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1 Show that if h, h′ : X → Y are homotopic and k, k′ : Y → Z are homotopic, then k ◦ h
and k′ ◦ h′ are homotopic.
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2 Let X be a topological space, let A ⊂ X, let x0 ∈ A, and let i : A → X be the inclusion
map. Give an example showing that the induced map i∗ : π1(A, x0) → π1(X, x0) need
not be injective. Prove that if there is a retraction r : X → A, then the induced map
i∗ : π1(A, x0) → π1(X, x0) is injective.
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3 State the Tietze entension theorem (for maps into the closed interval [a, b], not for
maps into R).
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4 Let p : E → B be a covering map, and let p(e0) = b0. Prove that the lifting correspon-
dence ϕ : π1(B, b0) → p−1(b0) is surjective if E is path connected, and bijective if E is
simply connected.
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5 Show that a continuous map f : S1 → S1 is homotopic to zn : S1 → S1 (given by
eiθ 7→ einθ) for some integer n. [Hint: Use the covering space p : R → S1.]
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6 Define what it means for a map h : Sn → Sm to be antipode-preserving. Recall that
any continuous and antipode-preserving map h : S1 → S1 is not nullhomotopic. Use
this to prove there is no continuous antipode-preserving map g : S2 → S1.
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7 Let Sn be the n-sphere. Prove that π1(S
n) is trivial for n ≥ 2.
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8 Describe a surface whose fundamental group is not abelian.
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9 Use the Seifert-van Kampen theorem to compute π1(RP 2), the fundamental group of
the projective plane.
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10 Let X be the quotient space obtained from an 8-sided polygonal region P by pasting
its edges together according to the labelling scheme abcdc−1a−1db. It turns out that all
vertices of P are mapped to the same point of the quotient space X by the pasting map.
Calculate H1(X), and using this, determine which compact surface X is homeomorphic
to.
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