Practice Exam 1

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

Practice Exam 1

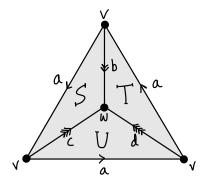
1 Let X and Y be spaces and let G be an abelian group. A cochain map is a collection of maps $f^{\#}: C^n(Y;G) \to C^n(X;G)$ for all n, such that $f^{\#}\delta_Y^n = \delta_X^n f^{\#}$ for all n.

Remark: Here $C^n(Y;G)$ is the singular cochain group in Y, and δ_Y^n is a coboundary map for Y, and δ_X^n is a coboundary map for X.

- (a) Show that a cochain map $f^{\#} \colon C^n(Y;G) \to C^n(X;G)$ for all n induces a map $f^* \colon H^n(Y;G) \to H^n(X;G)$ on singular cohomology groups for all n.
- (b) Given two cochain maps $f^{\#}, g^{\#}: C^n(Y;G) \to C^n(X;G)$, a cochain homotopy between them is a collection of maps $P^n: C^n(Y;G) \to C^{n-1}(X;G)$ for all nthat satisfy $g^{\#} - f^{\#} = P^{n+1}\delta_Y^n + \delta_X^{n-1}P^n$. Prove that if there is a chain homotopy between $f^{\#}$ and $g^{\#}$, then $f^{\#}$ and $g^{\#}$ induce the same maps $f^* = g^*$ on cohomology.

Practice Exam 1

2 Let X be the Δ -complex drawn below, which has two 0-simplices v and w, four 1-simplices a, b, c, d, and three 2-simplices S, T, U. Compute the simplicial cohomology $H^i(X; \mathbb{Z})$ for i = 0, 1, 2.



Practice Exam 1

3 Let X be a space and let R be a ring. Let $C^k(X; R)$ be the group of singular k-cochains on X. We defined a cup product $\cup: C^k(X; R) \times C^l(X; R) \to C^{k+l}(X; R)$, and showed that for $f \in C^k(X; R)$ and $g \in C^l(X; R)$, we have

$$\delta(f \cup g) = (\delta f \cup g) + (-1)^k (f \cup \delta g).$$

Use the above formula to prove that we get an induced map on cohomology

 $\cup \colon H^k(X;R) \times H^l(X;R) \to H^{k+l}(X;R).$

Practice Exam 1

4 Using the cup product structure, show there is no map $\mathbb{R}P^n \to \mathbb{R}P^m$ inducing a nontrivial map $H^1(\mathbb{R}P^n;\mathbb{Z}_2) \to H^1(\mathbb{R}P^n;\mathbb{Z}_2)$ if n > m. What is the corresponding result for maps $\mathbb{C}P^n \to \mathbb{C}P^m$?

Remark: This is Hatcher §3.2, Exercise 3(a).

Practice Exam 1

- 5 Just say "True" or "False". No justification is required; no partial credit is available.
 - (a) If K and L are simplicial complexes with K finite, then any map $f: |K| \to |L|$ is homotopic to a simplicial map $K \to L$.

(b) If the spaces X and Y satisfy $H_i(X;\mathbb{Z}) \cong H_i(Y;\mathbb{Z})$ for all $i \ge 0$, then X and Y are homotopy equivalent.

(c) Let X be a finite simplicial complex and $f: X \to X$. If

$$\tau(f) \coloneqq \sum_{n} (-1)^{n} \operatorname{tr}(f_* \colon H_n(X) \to H_n(X))$$

is zero, then f has no fixed points.

(d) For X a Δ -complex with k-simplex σ , the dual cochain σ^* is a cocycle if σ is maximal.

(e) Let C be a chain complex of free abelian groups. If $\text{Ext}(H_{n-1}(C), G) = 0$, then $H^n(C; G) \cong \text{Hom}(H_n(C), G)$.

Practice Exam 1

This page intentionally left blank.

Practice Exam 1

This page intentionally left blank.