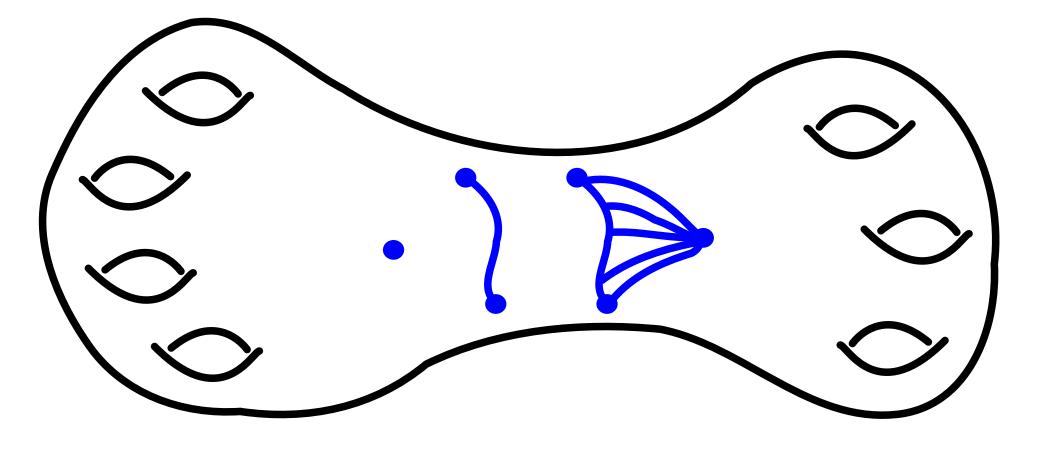
Metric Reconstruction via Optimal Transport

Vietoris–Rips simplicial complexes

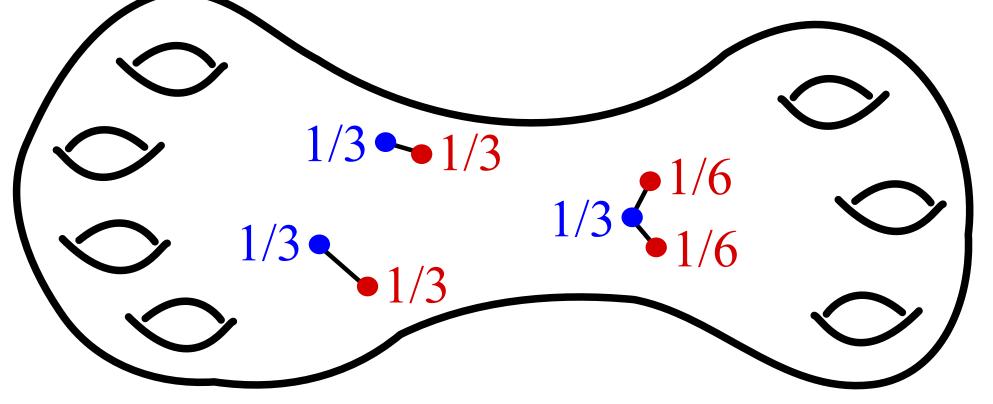
Definition. For X a metric space and r > 0, the Vietoris-Rips simplicial complex \mathbf{T} VR(X; r) has X as its vertex set, and a finite subset $\sigma \subset X$ as a simplex when diam $(\sigma) \leq r$. **Remark.** If X is not discrete then the inclusion $X \hookrightarrow VR(X;r)$ is not continuous, and if VR(X; r) is not locally finite then VR(X; r) is not metrizable.

In [3], Hausmann proves that for M a Riemannian manifold and r sufficiently small, there is a homotopy equivalence $VR(M;r) \xrightarrow{\simeq} M$. This proof is not as straightforward as one might hope: map $VR(M; r) \to M$ depends on the choice of a total ordering of all points in M, and the inclusion $M \hookrightarrow VR(M; r)$ is not a homotopy inverse since it's not continuous.



Vietoris–Rips metric thickenings

Definition. For X a metric space and r > 0, the Vietoris-Rips metric thickening is $\operatorname{VR}^{m}(X;r) = \left\{ \sum_{i=0}^{k} \lambda_{i} \delta_{x_{i}} \middle| \lambda_{i} \ge 0, \sum_{i} \lambda_{i} = 1, x_{i} \in X, \operatorname{diam}(\{x_{0}, \dots, x_{k}\}) \le r \right\},$ equipped with the 1-Wasserstein metric.



