Practice Final

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	50	

Signature:

Practice Final

1 (a) Prove that the set of all functions $f: \mathbb{Z}_+ \to \{0, 1\}$ is uncountable.

(b) We say that a function $f: \mathbb{Z}_+ \to \{0, 1\}$ is *eventually zero* if there is a positive integer N such that f(n) = 0 for all $n \ge N$. Prove that the set of all functions $f: \mathbb{Z}_+ \to \{0, 1\}$ that are eventually zero is countable.

2 Show that the countable collection $\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{Q} \text{ with } a < b\}$ is a basis that generates the standard topology on \mathbb{R} .

(Remark: Since $\mathbb{Q} \times \mathbb{Q}$ is countable, this problem shows that \mathbb{R} has a countable basis for its topology, i.e. \mathbb{R} is second-countable.)

Practice Final

- 3 Let X be a topological space and let $A \subset X$. The closure of A is defined by $\overline{A} = \bigcap \{C \mid C \text{ is closed in } X \text{ and } A \subset C \}.$
 - (a) Show that \overline{A} is a closed set in X.
 - (b) Show that $\overline{\overline{A}} = \overline{A}$.

4 (a) Define what it means for a topological space to be *connected*.

(b) Give a precise definition of a topological space that is connected but not pathconnected (you do not need to prove your example is correct).

(c) Give a precise definition of a topological space that is connected but not locally connected (you do not need to prove your example is correct).

- 5 (a) Define the product topology on \mathbb{R}^{ω} .
 - (b) Define the box topology on \mathbb{R}^{ω} .
 - (c) Prove that \mathbb{R}^{ω} is not connected when equipped with the box topology.
 - (*Hint: Consider the sets of bounded and unbounded sequences.*)

Practice Final

6 (a) Define what it means for a topological space X to be *Hausdorff*.

(b) Show that if X is Hausdorff and $Y \subset X$ is compact, then Y is closed.

Practice Final

7 Show there is no continuous surjective function $f: [0,1] \to [0,1)$.

Practice Final

8 (a) Define what it means for a topological space X to be *normal*.

(b) Let \mathbb{R}_{ℓ} be the real numbers with the lower limit topology, which has as a basis all half-open intervals of the form $[a, b) = \{x \mid a \leq x < b\}$ with a < b. Show that \mathbb{R}_{ℓ} is a normal space.

9 Let (X, d) be a metric space.

(a) Define what it means for X to be *complete*.

(b) Suppose there exists some $\varepsilon > 0$ such that for all $x \in X$, the closure $\overline{B_{\varepsilon}(x)}$ of the ε -ball about x is compact. Prove that X is complete.

Practice Final

[10] (a) State the Baire category theorem.

(b) Let X be a Baire space. Prove that if $\{U_n\}$ is a countable collection of dense open sets in X, then $\cap_n U_n$ is also dense in X.

Practice Final

This page intentionally left blank.

Practice Final

This page intentionally left blank.