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Definitions and notation — simplicial =
Pacinc Mo
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e Simplicial complex K = {o} is a set of simplices

— o U T is a simplex on the union of the vertex sets
(as opposed to a simplicial complex)

e Simplicial collapse:

— K with maximal simplex o, 7 C o is a free face of o if o is unique
maximal coface of T

— A (7,0) simplicial collapse removes all p such that 7 C p C o

— Elementary simplicial collapse if dim(o) = dim(7) + 1

<

— Implies homotopy equivalence
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Definitions and notation — Metric stuff Pacific Northwest
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e Metric space (X, d) and scale parameter r > 0, Vietoris-Rips complex is

VR(X;r) = {finite 0 C X|diam(c) < r}
e Gluing metric spaces (X,dx) and (Y, dy)
— AX - X, AY CY

— A a metric space with isometries tx : A = Ax, 1ty : A > Ay

— X Uyx Y quotient of X LY by equivalence between Ax and Ay
XUaY =XUY/{ix(a) ~ty(a) for all a € A}

— Metricon X Us Y

dx(S,t) s,t e X
dXUAy(S,t) = dy(S,t) s, teyY
inf,cadx(s,ix(a)) +dy(y(a),t) se X, teY
e Persistent homology...
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A simple homotopy lemma Peciflc NoT =T
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Lemma 1 (Barmak, Minian 2008 - Lemma 3.9) Let:
O.be a subcomplex of a finite simplicial complex K
° .be a set of simplices K which are not in L

e v be a vertex of L which is contained in no simplex of T', but such that
vUS s a simplex of K for every S €T

o K =LUJgep{S vUS}

Then K 1is homotopy equivalent to L wvia a sequence of elementary simplicial
collapses. g
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VR complexes of wedge sums Paciflc BT
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Proposition 1 (AAGGPSWWZ 2018) For X andY [finite] pointed metric
spaces and r > 0 we have the homotopy equivalence

VR(X;r)VVR(Y;r) > VR(XVY;r)

Proof idea. Apply Lemma 1 with
L=VR(X;r)VVR(Y;r)
K=VR(XVY;r) 6
T={ceK\Lb¢ o}
a=>o

Corollary 1 Let X and Y be [finite] pointed metric spaces. For any homo-
logical dimension i > 0 and field k, the persistence modules PH;(VR(X;r) V
VR(Y;r);k) and PH;(VR(X VY;:r); k) are isomorphic.

Analogous statements are true for Cech complexes!
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Pacific Northwest

A slightly less simple homotopy lemma
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Lemma 2 (AAGGPSWWZ 2018) Let:
o L be a subcomplex of a finite stmplicial complex K

o.be a set of simplices K which are not in L

e g be a stmplex of L which is disjoint from all simplices of T', but such that
oUS is a stmplex of K for every S € T

o K=LUJgep{7|SCTC0US}
Then K is homotopy equivalent to L via a sequence of simplicial collapses.

S
Proof idea. Order S; so that |S;| < [S;11].
Let K; =L U U;Zl{T\Sj C1tCoUS;}.
Show that S; is the free face of a simplicial
collapse from K; to K;_1. A
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VR complexes of set-wise gluings Pacific N
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Theorem 1 (AAGGPSWWZ 2018) X,Y metric spaces, A a closed sub-
space of both with XNY = A, r > 0. Suppose that whenever diam(SxUSy) <r
for some ) # Sx C X\ A and ) # Sy C Y \ A, there is a unique mazimal
nonempty o C A such that diam(Sx U Sy Uo) <r. THEN,

VR(X U Y;7r) = VR(X;7) Uyray VR(Y ;7).
If VR(A;r) is contractible then

VR(X U, Y;r)~VR(X;r)VVR(Y;r).
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VR complexes of set-wise gluings Pachic o=
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Corollary 2 (AAGGPSWWZ 2018) X,Y metric spaces, X NY = A a
closed subspace of both, X Uas Y their metric gluing along A. Let r > 0 and
suppose diam(A) < r. Then

VR(XUaY;r) 2 VR(X;r)VVR(Y;r).

