short intervals are considered to be noise. The plot above shows that for a long range, the torus numbers
Betti0 = 1, Betti1 = 2, Betti2 = 1 are obtained. Your plot should contain a similar range.

The WitnessStream witT100 contains approximately 3,000 simplices, fewer than the approximately 80,000
simplices in RipsStream ripsT20. This is despite the fact that we started with 1002 points in the witness
case, but only 202 points in the Rips case. This supports our belief that the witness stream returns good
results at lower computational expense.

5.4. Subclass LazyWitnessStream. A lazy witness stream is similar to a witness stream. However, there
is an extra parameter ν, typically chosen to be 0, 1, or 2, which helps determine how the lazy witness
complexes LWν(Z,L, t) are constructed. See [4] for more information.

Suppose we are given a point cloud Z, landmark subset L, and parameter ν ∈ N. If ν = 0, let m(z) = 0 for
all z ∈ Z. If ν > 0, let m(z) be the distance from z to the ν-th closest landmark point. The lazy witness
complex LWν(Z,L, t) is defined as follows.

• the vertex set is L.
• for vertices a and b, edge [ab] is in LWν(Z,L, t) if there exists a witness z ∈ Z such that max

{
d(a, z), d(b, z)

}
≤

t+m(z).
• a higher dimensional simplex is in LWν(Z,L, t) if all of its edges are.

Note that LWν(Z,L, t) ⊂ LWν(Z,L, s) whenever t ≤ s. The adjective lazy refers to the fact that the lazy
witness complex is a flag complex: since the 1-skeleton determines all higher dimensional simplices, less
computation is involved.

Exercise 5.4.1. Let Z be the point cloud in Figure 1 from §4.2, corresponding to PointData instance
pdataHouse. Let L = {(1, 0), (0, 3), (−1, 0)} be the landmark subset. Let ν = 1. Find by hand the fil-
tration time for the edge between vertices (1, 0) and (0, 3). Which point or points witness this edge? What
is the filtration time for the lone 2-simplex [(1, 0), (0, 3), (−1, 0)]?

Exercise 5.4.2. Repeat the above exercise with ν = 0 and with ν = 2.

Exercise 5.4.3. Check that the 1-skeleton of a witness complex W (Z,L, t) is the same as the 1-skeleton of a
lazy witness complex LW2(Z,L, t). As a consequence, LW2(Z,L, t) is the flag complex of W (Z,L, t).

The following sequence of commands is typical.

>> L = WitnessStream.makeRandomLandmarks(pdata, numLands);

% Or, sequential maxmin landmarks

>> R = WitnessStream.estimateRmax(pdata, L);

>> laz = Plex.LazyWitnessStream(δ, dmax, tmax, ν, L, pdata);
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>> intervals = Plex.Persistence.computeIntervals(laz);

>> Plex.plot(intervals, ’laz’, tmax)

Again, tmax is often chosen in proportion to R. In the next section we build a lazy witness stream on a
dataset of range image patches.

6. Example with real data

We now do an example with real data. Double check that the files pointsRange.mat and dct.m, which
accompany this tutorial, are in your Matlab directory.

In On the nonlinear statistics of range image patches [1], we study a space of range image patches drawn
from the Brown database [8]. A range image is like an optical image, except that each pixel contains a
distance instead of a grayscale value. Our space contains high-contrast, normalized, 5× 5 pixel patches. We
write each 5× 5 patch as a length 25 vector and think of our patches as point cloud data in R25. We select
from this space the 30% densest vectors, based on a density estimator called ρ300 (see Appendix A). In [1]
this dense core subset is denoted X5(300, 30), and it contains 15,000 points. In the next example we verify
a result from [1]: X5(300, 30) has the topology of a circle.

Load the file pointsRange.mat. The matrix pointsRange appears in your Matlab workspace.

>> load pointsRange.mat

>> size(pointsRange)

ans = 15000 25 % 15000 points in dimension 25

Matrix pointsRange is in fact X5(300, 30): each of its rows is a vector in R25. Display some of the coordi-
nates of pointsRange. It is not easy to visualize a circle by looking at these coordinates!

We create a PointData instance using subclass EuclideanArrayData. We pick 50 sequential maxmin landmark
points, find the value of R, and build the lazy witness stream with parameter ν = 1.

>> pdataRange = EuclideanArrayData(pointsRange);

>> L = maxminLandmarks(pointsRange, 50, ’e’);

>> R = WitnessStream.estimateRmax(pdataRange, L)

R = 0.7757 % Generally close to 0.75

>> lazRange = Plex.LazyWitnessStream(0.001, 3, R/3, 1, L, pdataRange);

>> lazRange.size

ans = 20937 % Generally between 10000 and 25000

>> intervals = Plex.Persistence.computeIntervals(lazRange);

>> Plex.plot(intervals, ’lazRange’, R/3)

Figure 3. Betti intervals for lazRange, built from X5(300, 30)
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The plots above show that for a long range, the circle Betti numbers Betti0 = Betti1 = 1 are obtained.
Your plot should contain a similar range. This is good evidence that the core subset X5(300, 30) is well-
approximated by a circle.

Our 5 × 5 normalized patches are currently in the pixel basis: every coordinate corresponds to the range
value at one of the 25 pixels. The Discrete Cosine Transform (DCT) basis is a useful basis for our patches
[1, 8]. We change to this basis in order to plot a projection of the loop evidenced by Figure 3. The method
dct.m returns the DCT change-of-basis matrix for square patches of size specified by the input parameter.

