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Abstract

Suppose that ball-shaped sensors wander in a bounded domain. A sensor doesn’t

know its location but does know when it overlaps a nearby sensor. We say that an

evasion path exists in this sensor network if a moving evader can avoid detection. In

Coordinate-free coverage in sensor networks with controlled boundaries via homology,

Vin de Silva and Robert Ghrist give a necessary condition, depending only on the

time-varying connectivity graph of the sensors, for an evasion path to exist. Can

we sharpen this result? We show that the existence of an evasion path depends not

only on the fibrewise homotopy type of the region covered by sensors but also on the

ambient isotopy class of its embedding in spacetime. For planar sensors that also

measure weak rotation and distance information, we provide necessary and su�cient

conditions for the existence of an evasion path. Furthermore, we study the entire

space of evasion paths using a homotopy spectral sequence for diagrams of spaces due

to Emmanuel Dror Farjoun and Alexander Zabrodsky.
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Chapter 1

Introduction

Topology is finding applications in diverse areas of science and engineering [EH10].

One example is topological data analysis [Car09], in which tools such as persistent ho-

mology [ELZ02, ZC05] and Mapper [SMC07] have been used to study data sets arising

from image processing [CIdZ08], configuration spaces of molecules [MTCW10], and

medical studies [NLC11]. Other applications include the study of nonlinear analysis

and dynamical systems [KMM04], robotics [Far06], and sensor networks. In mini-

mal sensor network problems one is given weak local data measured by many sensors

and hopes to answer a global question. Tools from topology can be useful for this

passage from local to global. For example, [BG09] combines redundant local counts

of targets to obtain an accurate global count using integration with respect to Euler

characteristic. Coverage problems are another class of problems in minimal sensing

[dG06, dG07]: when we scatter sensors throughout a domain, can we determine if the

entire domain is covered?

We are interested in the following mobile sensor network coverage problem. Sup-

pose that ball-shaped sensors wander in a bounded domain. A sensor can’t measure

its location but does know when it overlaps a nearby sensor. We say that an eva-

sion path exists if a moving evader can avoid being detected by the sensors. Can we

1



CHAPTER 1. INTRODUCTION 2

determine if an evasion path exists? This is the evasion problem and is the topic of

Chapter 3. In [dG06] de Silva and Ghrist give a necessary homological condition for

an evasion path to exist. Using zigzag persistence, we provide an equivalent homo-

logical condition that moreover can be computed in a streaming fashion. However,

it turns out that homology alone is not su�cient. Indeed, neither the fibrewise ho-

motopy type of the sensor network nor any invariants thereof determine if an evasion

path exists; we show that the ambient isotopy class of the fibrewise embedding of the

sensor network into spacetime also matters. Knowing this, we provide necessary and

su�cient conditions for the existence of an evasion path for planar sensors that can

also measure weak rotation and distance data.

The evasion problem motivates a natural extension: can we describe the entire

space of evasion paths? Knowledge about the space of evasion paths may be helpful in

determining how to best patch a sensor network that contains an evasion path. Alter-

natively, we may want to find the evasion path that maintains the largest separation

between the evader and the sensors, that requires an evader to move the shortest

distance, or that requires an evader to move at the lowest top speed. In Chapter 4

we develop tools from homotopy theory necessary for studying the space of evasion

paths. In Chapter 5 we consider a generalization of the homotopy spectral sequence

of a space to diagrams of spaces [DZ87]. For such a diagram modeling the uncovered

region of a sensor network, this spectral sequence has input depending on unstable

invariants of the uncovered region and under favorable circumstances converges to

information about the space of evasion paths.

In Chapter 2 we provide background material on quivers and fibrewise spaces. We

discuss the evasion problem in Chapter 3. We study diagrams of spaces in Chapter 4,

in preparation for a homotopy spectral sequence for diagrams of spaces in Chapter 5.

We conclude in Chapter 6 and describe directions for possible future work.



Chapter 2

Quivers and Fibrewise Spaces

The material in this chapter will be used to study the evasion problem in Chapter 3.

In Section 2.1 we introduce quivers of type An and functor categories over quivers.

The particular case when the functors map to vector spaces, called quiver theory or

zigzag persistence, is described in Section 2.2. In Section 2.3 we show how to model a

fibrewise space by a zigzag diagram of spaces, and we relate the existence of a section

in a fibrewise space to the homology of its corresponding zigzag diagram.

2.1 Quivers of type An and functor categories

A quiver of type An is a directed graph with n vertices and n� 1 arrows

•
1

$ •
2

$ •
3

$ . . .$ •n�1

$ •n,

where each arrow points either to the left or to the right [DW05]. A path is a sequence

of arrows akak�1

. . . a
2

a
1

where the head of arrow ai is the tail of arrow ai+1

. Fix a

quiver of type An and let D be the free category it generates [Mac98]. The objects

of D are the vertices of the quiver and the morphisms of D are the paths. Though

3



CHAPTER 2. QUIVERS AND FIBREWISE SPACES 4

most of the results hold more generally, in this thesis we restrict attention to indexing

categories generated by quivers of type An.

Let C be a category. Since D is a small category we can form the functor category

CD whose objects are functors D ! C and whose mophisms are natural transforma-

tions. We depict C 2 CD by the diagram

C
1

$ C
2

$ . . .$ Cn.

If there is a morphism in D from object j to i, then we let pCi,j be the morphism from

Cj to Ci. A morphism f : C ! C 0 in CD is a diagram

C
1

C
2

. . . Cn

C 0
1

C 0
2

. . . C 0
n

f1 f2 f
n

where all of the squares commute.

2.2 Quiver representations and zigzag persistence

Let D be the free category generated by a quiver of type An, and let Vectk be the

category of vector spaces over a field k. To study the category VectDk we use the

path algebra kD, which is the k-algebra with basis the morphisms in D and with

multiplication given by composition. More explicitly, let p and q be two morphisms

in D. If the target of q is the source of p then path pq is the composition of the

morphisms, and otherwise pq is defined to be zero. Let kD –Mod be the category of

left kD-modules.

Theorem 1. The categories VectDk and kD –Mod are equivalent.
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This theorem can be found in [CB92, GR92] and holds more generally for finite quivers

of arbitrary type. The categories VectDk and kD –Mod are abelian.

Let FVectk be the category of finite-dimensional vector spaces. Then FVectDk is

the category of quiver representations [Gab72, DW05]. A quiver representation V in

FVectDk is a diagram

V
1

$ V
2

$ . . .$ Vn

of finite-dimensional vector spaces and linear maps. The direct sum of two quiver

representations is given by (V �W )i = Vi�Wi and pV�W
i,j = pVi,j � pWi,j . For birth and

death indices 1  b  d  n, the interval representation I(b, d) is defined by

I(b, d)i =

8
><

>:

k if b  i  d

0 otherwise,

and for j ! i in D,

p
I(b,d)
i,j =

8
><

>:

1 if b  j, i  d

0 otherwise.

Here 1 is the identinty map on field k.

The study of FVectDk for D the free category generated by a quiver of type An

is also called zigzag persistence [Cd10]. Zigzag persistence is a generalization of

persistent homology [ELZ02, ZC05] in which the maps can go in either direction. As

in persistent homology, a zigzag module is described up to isomorphism by its barcode

decomposition [Gab72, Cd10].

Theorem 2 (Gabriel). For D the free category generated by a quiver D of type An,

a quiver representation V 2 FVectDk can be decomposed as

V ⇠= �N
l=1

I(bl, dl)
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where the factors in the decomposition are unique up to reordering.

