Practice Exam 2

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

Practice Exam 2

1 Prove that $S^2 \vee S^4 \vee S^6$ and $\mathbb{C}P^3$ are not homotopy equivalent.

Practice Exam 2

2 Let the closed *n*-dimensional manifold M have a pair of dual cell structures. Prove the easier version of Poincaré duality that $H^k(M; \mathbb{Z}_2) \cong H_{n-k}(M; \mathbb{Z}_2)$.

Practice Exam 2

3 Let *M* be a closed orientable *n*-manifold with *n* odd. Prove that the Euler characteristic $\chi(M)$ is zero.

Practice Exam 2

4 For a map $f: M \to N$ between connected closed orientable *n*-manifolds with fundamental classes [M] and [N], the degree of f is defined to be the integer d such that $f_*([M]) = d[N]$, so the sign of the degree depends on the choice of fundamental classes. Show that for any connected closed orientable *n*-manifold M and any integer d, there is a degree $\pm d$ map $M \to S^n$.

Practice Exam 2

- 5 Just say "True" or "False". No justification is required; no partial credit is available.
 - (a) For any two free resolutions F and F' of an abelian group A, there are canonical isomorphisms $H^n(F;G) \cong H^n(F';G)$ for all n.

(b) Any closed manifold M is \mathbb{Z}_2 -orientable.

(c) For $\alpha \in H^k(X; R)$ and $\beta \in H^l(X; R)$ with R commutative, we have $\alpha \cup \beta = \beta \cup \alpha$.

(d) For
$$\alpha \in C_{k+l}(X; \mathbb{Z})$$
, $\varphi \in C^k(X; \mathbb{Z})$, and $\psi \in C^l(X; \mathbb{Z})$, we have
 $(\varphi \cup \psi)(\alpha) = \pm \psi(\alpha \cap \varphi).$

(e) There exists a closed orientable 10-dimensional manifold M with $H^5(M;\mathbb{Z})\cong\mathbb{Z}$.

Practice Exam 2

This page intentionally left blank.

Practice Exam 2

This page intentionally left blank.