Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

1 Define what it means for a topological space X to be path-connected. Prove that if X is path-connected, then X is connected.

2 Define what it means for a topological space X to be Hausdorff. Show that if X is Hausdorff, then the *diagonal* $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.

3 Let A and B be topological spaces. Define what it means for a function $q: A \to B$ to be a quotient map.

Let $\{X_{\alpha}\}_{\alpha\in J}$ be a collection of nonempty topological spaces. Let $X = \prod_{\alpha\in J} X_{\alpha}$. Fix $\beta \in J$. Let $\pi_{\beta} \colon X \to X_{\beta}$ be the projection map, defined by $\pi_{\beta}((x_{\alpha})_{\alpha\in J}) = x_{\beta}$. It is known that π_{β} is surjective. Show that π_{β} is a quotient map.

4 Let X be a topological space. Suppose that C is a collection of closed sets in X having the finite intersection property, i.e., for every finite subcollection $\{C_1, \ldots, C_n\}$ of C, the intersection $C_1 \cap \ldots \cap C_n$ is nonempty. If X is compact, prove that the intersection $\bigcap_{C \in \mathbb{C}} C$ of all the elements of C is nonempty.

Remark: I am not asking you to say "This is one direction of a theorem in our book" (the forward direction of Theorem 26.9); I am asking you to prove this.

5 Let (X, d) be a metric space. Suppose X is compact and that $f: X \to X$ satisfies d(f(x), f(y)) = d(x, y) for all $x, y \in X$. Show that $f: X \to X$ is bijective.

Hint: If $a \notin f(X)$, show there exists some $\varepsilon > 0$ so that the ε -neighborhood of a is disjoint from f(X). Set $x_0 = a$, and $x_{n+1} = f(x_n)$ in general. Show that $d(x_n, x_m) \ge \varepsilon$ for n > m.

Remark: It is furthermore true that f is a homeomorphism.

UF MTG 4302/5316

Practice Exam 2

This page intentionally left blank.

UF MTG 4302/5316

Practice Exam 2

This page intentionally left blank.