A barcode is a multiset of intervals of the form [b, d], and the barcode for a quiver

representation V ⇠= �N
l=1

I(bl, dl) is
�
[b

1

, d
1

], [b
2

, d
2

, ] . . . , [bN , dN ]
 
.

2.3 Fibrewise spaces and diagrams of spaces

Let I = [0, 1] be the closed unit interval. A fibrewise space is a topological space

Y equipped with a map Y
p�! I. A map f : Y ! W between two fibrewise spaces

Y
p�! I and W

p0�! I is fibrewise if p0f = p. A section for a fibrewise space Y
p�! I

is a fibrewise map s : I ! Y . More explicitly, we need the composition ps to be the

identity map on interval I. The space of all sections of Y is topologized as a subset

of the space of all undirected paths in Y .

Two fibrewise maps f
0

, f
1

: Y ! W are fibrewise homotopic if there is a homotopy

F : Y ⇥ I ! I from f
0

to f
1

with each F ( , t) a fibrewise map. A fibrewise map

f : Y ! W is a fibrewise homotopy equivalence if there is a fibrewise map f 0 : W ! Y

with compositions f 0f and ff 0 each fibrewise homotopic to the corresponding identity

map; in this case we say that spaces Y and W are fibrewise homotopy equivalent.

See [CJ98] for more information on fibrewise homotopy theory.

Given a discretization

0 = s
0

< . . . < sn = 1

of interval I we build a zigzag diagram ZY 2 TopD that models fibrewise space Y

[CdM09]. Let Yi = p�1(si) and let Y i+1

i = p�1([si, si+1

]). Then ZY is the diagram

Y
0

,! Y 1

0

 - Y
1

,! . . . - Yn�1

,! Y n
n�1

 - Yn

of topological spaces and inclusion maps, and indexing category D is the free category
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generated by the quiver below.

•
1

! •
2

 •
3

! . . . •
2n�1

! •
2n  •

2n+1

See Figure 2.1 for an example.

Zigzag persistence 

 
� �!

 
� �!
 

� �!�!
 

�

•! Given                  , form             and take                         .                          X ! I ZX Hd�1(ZX)

Figure 2.1: The zigzag diagram ZY for a fibrewise space Y with map Y ! I given
by projection onto the horizontal axis.

We now assume that each Yi and Y i+1

i have finite-dimensional homology and

cohomology, each taken with coe�cients in a field k. Applying the j-dimensional
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homology functor Hj gives the diagram

Hj(Y0

)! Hj(Y
1

0

) Hj(Y1

)! . . . Hj(Yn�1

)! Hj(Y
n
n�1

) Hj(Yn),

denoted Hj(ZY ) 2 FVectDk . Applying the j-dimensional cohomology functor Hj gives

the diagram

Hj(Y
0

) Hj(Y 1

0

)! Hj(Y
1

) . . .! Hj(Yn�1

) Hj(Y n
n�1

)! Hj(Yn),

denoted Hj(ZY ) 2 FVectD
op

k . Note D has been replaced with Dop because cohomol-

ogy is contravariant.

The following lemmas will be useful in the proof of Theorem 3.

Lemma 1. If Y and W are fibrewise homotopy equivalent then Hj(ZY ) ⇠= Hj(ZW )

and Hj(ZY ) ⇠= Hj(ZW ).

Proof. Let f : Y ! W be a fibrewise homotopy equivalence. This induces the com-

mutative diagram

Y
0

Y 1

0

Y
1

. . . Yn�1

Y n
n�1

Yn

W
0

W 1

0

W
1

. . . Wn�1

W n
n�1

Wn

f0 f1
0 f1 f

n�1 fn

n�1 f
n

where each map fi or f i+1

i is defined via restriction and is a homotopy equivalence.

Since homology is a homotopy invariant, applying Hj gives the commutative diagram

Hj(Y0

) Hj(Y 1

0

) Hj(Y1

) . . . Hj(Yn�1

) Hj(Y n
n�1

) Hj(Yn)

Hj(W0

) Hj(W 1

0

) Hj(W1

) . . . Hj(Wn�1

) Hj(W n
n�1

) Hj(Wn)
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where each vertical map is an isomorphism. Hence Hj(ZY ) ⇠= Hj(ZW ) in FVectDk .

The proof for cohomology is analogous.

Lemma 2. The barcodes for Hj(ZY ) and Hj(ZY ) are equal as multisets of intervals.

Proof. The version of this lemma with persistent homology instead of zigzag per-

sistence is given in Proposition 2.3 of [dMVJ11], and our proof is analogous. The

quiver representations Hj(ZY ) 2 FVectDk and Hj(ZY ) 2 FVectD
op

k live in di↵erent

categories and hence cannot be isomorphic. However, consider the decomposition

Hj(ZY ) ⇠= �N
l=1

I(bl, dl)

from Theorem 2. Applying the contravariant functor Hom( ; k) produces the de-

composition

Hom(Hj(ZY ); k) ⇠= �N
l=1

I(bl, dl),

now in FVectD
op

k . Naturality of the Universal Coe�cient Theorem [Hat02, Theo-

rem 3.2] with coe�cients in a field gives Hj(ZY ) ⇠= Hom(Hj(ZY ); k), and hence the

barcodes for Hj(ZY ) and Hj(ZY ) are equal as multisets of intervals.

Lemma 3. If fibrewise space Y has a section, then there is a full-length interval

[1, 2n + 1] in the barcodes for H
0

(ZY ) and H0(ZY ).

Proof. A section I
s�! Y gives the commutative diagram

I Y I
s p

1

(2.1)

with 1 the identity map. Taking zigzag diagrams and applying H
0

gives the following.

H
0

(ZI) H
0

(ZY ) H
0

(ZI)
H0(Zs) H0(Zp)

1



CHAPTER 2. QUIVERS AND FIBREWISE SPACES 10

Since the identity map on H
0

(ZI) ⇠= I(1, 2n+1) factors through H
0

(ZY ), the splitting

lemma implies that the barcode decomposition for H
0

(ZY ) contains a summand

isomorphic to I(1, 2n + 1). The proof for cohomology is obtained by either applying

H0 to Diagram 2.1 or by using Lemma 2.



Chapter 3

The Evasion Problem

Imagine that ball-shaped sensors wander in a bounded domain. A sensor can’t mea-

sure its location but does know when it overlaps a nearby sensor. We say that an

evasion path exists in this sensor network if a moving evader can avoid detection.

Can we determine if an evasion path exists? We refer to this question as the evasion

problem, and it is introduced in Section 11 of [dG06]. This problem is an example

of a task in minimal sensing, where one is given only local data measured by limited

sensors but tries to answer a global question.

We define the evasion problem in Section 3.1. In Section 3.2 we describe a theorem

of de Silva and Ghrist that gives a necessary homological condition for the existence

of an evasion path. We use zigzag persistence in Section 3.3 to obtain an equivalent

homological condition that lends itself more easily to streaming computation. How-

ever, zigzag persistence does not give a complete solution to the evasion problem.

Indeed, in Section 3.4 we show the existence of an evasion path depends not only on

the fibrewise homotopy type of the sensor network but also on the ambient isotopy

class of its embedding in spacetime. What extra capabilities might the sensors need

to allow us to detect evasion paths? In Section 3.5 we suppose the sensors can also

measure weak angular and distance information.

11
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3.1 Evasion problem statement

The setting for our problem is Section 11 of [dG06] with a few minor changes. Let

D ⇢ Rd be a bounded domain homeomorphic to a d-dimensional ball, where d � 2.