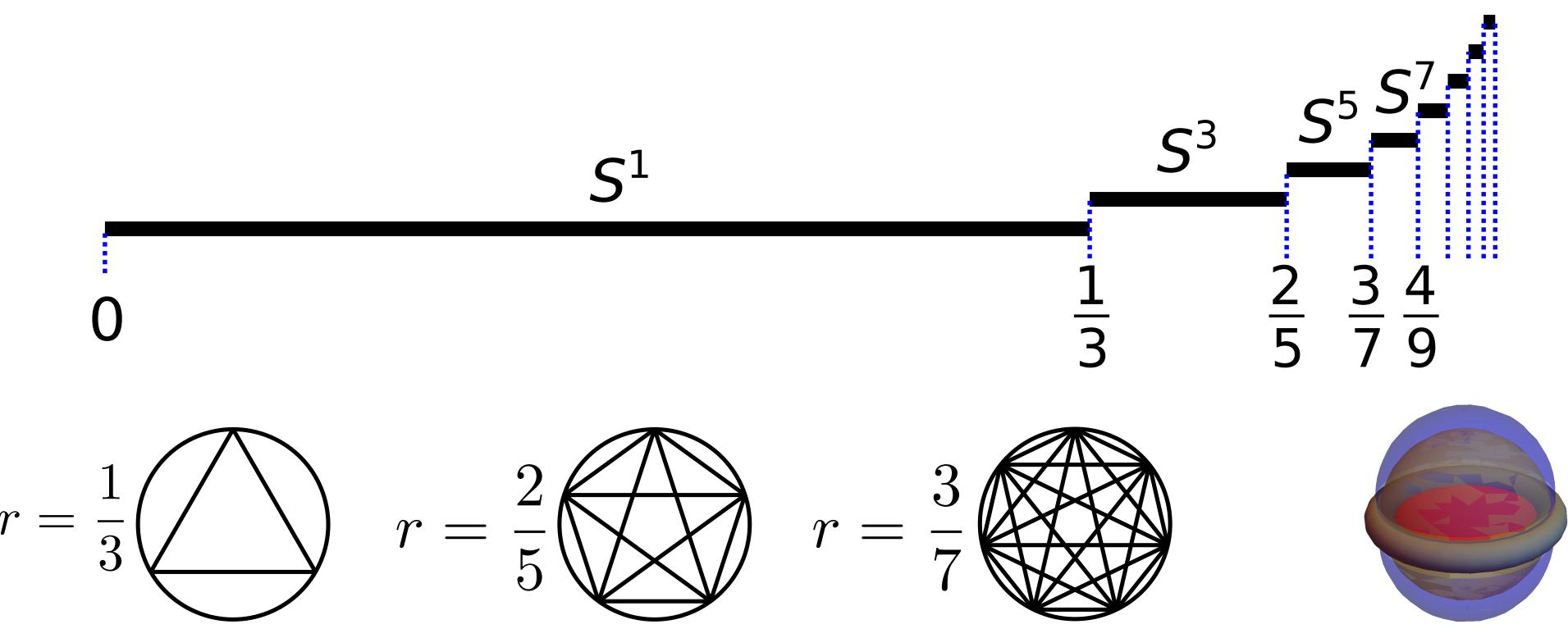
It is not hard to check that $VR^m(X;r)$ is a *metric r-thickening* of X. **Remark.** As a set, $VR^m(X;r)$ is naturally identified with the geometric realization of VR(X; r). However, these two topological spaces need not be homotopy equivalent. Main Theorem ([2]). If M is a Riemannian manifold and r is sufficiently small, then $\operatorname{VR}^m(M;r) \simeq M.$

Proof. Consider the (now canonical) continuous map $f: \operatorname{VR}^m(M;r) \to M$ defined by sending a point $\Sigma_i \lambda_i \delta_{x_i}$ to its Fréchet mean in M. This map has the (now continuous) inclusion $\iota: M \hookrightarrow \mathrm{VR}^m(M; r)$ as a homotopy inverse. We have $f \circ \iota = \mathrm{id}_M$, and via a linear homotopy we get $\iota \circ f \simeq \operatorname{id}_{\operatorname{VR}^m(M;r)}$.

Michał Adamaszek, Henry Adams, and Florian Frick MOSEK ApS, Colorado State University, and Cornell University

Example differences between VR(X;r) and $VR^m(X;r)$

The circle. Let
$$S^1$$
 be the circle of unit circumference $\operatorname{VR}(S^1; r) \simeq \begin{cases} S^{2\ell+1} & \text{if } \frac{\ell}{2\ell+1} < r < \frac{\ell+1}{2\ell+3} \\ \bigvee^{\infty} S^{2\ell} & \text{if } r = \frac{\ell}{2\ell+1} \end{cases}$
hough $\operatorname{VR}(S^1; \frac{1}{3}) = \bigvee^{\infty} S^2$, we have $\operatorname{VR}^m(S^1; \frac{1}{3}) \simeq S^2$



The *n*-sphere. Let S^n be the *n*-sphere, and let r_n be the scale parameter when the first inscribed regular (n+1)-simplex Δ^{n+1} appears. We have $VR(S^n; r_n) \simeq \vee^{\infty} S^{n+1}$, whereas $\operatorname{VR}^m(S^n; r_n) \simeq \frac{\operatorname{SO}(n+1)}{A_{m+2}}.$

Questions

• Are the homotopy types of $VR^m(S^n; r)$ related to strongly self-dual polytopes [4]? • For M a Riemannian manifold, are $\operatorname{conn}(\operatorname{VR}(M;r))$ and $\operatorname{conn}(\operatorname{VR}^m(M;r))$ non-decreasing functions of r [3]? • Are $VR_{\leq}(X;r)$ and $VR_{\leq}^{m}(X;r)$ homotopy equivalent?

References

- [1] Michał Adamaszek and Henry Adams, The Vietoris-Rips complexes of a circle, Pacific Journal of Mathematics, 290:1–40, 2017.
- [2] Michał Adamaszek, Henry Adams, and Florian Frick, Metric reconstruction via optimal transport, arXiv:1706.04876, 2017.
- [3] Jean-Claude Hausmann, On the Vietoris-Rips complexes and a cohomology theory for metric spaces, Annals of Mathematics Studies 138 (1995), 175–188.
- [4] Lásló Lovász, Self-dual polytopes and the chromatic number of distance graphs on the sphere, Acta Scientiarum Mathematicarum 45 (1983), 317–323.

nce with the geodesic metric. We have

for some $\ell \in \mathbb{N}$ (see [1]).

 S^3 .