Practice Midterm

Name: _____

- Explain your work (efficiently); partial credit is available.
- No notes, books, calculators, or other electronic devices are permitted.
- Please sign below to indicate you accept the following statement: "I will not give, receive, or use any unauthorized assistance."

Problem	Total Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

Signature:

1 Let X be a topological space, and let $f: I \to X$ be a loop in X based at $x_0 \in X$. Prove that $f * \overline{f}$ is path homotopic to e_{x_0} .

Remark: Here $e_{x_0}: I \to X$ is the constant loop defined by $e_{x_0}(s) = x_0$ for all $s \in I$.

2 Let α be a path in X from x_0 to x_1 . Define the map $\hat{\alpha} \colon \pi_1(X, x_0) \to \pi_1(X, x_1)$. Show that $\hat{\alpha}$ is a group isomorphism.

3 Let *E* and *B* be topological spaces. Define what it means for a function $p: E \to B$ to be a *covering map*.

Prove that if $p: E \to B$ and $p': E' \to B'$ are covering maps, then $p \times p': E \times E' \to B \times B'$ defined by $(p \times p')(e, e') = (p(e), p'(e'))$ is a covering map.

4 State the Tietze extension theorem (for maps into the closed interval [a, b], not for maps into \mathbb{R}).

The Urysohn lemma states "If X is a normal space, if A and B are disjoint closed subsets of X, and if [a,b] is a closed interval, then there exists a continuous map $f: X \to [a,b]$ such that f(x) = a for all $x \in A$ and f(x) = b for all $x \in B$." Use the Tietze extension theorem to prove the Urysohn lemma.

5 Use the fact that there is no continuous antipode-preserving map $g: S^2 \to S^1$ in order to prove the Borsuk–Ulam theorem for S^2 : "If $f: S^2 \to \mathbb{R}^2$ is continuous, then there is a point $x \in S^2$ with f(x) = f(-x)."

This page intentionally left blank.

This page intentionally left blank.