Suppose a finite set S of sensor nodes moves continuously inside this domain over

the time interval I = [0, 1], with each sensor v 2 S a continuous path v : I ! D.

We assume that two sensors are never at the same location. That is, for two sensors

v 6= ṽ we have v(t) 6= ṽ(t) for all t. Let Bv(t) = {y 2 D | kv(t)� yk  1} be the unit

ball covered by sensor v at time t. Then the union of the balls X(t) = [v2SBv(t) is

the region covered by the sensors at time t, and X(t)c = D \ X(t) is the uncovered

region at time t. Let

X = [t2IX(t)⇥ {t} ⇢ D ⇥ I

be the subset of spacetime covered by sensors, and let Xc = (D ⇥ I) \ X be the

uncovered region in spacetime. Both X and Xc are fibrewise spaces, that is, spaces

equipped with projection maps X ! I and Xc ! I to time.

Out[98]=

Cech simplicial complex

Appearance

draw one simplices

draw Cech complex

draw Rips complex

Filtration parameter

t 0.186

CechRips.nb  3

Printed by Mathematica for Students

(a)

Out[98]=

Cech simplicial complex

Appearance

draw one simplices

draw Cech complex

draw Rips complex

Filtration parameter

t 0.186

4   CechRips.nb

Printed by Mathematica for Students

(b)

Out[98]=

Cech simplicial complex

Appearance

draw one simplices

draw Cech complex

draw Rips complex

Filtration parameter

t 0.186

CechRips.nb  5

Printed by Mathematica for Students

(c)

Figure 3.1: (a) A sensor network at a fixed point in time, (b) its connectivity graph,
and (c) its C̆ech complex.

The sensors can’t measure their locations but two sensors do know when they

overlap. This allows us to measure the time-varying connectivity graph of the sensors.
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The connectivity graph at time t has S as its vertex set and has an edge between

sensors v and ṽ if Bv(t)\Bṽ(t) 6= ;; see Figure 3.1(b). We assume there is an immobile

subset of fence sensors whose union of balls covers the boundary @D and is homotopy

equivalent to @D.

Potentially there are also evaders moving continuously in this domain. The evaders

would like to avoid being detected by the sensors, but an evader is detected if it lies

in the covered region X(t) at time t. We say that an evasion path exists when it is

possible for a moving evader to avoid being seen by the sensors.

Definition 1. An evasion path in a sensor network is a section s : I ! Xc of fibrewise

space Xc ! I. Equivalently, an evasion path is a continuous map s : I ! D such

that s(t) /2 X(t) for all t.

See Figure 3.2 for examples. Given a sensor network, we would like to determine

whether or not an evasion path exists.

D

I

X

I

X

D

Figure 3.2: We have drawn two planar sensor networks with domain D ⇢ R2 on
the vertical axis and with time I on the horizontal axis. The region X in spacetime
covered by the sensors is drawn in gray. The network on the left contains an evasion
path. The network on the right does not contain an evasion path because an evader
must move continuously and cannot teleport locations.

Connectivity graphs alone cannot determine the existence of evasion paths. Con-

sider the two sensor networks in Figure 3.3, and suppose that in each case all three
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sensors are immobile over the entire time interval. The two networks have the same

connectivity graphs at each point in time, but the sensor network on the left contains

an evasion path while the network on the right does not.
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Figure 3.3: Let (a) and (b) be snapshots in time of two di↵erent sensor networks.
Imagine that no sensor moves over the entire time interval. Then network (a) has
an evasion path while network (b) does not, even though the two networks have the
same connectivity graph at each point in time.

Since connectivity graphs alone are insu�cient, we consider C̆ech simplicial com-

plexes. The C̆ech complex C(t) of the sensors is the nerve of the unit balls {Bv(t)}v2S

[EH10]. Hence the vertex set of C(t) is the set of sensors S, and we have a k-simplex

if the intersection of the corresponding (k + 1)-balls is nonempty. That is, simplex

[v
0

v
1

. . . vk] is in C(t) when

Bv0(t) \ Bv1(t) \ . . . \ Bv
k

(t) 6= ;.

See Figure 3.1(c) for an example. Note that the 1-skeleton of C(t) is the connectivity

graph at time t. The C̆ech complex C(t) is homotopy equivalent to the union of the

balls X(t) by the nerve lemma [Hat02, Corollary 4G.3], and for this reason we would

like to work with C̆ech complexes. We are now ready to state the evasion problem.
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The Evasion Problem. Given the C̆ech complexes C(t) of a sensor network at all

times t 2 I, which determine the fibrewise homotopy type of covered region X, can

one determine if an evasion path exists?

In applications it is generally unreasonable to assume that our sensors can measure

C̆ech complexes. This would require the task of detecting k-fold intersections, which

is not possible under many models of minimal sensing. However, one can approxi-

mate the C̆ech complex from either above or below using the Vietoris–Rips complex

[Vie27]; see Appendix A. The Vietoris–Rips complex is the maximal simplicial com-

plex built on top of the connectivity graph, and hence is measured by our sensors.

This approximation allows one to take results based on C̆ech complexes and produce

analogous approximate results using only Vietoris–Rips complexes. For example, the

results in [dG06] are stated in terms of Vietoris–Rips complexes. We avoid such

approximations and instead use C̆ech complexes.

3.2 Stacked C̆ech complex and work of de Silva

and Ghrist

The stacked C̆ech complex is a single cell complex encoding the C̆ech complexes C(t)

for all times t 2 I. We assume there are only a finite number of times

0 < t
1

< . . . < tn < 1

when the C̆ech complex changes. Hence for t and t0 in either (ti, ti+1

), [0, t
1

), or (tn, 1],

we have C(t) = C(t0). Moreover, we assume that at each time ti simplices are either

added or removed but not both. Since the sensors balls are closed, a simplex � is
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Figure 3.4: The stacked C̆ech complex for three sensor nodes. The top row shows
how the C̆ech complex changes: initially the C̆ech complex consists of an edge and a
vertex, and two edges and a 2-simplex are added as the sensors move closer together.
The bottom row shows the stacked C̆ech complex with prism cells added.

• added at time ti if � 2 C(ti) but � /2 C(t) for t 2 (ti�1

, ti), and

• removed at time ti if � 2 C(ti) but � /2 C(t) for t 2 (ti, ti+1

).

Choose interleaving times

0 = s
0

< t
1

< s
1

< . . . < tn < sn = 1.

Definition 2. The stacked C̆ech complex SC
p�! I is the fibrewise space obtained

from the disjoint union qn
i=0

C(si)⇥ [ti, ti+1

], where t
0

= 0 and tn+1

= 1, by identifying
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• C(si�1

)⇥ {ti} as a subset of C(si)⇥ {ti} if simplices are added at ti, and

• C(si)⇥ {ti} as a subset of C(si�1

)⇥ {ti} if simplices are removed at ti.

Map p is the projection onto the second coordinate, and note that p�1(t) = C(t).

This definition is similar to the stacked Vietoris–Rips complex of [dG06]. See

Figure 3.4 for a small example.

De Silva and Ghrist give a partial answer to the evasion problem in Theorem 7

of [dG06]. We state their result in arbitrary dimensions and with the stacked C̆ech

complex instead of the stacked Vietoris–Rips complex. Recall that a subset of immo-

bile fence sensors covers the boundary @D, and let F ⇥ [0, 1] be the subcomplex of

the stacked C̆ech complex SC consisting of only these fence sensors.