Proof idea. If diam(Sx USy) < r then the set of all o C A satisfying diam(Sx U
Sy Uo) < r is closed under unions (because diam(A) < r).

Also {o} # 0.

By Theorem 1 on previous
slide and V R(A;r) is contractible

we’re done!
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Remark on Cech case for set-wise gluings Pacific Northwest
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» An analogous Theorem 1 can hold true for

Cech(X;7) Uech(A:r) Cech(Y;7) ~ Cech(X Uy Y;7)
by replacing diam(Sx U Sy Uo) <r with (\,cq,ug, ue B(z;7) # 0
» But the argument for Corollary 2 does not hold
B For a counterexample see the full version of our paper

» Does not mean that Corollary 2 is not true, just that the argument
must be different

G Gy
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Pacific Northwest

Metric graphs — Definitions
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e Graph has vertices V = {v;} and edges E = {e;} CV xV

e Metric graph assigns positive finite length [; to each edge e;. AND each
point along an edge has a proportional distance to each endpoint

e Natural metric on metric graph G: distance between any two points (not
necessarily vertices) is infimum of length of all paths between them

e Loop of a metric graph is a continuous map ¢ : S* — G. Also use loop to
refer to the image of the map.

e Length of a loop is the length of its image in G
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VR complexes of gluings of metric graphs Paciflc BT
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Theorem 2 (AAGGPSWWZ 2018) Suppose

o G =Gx Ug, Gy a metric graph, G4 = Gx NGy

o (G 15 a path without branching

o Any simple loop going through G o has length at least £

o Length of G4 is at most £/3

e XCG Gy andY CGy with XNGy =Y NGx=XNY =4
Then VR(X U Y51r) ~ VR(X; 1) Uyray) VR(Y ;1) for all v > 0.

/".""" p, "'.'"'.'\\

'4

Proof idea. Let the length of G4 be o < %. I,"‘ ‘.\UI \'\\
If r > o then we use Corollary 2. A o
: G4 E
diameter of the » .
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VR complexes of gluings of metric graphs Peciflc NoT =T
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Proof idea. Let the length of G4 be a < % If » < o we will use Theorem 1.

Assume z with distances as in the figure. Then there is a loop of length

d(z,v) +d(z,0v") + a < 3a < L.

Such a z cannot exist. Use this to imply the condition of Theorem 1 is true.

d(z,v) <r
/".""" , "'.'"'.'\
," h Y \.\
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How does this help? Fecfiheriest,,
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» We know the homotopy type of the VR complex of a circle (cycle
graph) for all r values!

Theorem 3 (Adamaszek, Adams 2017) For 0 < r < 5 we have a homo-
topy equivalence

20+1 ; [+1
Set ZfT—I—l<T<2l—i—_|—3’l 01,

¢ g2 _ 1
VST ifr =5,

where ¢ 1s the cardinality of the continuum.

VR (S';r) ~ {

E 1 2 34
0 3 5 779
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Persistence for VR complexes of gluings of el
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Corollary 3 (AAGGPSWWZ 2018) Let G, Gx, Gy, Ga, X, Y, A be as
before. Suppose V R(A;r) is contractible for all r > 0. Then, for any homo-
logical dimension © > 0 and field k, the persistence modules PH;(VR(X;r) V
VR(Y;r);k) and PH;(VR(X VY;7);k) are isomorphic.
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Families of graphs Paciflc BT
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O O

(a) (b)

» Graphs we can characterize with our results
B (a) is a simple wedge sum
B (b) involves gluing cycles along vertices, single edges (or short paths)
B More general case of gluing k-cycles and trees
» Graphs we cannot characterize with our results
B (c) requires gluing along a non-simple path
B (d) involves “self-gluing”
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Future work Pacific Northwest
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» Using our theoretical results to build computational algorithms that
simplify homotopy and homology calculations when metric graphs and
metric spaces can be decomposed

» Gluing beyond a simple path

B Along a tree or self-gluing

» Use to produce a generative model for metric graphs with easily

computable homotopy type
B Specify a gluing rule and randomly glue component graphs together

» Approximations of persistence profiles of graphs using stability results
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