>> pointsRangeDct = pointsRange∗dct(5);

Two of the DCT basis vectors are horizontal and linear gradients.

We plot the projection of pointsRangeDct onto the linear gradient DCT basis vectors.

>> plot(pointsRangeDct(:,1), pointsRangeDct(:,5), ’.’), axis square
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(a) Projection of X5(300, 30) (b) Range primary circle

The projection of X5(300, 30) in Figure (a) shows a circle. It is called the range primary circle and is
parameterized in Figure (b).

7. Remarks

7.1. Scripts and functions with JPlex commands. In order to include JPlex commands in an m-file
script or function, include the command import edu.stanford.math.plex.*; as the first command of the
script. For m-file functions, include this command as the second line - that is, as the line underneath the
function header.

Writing scripts and functions is very useful. One example is the m-file eulerCharacteristic.m, which
accepts an ExplicitStream as input and demonstrates two different methods for computing the Euler char-
acteristic.
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>> eulerCharacteristic(s6)

The Euler characteristic is 2 = 8 - 28 + 56 - 70 + 56 - 28 + 8, using the alternating

sum of cells.

The Euler characteristic is 2 = 1 - 0 + 0 - 0 + 0 - 0 + 1, using the alternating

sum of Betti numbers.

7.2. Representative cycles. The persistence algorithm that computes barcodes can also find a represen-
tative cycle for each homology class. The current version of JPlex does not return representative cycles,
though development versions of JPlex can. There is no guarantee that the produced representative will be
geometrically nice.

7.3. Java heap size. Depending on the size of your JPlex computations, you may need to increase the
maximum Java heap size. This should not be necessary for the examples in this tutorial.

The following command returns your maximum heap size in bytes.

>> java.lang.Runtime.getRuntime.maxMemory

ans = 130875392

My computer has a heap limit of approximately 128 megabytes. To increase your limit to, say, 256 megabytes,
create a file named java.opts in your Matlab directory which contains the text -Xmx256m and then restart
Matlab.

7.4. From Java variables to Matlab variables. Some JPlex commands return Java variables, when
instead one might want output in the form of a Matlab variable, such as a matrix of numbers. One way to
transform Java variables into Matlab variables is by using an m-file. For instance, in §3.3 we used the m-file
interval2mat.m to take an array of type PersistenceInterval into a Matlab matrix. Similarly, the m-file
betti2mat.m accepts input of type Plex.BettiNumbers and returns a Matlab vector of integers. These
commands are typically used as shown below, where intervals is an array of type PersistenceInterval.

>> intervalMatrix = interval2mat(intervals);

>> bettiVect = betti2vect(Plex.FilterInfinite(intervals));

Appendices

Appendix A. Dense core subsets

A core subset of a dataset is a collection of the densest points, such as X5(300, 30) in §6. Since there are
many density estimators, and since we can choose any number of the densest points, a dataset has a variety
of core subsets. In this appendix we discuss how to create core subsets.

Real datasets can be very noisy, and outlier points can signicantly alter the computed topology. Therefore,
instead of trying to approximate the topology of an entire dataset, we often proceed as follows. We create
a family of core subsets and identify their topologies. Looking at a variety of core subsets can give a good
picture of the entire dataset.

See [3, 4] for an example using multiple core subsets. The dataset is high-contrast patches from natural
images. The authors use three density estimators. As they change from the most global to the most local
density estimate, the topologies of the core subsets change from a circle, to three intersecting circles, to a
Klein bottle.

One way to estimate the density of a point z in a point cloud Z is as follows. Let ρk(z) be the distance from
z to its k-th closest neighbor. Let the density estimate at z be 1

ρk(z)
. Varying parameter k gives a family

of density estimates. Using a small value for k gives a local density estimate, and using a larger value for k
16



gives a more global estimate.

For Euclidean datasets, one can use the m-file kDensitySlow.m to produce density estimates 1
ρk

. The

following command is typical.

>> densities = kDensitySlow(points, k);

Input points is an N × n matrix of N points in Rn. Input k is the density estimate parameter. Output
densities is a vertical vertex of length N containing the density estimate at each point.

M-file coreSubset.m builds a core subset. The following command is typical.

>> core = coreSubset(points, densities, numPoints);

Inputs points and densities are as above. Output core is a numPoints × n matrix representing the
numPoints densest points.

Prime numbers example. The command primes(3571) returns a vector listing all prime numbers less than
or equal to 3571, which is the 500-th prime. We think of these primes as points in R and build the core
subset of the 10 densest points with density parameter k = 1.

>> p = primes(3571)’;

>> length(p)

ans = 500

>> densities1 = kDensitySlow(p, 1);

>> core1 = coreSubset(p, densities1, 10)

core1 =

2

3

5

7

11

13

17

19

29

31

We get a bunch of twin primes, which makes sense since k = 1. Let’s repeat with k = 50.

>> densities50 = kDensitySlow(p, 50);

>> core50 = coreSubset(p, densities50, 10)

core50 =

113

127

109

131

107

137

139

157

149

151

With k = 50, we expect the densest points to be slightly larger than the 25-th prime, which is 97.

Note: As its name suggests, the m-file kDensitySlow.m is not the most efficient way to calculate ρk for large
datasets. There is a faster file kDensity.m for this purpose, which uses the kd-tree data structure. I have not
included it in the tutorial because it requires one to download a kd-tree package for Matlab, available at http:
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//www.mathworks.com/matlabcentral/fileexchange/21512-kd-tree-for-matlab. Please email Henry
if you arre interested in using kDensity.m.
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Index of JPlex and Matlab commands
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figure, 11
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