Theorem 7 of [dG06], reformulated. If there is an evasion path in the sensor

network, then every [↵] 2 Hd(SC, F ⇥ [0, 1]) satisfies 0 = [@↵] 2 Hd�1

(F ⇥ [0, 1]).

We explain the picture behind this theorem. Suppose there is some

[↵] 2 Hd(SC, F ⇥ [0, 1])

with 0 6= [@↵]. Let ↵ be a relative d-cycle in SC with boundary in F ⇥ [0, 1] repre-

senting [↵]. The condition 0 6= [@↵] means that the boundary of ↵ wraps a nontrivial

number of times around F⇥[0, 1]. We think of ↵ as a “sheet” in the region of spacetime

covered by the sensors that separates time 0 from time 1; see Figure 3.5(a). If there

is such a relative d-cycle ↵ then no evasion path can exist. For example, Theorem 7

of [dG06] proves there is no evasion path in the sensor network in Figure 3.5(b).

The homological criterion in Theorem 7 of [dG06] is necessary but not su�cient

for the existence of an evasion path. This can be seen in the sensor network in

Figure 3.5(c). The homological criterion of Theorem 7 of [dG06] is satisfied but there
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(a) (b)

(c)

Figure 3.5: (a) A relative 2-cycle ↵ from Theorem 7 of [dG06] is depicted in blue.
(b) Theorem 7 of [dG06] proves that there is no evasion path in this sensor network.
(c) Although there is no evasion path in this network, Theorem 7 of [dG06] does not
apply.

is no evasion path since an evader cannot move backwards in time. Can we sharpen

this theorem to get necessary and su�cient conditions?

3.3 Applying zigzag persistence

We began studying the evasion problem with the goal of finding an if-and-only-if

criterion for the existence of an evasion path using zigzag persistence, which describes

how the homology of the region covered by the sensors changes with time.

Let 0 = s
0

< . . . < sn = 1 be chosen as in Section 3.2. As in Section 2.3, we
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Figure 3.6: The zigzag diagram ZSC for the stacked C̆ech complex from the three
sensor nodes in Figure 3.4.

use this discretization to form the diagrams of spaces ZX, ZXc, and ZSC in TopD

from fibrewise spaces X, Xc, and SC, respectively. Figure 3.6 contains a depiction of

ZSC. Though the stacked C̆ech complex is not fibrewise homotopy equivalent to the

covered region X, by the nerve lemma we have the following commutative diagram

with each vertical arrow a homotopy equivalence.

SC
0

SC1

0

SC
1

. . . SCn�1

SCn
n�1

SCn

X
0

X1

0

X
1

. . . Xn�1

Xn
n�1

Xn

It follows from the proof of Lemma 1 that Hj(ZX) ⇠= Hj(ZSC).

Our initial hypothesis was that an evasion path would exist in a sensor network if
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and only if there were a full-length interval [1, 2n+1] in the barcode for Hd�1

(ZSC).

For example, network (a) in Figure 3.7 has both an evasion path and a full-length

interval, and network (b) has neither. One direction of this hypothesis is true.

(a) (b)

Figure 3.7: Two planar sensor networks and their barcode decomposions for H
1

(ZX).

Theorem 3. If there is an evasion path in a sensor network, then there is a full-length

interval [1, 2n + 1] in the barcode for Hd�1

(ZSC).

Proof. We follow Lemma 3. An evasion path is a section s : I ! Xc, that is, a

commutative diagram

I Xc I
s p

1

with 1 the identity map. Taking zigzag diagrams and applying H
0

gives the following.

H
0

(ZI) H
0

(ZXc) H
0

(ZI)
H0(Zs) H0(Zp)

1

Since the identity map on H
0

(ZI) ⇠= I(1, 2n+ 1) factors through H
0

(ZXc), the split-

ting lemma implies that there is a full-length interval [1, 2n + 1] in the barcode for
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H
0

(ZXc). To obtain a full-length interval in Hd�1

(ZX) we need a version of Alexan-

der Duality [Hat02, Theorem 3.44]. We apply Theorem 3.11 of [Kal13], which uses

the Diamond Principle of [Cd10] and our Lemma 2. Since Hd�1

(ZX) ⇠= Hd�1

(ZSC),

the proof is complete.

Remark. This theorem is as discerning as the reformulated version of Theorem 7 of

[dG06]. That is, one theorem can be used to prove that no evasion path exists in a

sensor network if and only if the other theorem can be used. However, suppose that

the sensors move for a long period of time. In this case the amalgamated complex

used in Corollary 3 of [dG06] to compute their homological criterion may become

quite large. By contrast, the algorithm for computing zigzag persistence runs in a

streaming fashion that does not require storing the sensor network across all times

simultaneously [CdM09]. Hence computing our Theorem 3 may require less memory.

Interestingly, the converse to Theorem 3 is incorrect. This is demonstrated by

the sensor network in Figure 3.8(a). It is tempting to guess that the barcode for

this network consists of the intervals drawn on top in red, but they are crossed out

because they are incorrect. The correct barcode beneath contains a full-length interval

[1, 2n + 1] even though there is no evasion path. We explain this counterintuitive

barcode in Figure 3.8(b).

Caution 2.9 from [Cd10] explains that although every submodule isomorphic to

an interval in a persistent homology module corresponds to a direct summand, the

same is not true for zigzag modules. The sensor networks in Figures 3.7(b) and 3.8(a)

are good examples of this caution. The blue cycle in Figure 3.8(b) is a summand of

the zigzag module in Figure 3.8(a), but the same cycle is a submodule that is not a

summand of the zigzag module in Figure 3.7(b).
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(a)

(b)

Figure 3.8: (a) It is tempting to guess that the barcode for H
1

(ZX) consists of the
crossed-out intervals on top in red, but instead the correct barcode is drawn beneath
in blue, green, and purple. Note there is a full-length interval [1, 2n+ 1] even though
there is no evasion path in this network. (b) A coarsened version of diagram ZX.
The cycles drawn in blue, green, and purple are generators for the three intervals in
H

1

(ZX).
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3.4 Dependence on the embedding

It turns out that the answer to the evasion problem is no: given the C̆ech complexes

C(t) of a sensor network at all times t 2 I, which determine the fibrewise homotopy

type of covered region X, one cannot always determine if an evasion path exists.

The ambient isotopy class of the fibrewise embedding of X into spacetime D⇥ I also

matters.

We demonstrate this impossibility result using the planar sensor networks (a) and

(b) in Figure 3.9. Let us describe network (a). Initially, the bottom half of domain

D is covered by sensors. These sensors retreat to the boundary, leaving a horizontal

line of sensors. Two sensors on this line jut out towards the top of D, forming three

sides of a square. These two sensors move closer together, completing the square.

The bottom two sensors in this square move apart, breaking the bottom edge of the

square. The curvy line of sensors straightens out. Finally, sensors flood from the

boundary to cover the top half of D. Network (b) is identical to (a) except that the

square opens towards the bottom of D.

At each time t 2 I the C̆ech complexes C(t) in the two networks are identical.

Nevertheless, network (a) contains an evasion path while network (b) does not. We

emphasize that these examples are realizable by continuously moving sensors. Mo-

rover, in domain D ⇢ Rd for any d � 2 there exists a pair of analogous examples1.

The covered regions for networks (a) and (b) are fibrewise homotopy equivalent,

and the stacked C̆ech complexes are fibrewise homeomorphic. However, the uncov-

ered regions for networks (a) and (b) are not fibrewise homotopy equivalent, and in

particular the first has a section while the second does not. Thus the existence of an

evasion path depends not only on the fibrewise homotopy type of the sensor network

but also on how the sensor network is fibrewise embedded in spacetime D ⇥ I.

1
Analogous examples in D ⇢ R1

require the sensors to turn o↵ and then back on.



CHAPTER 3. THE EVASION PROBLEM 24

In[422]:= Rips  data1, t, 0, 1  

Out[422]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

4   a.nb

Printed by Mathematica for Students

In[423]:= Rips  data2, t, 0, 1  

Out[423]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

a.nb   5

Printed by Mathematica for Students

In[424]:= Rips�data3y, t, 0, 1⇥

Out[424]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

6   a.nb

Printed by Mathematica for Students

In[425]:= Rips�data4y, t, 0, 1⇥

Out[425]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

a.nb   7

Printed by Mathematica for Students

In[426]:= Rips�data5y, t, 0, 1⇥

Out[426]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

8   a.nb

Printed by Mathematica for Students

In[427]:= Rips�data6, t, 0, 1⇥

Out[427]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

a.nb   9

Printed by Mathematica for Students

In[428]:= Rips  data7, t, 0, 1  

Out[428]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

10   a.nb

Printed by Mathematica for Students

2

(a)

In[422]:= Rips�data1, t, 0, 1⇥

Out[422]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

4   a.nb

Printed by Mathematica for Students

In[423]:= Rips  data2, t, 0, 1  

Out[423]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

a.nb   5

Printed by Mathematica for Students

In[429]:= Rips�data3n, t, 0, 1⇥

Out[429]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

a.nb   11

Printed by Mathematica for Students

In[430]:= Rips�data4n, t, 0, 1⇥

Out[430]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

12   a.nb

Printed by Mathematica for Students

In[431]:= Rips�data5n, t, 0, 1⇥

Out[431]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

a.nb   13

Printed by Mathematica for Students

In[427]:= Rips�data6, t, 0, 1⇥

Out[427]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

a.nb   9

Printed by Mathematica for Students

In[428]:= Rips  data7, t, 0, 1  

Out[428]=

Rips simplicial complex

Appearance

draw complex

draw balls

Filtration parameter

t 0.358

10   a.nb

Printed by Mathematica for Students

3

(b)

Figure 3.9: Each subfigure is a sensor network represented both as seven sequential
C̆ech complexes and as a covered region X in spacetime D ⇥ I. At each time the
C̆ech complexes in (a) and (b) are identical. Moreover, the two covered regions are
fibrewise homotopy equivalent. Nevertheless, network (a) contains an evasion path,
but network (b) does not because the evader cannot travel backwards in time.
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3.5 Sensors measuring cyclic orders

Since neither the C̆ech complex at each time nor the fibrewise homotopy type of

covered region X are su�cient to determine if an evasion path exists, what minimal

sensing capabilities might we add? In this section we assume the sensors live in a

planar domain D ⇢ R2 and that each sensor measures the cyclic order of its neighbors,

as in [GLPS08]. It is not uncommon for sensors to measure this weak angular data,

for example by performing circular radar sweeps. In Theorem 4 we give necessary

and su�cient conditions for the existence of an evasion path based on this rotation

information.

Theorem 4 relies on the alpha complex of the sensors. Let Vv(t) be the Voronoi

cell

Vv(t) = {y 2 D | kv(t)� yk  kṽ(t)� yk for all ṽ 2 S}

of all points in D closest to sensor v at time t. The alpha complex A(t) is the nerve

of the convex sets {Bv(t) \ Vv(t)}v2S [EM94, EH10]. It is a subcomplex of both the

C̆ech complex and of the Delaunay triangulation, and is homotopy equivalent to the

C̆ech complex. Recovering the alpha complex requires significantly stronger sensors.

However, if each sensor measures the local distances to its overlapping neighbors,

which may be approximated by time-of-flight, then this data determines the alpha

complex [FM09].

We assume there are only a finite number of times 0 < t
1

< . . . < tn < 1 when

the alpha complex changes. Hence for t and t0 in (ti, ti+1

), [0, t
1

), or (tn, 1] we have

identical alpha complexes A(t) = A(t0). Moreover, we assume that at each ti one of

the following changes to the alpha complex occurs.

1. A single edge is added or removed.

2. A single 2-simplex is added or removed.
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3. A free pair consisting of a 2-simplex and a face edge with no other cofaces is

added or removed.

4. A Delaunay edge flip occurs.

We assume that each sensor measures the clockwise cyclic order of its neighbors in the

Alpha complex. This cyclic order data is necessarily fixed in each interval (ti, ti+1

),

[0, t
1

), or (tn, 1].

Theorem 4. Suppose X(t) is connected at each time t. Then from the time-varying

alpha complex and the time-varying cyclic orderings of the neighbors about each sen-

sor, we can determine whether or not an evasion path exists.

Proof. We give a sketch of the proof. Let A1(t) be the 1-skeleton of the alpha complex

at time t. We have cyclic permutations ⇡v of the edges incident with each vertex v,

where ⇡v(e) is the successor of edge e in the clockwise ordering around v. This gives

A1(t) the structure of a rotation system [MT01], also called a fat graph or ribbon

graph [Igu02]. A rotation system partitions the directed edges of A1(t) into sets

of boundary cycles. Each boundary cycle is a loop of directed edges (e
1

e
2

. . . ek)

constructed so that if vi the target vertex of directed edge ei, then ⇡v
i

(ei) = ei+1

and

⇡v
k

(ek) = e
1

. See Figure 3.10 for an example, and note that this cyclic ordering data

allows one to distinguish the two sensor networks in Figure 3.9.

The boundary cycles of A1(t) are in bijective correspondence with the connected

components of R2 \ A1(t). Removing the boundary cycles of length three that are

filled by 2-simplices (and also the boundary cycle corresponding to the outside of @D)

produces a bijection with the connected components of the uncovered region X(t)c.

Hence by tracking the boundary cycles of A1(t) we can measure how the connected

components of the uncovered region merge, split, appear, and disappear. In other

words, we can reconstruct the Reeb graph of Xc ! I.
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Figure 3.10: An example rotation system. The cyclic orderings are drawn on the left
in gray, and the four boundary cycles are drawn on the right in red, green, blue, and
yellow.

We will maintain labels on the boundary cycles of A1(t) so that a boundary cycle

is labeled true if the corresponding connected component of R2 \ A1(t) may contain

an evader and false if not. At time t = 0 we label the boundary cycles of length

three filled by 2-simplices in A(0) (and also the boundary cycle corresponding to the

outside of @D) as false. All other boundary cycles are labeled true. When we pass a

time ti when the alpha complex changes, we update the labels as follows.

1. If a single edge is added, then since X(t) is connected a single boundary cycle

splits in two. Each new boundary cycle maintains the original label. If a single

edge is removed then two boundary cycles merge, and the new cycle is labeled

true if either of the original two cycles were labeled true.

2. If a single 2-simplex is added, then the label on the corresponding boundary

cycle of length three is set to false. If a single 2-simplex is removed then the

label on the corresponding boundary cycle of length three remains false.

3. If a free pair consisting of a 2-simplex and a face edge is added, then a boundary
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cycle splits into two with one label unchanged. The other label corresponding to

the added 2-simplex is set to false. If a free pair is removed then the boundary

cycle of length three corresponding to the 2-simplex is removed and the label

on the other altered boundary cycle is unchanged.

4. If a Delaunay edge flip occurs, then two boundary cycles labeled false are re-

placed by two di↵erent boundary cycles also labeled false.

An evasion path exists in the sensor network if and only if there is a boundary cycle

in A1(1) labeled true.

Figure 3.11 shows that the connectedness assumption in Theorem 4 is necessary.

Fat graphs 
•! Suppose sensor network is connected at each time.                   

If given the alpha complex (less coordinate-free than !ech)    

and fat graph structure at each time, one can determine sharply 

if an evasion path exists. 

•! Question: are the !ech complex and fat graph structure at each 

time sufficient? 

Mobile Sensors and Pursuit-Evasion: Can Directed Algebraic Topology Help?
Henry Adams, Stanford Mathematics

Geometric and Topological Methods in Computer Science, Aalborg University, January 2010

Introduction

This poster describes an interesting problem.

Applied Setting

This is roughly the set-up of Section 11 of
Coordinate-free Coverage in Sensor Networks
with Controlled Boundaries via Homology by Vin
de Silva and Robert Ghrist [1].

Sensors and evaders move continuously in a
bounded simply-connected domain D � R2 during
the time interval t � [0, 1]. Each sensor covers a unit
ball about its center. Let Ut � D be the covered re-
gion at time t. Except for a cycle of immobile sensors
which cover the boundary of the domain, �D, we do
not know the sensor locations. Instead, for all time
we know the abstract communication graph of the
sensors:
• The vertices are the sensors.
• An edge exists if its two sensors are within

distance
�

3.
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Sensors, their communication graph, and
their Rips complex.

Note: the constant
�

3 is chosen so that a triangle
in the communication graph corresponds to three
overlapping sensors with no gap in the middle.

We would like to use this coordinate-free in-
formation to determine: is there an evasion path
p : [0, 1] � D with p(t) /� Ut?

Pure Setting

The space-cross-time region D� [0, 1] has a time-
induced partial order.

(x, t) � (x�, t�) �� t � t�

Let U � D � [0, 1] be the region covered by the
sensors. What information about U does one need in
order to determine if there is a directed evasion path
in its complement D � [0, 1] \ U? Are there ideas,
invariants, or tools from directed algebraic topology
which could be helpful?

Can the Criterion of [1] be
Sharpened?

The main idea of Theorem 7 of [1] is that if there
exists a relative 2-cycle in H2(U , �D� [0, 1]) whose
boundary wraps nontrivially around �D � [0, 1],
then no evasion path exists. The actual statement
uses Rips complexes instead of U , providing a com-
putable criterion.

A relative 2-cycle � no path.

Unfortunately, a physically impossible
undirected path in the complement of U

� no relative 2-cycle.

Dependence on the Embedding

Below are two pairs of sensor networks, drawn as snapshots with time increasing from left to right. The
networks in each pair have the same communication graphs for all times. There is also a directed homeo-
morphism, which acts as the identity on the time coordinate, between the shadows of the Rips complexes in
D � [0, 1]. However, the first sensor network in each pair has an evasion path while the second does not.
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Pair A: Top row contains evasion path; bottom does not.
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Pair B: Top row contains evasion path; bottom does not.

What minimal sensor capabilites might one add to distinguish these examples? Each covered region Ut is
homotopic to a graph, and the embedding type of a possibly disconnected planar graph in R2 is determined
by the cyclic order of the edges around each vertex, the external boundary of each connected component,
and the void containing each component. In Pair A, one could identify evasion paths if each sensor knew the
cyclic order of its neighbors, a plausible assumption. In Pair B, one would like to track the void containing
each connected component. This may require significantly smarter sensors.
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Fajstrup, and Amra Ibrisevic for organizing the workshop.
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(a)

Fat graphs 
•! Suppose sensor network is connected at each time.                   

If given the alpha complex (less coordinate-free than !ech)    

and fat graph structure at each time, one can determine sharply 

if an evasion path exists. 

•! Question: are the !ech complex and fat graph structure at each 

time sufficient? 

Mobile Sensors and Pursuit-Evasion: Can Directed Algebraic Topology Help?
Henry Adams, Stanford Mathematics

Geometric and Topological Methods in Computer Science, Aalborg University, January 2010

Introduction

This poster describes an interesting problem.

Applied Setting

This is roughly the set-up of Section 11 of
Coordinate-free Coverage in Sensor Networks
with Controlled Boundaries via Homology by Vin
de Silva and Robert Ghrist [1].

Sensors and evaders move continuously in a
bounded simply-connected domain D � R2 during
the time interval t � [0, 1]. Each sensor covers a unit
ball about its center. Let Ut � D be the covered re-
gion at time t. Except for a cycle of immobile sensors
which cover the boundary of the domain, �D, we do
not know the sensor locations. Instead, for all time
we know the abstract communication graph of the
sensors:
• The vertices are the sensors.
• An edge exists if its two sensors are within

distance
�

3.
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Sensors, their communication graph, and
their Rips complex.

Note: the constant
�

3 is chosen so that a triangle
in the communication graph corresponds to three
overlapping sensors with no gap in the middle.

We would like to use this coordinate-free in-
formation to determine: is there an evasion path
p : [0, 1] � D with p(t) /� Ut?

Pure Setting

The space-cross-time region D� [0, 1] has a time-
induced partial order.

(x, t) � (x�, t�) �� t � t�

Let U � D � [0, 1] be the region covered by the
sensors. What information about U does one need in
order to determine if there is a directed evasion path
in its complement D � [0, 1] \ U? Are there ideas,
invariants, or tools from directed algebraic topology
which could be helpful?

Can the Criterion of [1] be
Sharpened?

The main idea of Theorem 7 of [1] is that if there
exists a relative 2-cycle in H2(U , �D� [0, 1]) whose
boundary wraps nontrivially around �D � [0, 1],
then no evasion path exists. The actual statement
uses Rips complexes instead of U , providing a com-
putable criterion.

A relative 2-cycle � no path.

Unfortunately, a physically impossible
undirected path in the complement of U

� no relative 2-cycle.

Dependence on the Embedding

Below are two pairs of sensor networks, drawn as snapshots with time increasing from left to right. The
networks in each pair have the same communication graphs for all times. There is also a directed homeo-
morphism, which acts as the identity on the time coordinate, between the shadows of the Rips complexes in
D � [0, 1]. However, the first sensor network in each pair has an evasion path while the second does not.
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Pair A: Top row contains evasion path; bottom does not.
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Pair B: Top row contains evasion path; bottom does not.

What minimal sensor capabilites might one add to distinguish these examples? Each covered region Ut is
homotopic to a graph, and the embedding type of a possibly disconnected planar graph in R2 is determined
by the cyclic order of the edges around each vertex, the external boundary of each connected component,
and the void containing each component. In Pair A, one could identify evasion paths if each sensor knew the
cyclic order of its neighbors, a plausible assumption. In Pair B, one would like to track the void containing
each connected component. This may require significantly smarter sensors.
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I would like to thank Robert Ghrist for sharing this problem with me, and Martin Raussen, Lisbeth
Fajstrup, and Amra Ibrisevic for organizing the workshop.
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(b)

Figure 3.11: Each subfigure is a sensor network represented by seven sequential C̆ech
complexes. At each time the C̆ech complexes, alpha complexes, and cyclic order
information are identical. Nevertheless, network (a) contains an evasion path but
network (b) does not. These networks show that it is necessary in Theorem 4 to
assume that each X(t) is connected.

It is an open question if C̆ech complexes and rotation information su�ce.
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Open Question. Suppose we have a sensor network with X(t) connected at each

time t. Using only the time-varying C̆ech complex and the time-varying cyclic order-

ings of the neighbors about each sensor, is it possible to determine if an evasion path

exists?

An answer to the open question would fill the gap between Theorem 7 of [dG06],

which uses only minimal sensor capabilities but is not sharp, and Theorem 4, which

is sharp but requires more advanced sensors measuring cyclic orders and alpha com-

plexes or local distances.



Chapter 4

Diagrams of Spaces

The evasion problem motivates a natural extension: can we describe the space of

evasion paths? That is, what information must we measure about covered region

X and the ambient isotopy class of its fibrewise embedding in spacetime D ⇥ I to

describe the space of sections I ! Xc?

We are primarily interested in this question from a theoretical point of view, but

it also relates to the following applied problems. Suppose an evasion path exists in a

mobile sensor network. We may be interested in determining the best way to patch

the network so that evasion paths no longer exists. Alternatively, we may want to

find the evasion path that maintains the largest separation between the evader and

the sensors, that requires an evader to move the shortest distance, or that requires

an evader to move at the lowest top speed. Knowledge about the space of sections

may be helpful for such problems.

In Section 4.1 we relate the space of sections of a fibrewise space Y ! I to the ho-

motopy limit of a diagram of spaces built from Y . This is our motivation for studying

homotopy limits in this chapter and next. In Sections 4.2–4.7 we describe simplicial

and cosimplicial objects, a model category structure for diagrams of spaces, adjoints

for the forgetful functor on diagrams, projective and injective diagrams, monads, and

30
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the homotopy spectral sequence of a cosimplicial space. With this framework we

define homotopy limits in Section 4.8, and moreover, a spectral sequence converging

to the homotopy groups of a homotopy limit.

4.1 The space of evasion paths and homotopy lim-

its

In this section we relate the space of evasion paths to homotopy limits. This is our

motivation for studying homotopy limits, which we define in Section 4.8. We work

with topological spaces in this section but for the remainder of this chapter and the

next we work with simplicial sets.

Example 1. Consider the sensor network drawn in Figure 4.1, in which the uncovered

region consists of a cylinder and two thin tubes. The blue evasion path wraps once

Figure 4.1: The uncovered region consists of a cylinder in spacetime along with two
thin tubes connecting the cylinder to the starting and ending times. The blue evasion
path wraps once around the cylinder while the red evasion path travels straight across.

around the cylinder while the red evasion path travels straight across; these two
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evasion paths are not fibrewise isotopic. We can model the uncovered region by the

diagram

⇤ ! S1  ⇤,

whose homotopy limit is ⌦S1, the loop space of the circle. This is a discrete space

with an infinite number of components, one for each integer winding number around

the circle. The homotopy limit of the diagram is homotopy equivalent to the space

of evasion paths in the sensor network.

Example 2. The space of evasion paths need not be discrete. For example, if Y is a

space and Y ⇥I is the uncovered region of a sensor network, then the space of evasion

paths is homotopy equivalent to Y . The case when Y = S1 is drawn in Figure 4.2.

Figure 4.2: The uncovered region for this sensor network consists of a cylinder in
spacetime.

We now formalize the relationship between spaces of sections and homotopy limits.

Let Y
p�! I be a fibrewise space. Recall Yi = p�1(si) and Y i+1

i = p�1([si, si+1

]). Let

PY i+1

i be the space of undirected paths

PY i+1

i =
�
↵ : [si, si+1

]! Y i+1

i | p(↵(si)) = si and p(↵(si+1

)) = si+1

 
,
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and let ~PY i+1

i be the corresponding space of fibrewise paths

~PY i+1

i =
�
↵ : [si, si+1

]! Y i+1

i | p(↵(t)) = t for all t 2 [si, si+1

]
 
.

We say that a discretization 0 = s
0

< . . . < sn = 1 is section-preserving for Y if each

PY i+1

i deformation retracts onto ~PY i+1

i . For example, a discretization chosen as in

Section 3.2 is section-preserving for the stacked C̆ech complex SC, for the region X

covered by the sensors, and for the region Xc not covered by the sensors.

Lemma 4. If diagram ZY 2 TopD is formed from a section-preserving discretiza-

tion, then the space of sections �(Y ) is homotopy equivalent to the homotopy limit

holimD ZY .

Proof. We have

holimD ZY ⇠= homD(|B(D # �)|, ZY )

⇠=
�
(↵

0

. . .↵n�1

) 2 PY 1

0

⇥ . . .⇥ PY n
n�1

| ↵i(si+1

) = ↵i+1

(si+1

)
 

'
�
(↵

0

, . . .↵n�1

) 2 ~PY 1

0

⇥ . . .⇥ ~PY n
n�1

| ↵i(si+1

) = ↵i+1

(si+1

)
 

⇠= �(Y ).

The diagram |B(D # �)| in TopD has at object i in D the space |B(D # i)|, which

is the realization of the nerve of the overcategory (D # i). The first homeomorphism

is Proposition 18.2.6 of [Hir09] (see also Lemma 13). The second homeomorphism

follows from the definition of |B(D # �)| for our indexing category D generated by a

quiver of type An. The homotopy equivalence comes from the deformation retractions

of each PY i+1

i onto ~PY i+1

i .
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4.2 Simplicial and cosimplical objects

The material in this section can be found in [BK72a, GJ09]. Let � be the simplex

category, whose objects are strings of ordinal numbers of the form

0! 1! . . .! n� 1! n,

and whose morphisms are order-preserving functions of sets. For a category C, the cat-

egory of simplicial objects over C is the functor category with contravariant functors

�op ! C as objects and with natural transformations as morphisms. Alternatively, a

simplicial object X over C is a collection of objects Xn 2 C for n � 0, equipped with

face and degeneracy maps

di : Xn ! Xn�1

si : Xn ! Xn+1

for 0  i  n. The face and degeneracy maps satisfy the following simplicial identities:

didj = dj�1

di for i < j

disj = sj�1

di for i < j

= 1 for i = j, j + 1

= sjdi�1

for i > j + 1

sisj = sjsi�1

for i > j.

Similarly, let cC be the functor category of cosimplicial objects over C. Its objects

are covariant functors �! C and its morphisms are natural transformations. Alter-

natively, an object X 2 cC is a collection of objects Xn 2 C for n � 0, equipped with
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coface and codegeneracy maps

di : Xn�1 ! Xn

si : Xn+1 ! Xn

for 0  i  n. The coface and codegeneracy maps satisfy the following cosimplicial

identities:

djdi = didj�1 for i < j

sjdi = disj�1 for i < j

= 1 for i = j, j + 1

= di�1sj for i > j + 1

sjsi = si�1sj for i > j.

For C a model category there is an induced Reedy model category structure on cC

[GJ09, Hov99].

Let S be the category of simplicial sets and let S⇤ be the category of pointed

simplicial sets. There is an equivalence between the homotopy theories of simplicial

sets and of topological spaces. For the remainder of this chapter and the next we

work simplicially, meaning that a space is a pointed simplicial set. We refer to cS⇤ as

the category of cosimplicial spaces.

4.3 Model category structure for diagrams of spaces

In this section we describe model category structures for pointed simplicial sets and for

diagrams thereof. The category S⇤ of pointed simplicial sets is a simplicial cofibrantly

generated model category [Hir09]. A morphism is a weak equivalence if its induced

map on geometric realizations is a weak equivalence of topological spaces, and a

morphism is a fibration if it is a Kan fibration. The tensor of X 2 S⇤ with K 2 S is
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given by X ⌦K = X ^K+, where K+ 2 S⇤ is formed by adding a disjoint basepoint.

For W,X 2 S⇤ the pointed simplicial set hom(W,X) has as its n-simplices the set of

maps from W ⌦�n to X.

Since D is a small category, Theorem 11.7.3 of [Hir09] implies that SD
⇤ is also a

simplicial cofibrantly generated model category. A morphism W ! X in SD
⇤ is a

weak equivalence if it is a pointwise weak equivalence, meaning that each Wi ! Xi

is a weak equivalence in S⇤. Similarly, a morphism is a fibration if it is a pointwise

fibration. Cofibrations consist of all free maps and their retracts. The tensor of

X 2 SD
⇤ with K 2 S, denoted X ⌦ K 2 SD

⇤ , is given by (X ⌦ K)i = Xi ⌦ K and

pX⌦K
i,j = pXi,j ⌦ 1K . For W,X 2 SD

⇤ the pointed simplicial set homD(W,X) has as its

n-simplices the set of maps from W ⌦�n to X.

Let ⇥⇤ be the constant diagram in SD
⇤ with basepoint ⇤ at each object in D. Note

that SD
⇤ is a pointed model category since the map ⇥⇤ ! ⇥⇤ from the initial object

to the terminal object is an isomorphism. Let ⌃ be the suspension functor for this

pointed model category. Lemma 6.1.2 of [Hov99] and Proposition 9.5.24 of [Hir09]

then imply the following.

Lemma 5. Let W 2 SD
⇤ be cofibrant and let X 2 SD

⇤ be fibrant. We have natural

isomorphisms

⇡t homD(W,X) ⇠= [⌃tW,X]

for all t � 0, where [⌃tW,X] is the homotopy class of maps ⌃tW ! X.

4.4 Adjoints for forgetful functors on diagrams

Let C be a category and let D be the free category generated by a quiver of type An.

Let D� be the discrete category with the same objects as D but with no non-identity

morphisms. The inclusion functor D� ! D induces a forgetful functor F : CD ! CD�

.
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Also, for 1  i  n, let Fi : CD ! C be the forgetful functor mapping C 2 CD to its

value Ci at the i-th object of D.

If category C has finite products then the forgetful functors have right adjoints

[Hir09].

Lemma 6. If C has finite products then we have an adjunction Fi : CD $ C : Gi.

Let C 2 C. If there is a morphism j ! i in D then (GiC)j = C; otherwise (GiC)j

is the terminal object in C. Morphism pGi

C
i,j is either the identity map on C or

the unique map to the terminal object. For a morphism f : C ! C 0 in C, map

(Gif)j : (GiC)j ! (GiC
0)j is f if there is a morphism j ! i in D, and is the identity

map on the terminal object otherwise.

Lemma 7. If C has finite products then we have an adjunction F : CD $ CD�

: G.

For C 2 CD�

we have GC =
Q

i GiCi. That is,

(GC)j =
Y

j!i

Ci

where the product is over the morphisms in D with source j. Morphism pGC
i,j is given

by canonical projection.

Dually, if category C has finite coproducts then the forgetful functors have left

adjoints.

Lemma 8. If C has finite coproducts then we have an adjunction Pj : C $ CD : Fj.

Let C 2 C. If there is a morphism j ! i in D then (PjC)i = C; otherwise (PjC)i is

the initial object in C. Morphism p
P
j

C
i,j is either the identity map on C or the unique

map from the initial object. For a morphism f : C ! C 0 in C, map (Pjf)i : (PjC)i !

(PjC
0)i is f if there is a morphism j ! i in D, and is the identity map on the initial

object otherwise.
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Lemma 9. If C has finite coproducts then we have an adjunction P : CD� $ CD : F .

For C 2 CD�

we have PC =
`

j PjCj. That is,

(PC)i =
a

j!i

Cj

where the coproduct is over the morphisms in D with target i. Morphism pPC
i,j is

given by canonical injection.

For example, suppose the quiver underlying D is

•
1

! •
2

 •
3

! •
4

 •
5

and C 2 CD�

is

C
1

C
2

C
3

C
4

C
5

.

Then diagram GC is

C
1

⇥ C
2

! C
2

 C
2

⇥ C
3

⇥ C
4

! C
4

 C
4

⇥ C
5

,

with each map the canonical projection. Diagram PC is

C
1

! C
1

q C
2

q C
3

 C
3

! C
3

q C
4

q C
5

 C
5

,

with each map the canonical injection.

4.5 Projective and injective diagrams

Let D be the free category generated by a quiver of type An. Recall from Theorem 1

that the categories VectDk and kD –Mod are equivalent, where kD is the path algebra
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over a field k. For a ring R we can analogously define the ring RD as the free left R-

module with basis the morphisms in D and with multiplication given by composition.

The categories (R –Mod)D and RD –Mod are equivalent [EE05].

Lemma 10. If M 2 R –Mod is projective then so is PjM 2 (R –Mod)D, and if M is

injective then so is GiM 2 (R –Mod)D.

In particular, in FVectDk the set

{Pj(k) | 1  j  n}
⇣
respectively {Gi(k) | 1  i  n}

⌘

is a complete set of indecomposable projective (respectively injective) quiver repre-

sentations that are pairwise non-isomorphic [CB92].

In order to study projective resolutions in (R –Mod)D we first define a functor

P̃ : (R –Mod)D
� ! (R –Mod)D. For a morphism j ! i in D, let its length |j ! i| be

the number of arrows in the corresponding path of the underlying quiver. The set of

morphisms with |j ! i| = 1 is the set of arrows in the quiver. For N 2 (R –Mod)D
�

we define P̃N =
`

|j!i|=1

PiNj, which gives

(P̃N)i =
a

|j!i|�1

Nj.

Moreover, given M 2 (R –Mod)D, we define morphism �M : P̃FM ! PFM by

defining each �M
i : (P̃FM)i ! (PFM)i. If |j ! i| � 1 and m 2Mj ⇢ (P̃FM)i, then

�M
i (m) =

8
>>>>><

>>>>>:

m in summand Mj of (PFM)i

�pMi,j(m) in summand Mi of (PFM)i

0 in all other summands.
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The following lemma generalizes the standard projective resolution for quiver rep-

resentations [CB92].

Lemma 11. Suppose

. . .
d
l+1��! Sl

d
l�! . . .

d2�! S
1

d1�! S
0

d0�!M ! 0

is a resolution in (R –Mod)D with each (Sl)i 2 R –Mod projective. Then

. . . PFS
3

PFS
2

PFS
1

PFS
0

M 0
� � �

P̃FS
2

P̃FS
1

P̃FS
0

2

4PFd3 �S2

0 � ˜PFd2

3

5

2

4PFd2 �S1

0 � ˜PFd1

3

5 h
PFd1 �S0

i

is a projective resolution in (R –Mod)D.

Proof. The morphism PFS
0

! M is the adjoint of Fd
0

: FS
0

! FM given by

Lemma 9. Note each PFSl� P̃FSl�1

is projective by Lemma 10. To show exactness

at stage l � 2 in the resolution, we first compute

2

4PFdl �S
l�1

0 �P̃Fdl�1

3

5

2

4PFdl+1

�S
l

0 �P̃Fdl

3

5 =

2

4PF (dldl+1

) PFdl�
S
l � �S

l�1P̃Fdl

0 P̃F (dl�1

dl)

3

5

=

2

40 0

0 0

3

5 .

Next, suppose 2

4a

b

3

5 2 ker

0

@

2

4PFdl �S
l�1

0 �P̃Fdl�1

3

5

1

A .
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This gives

PFdla + �S
l�1b = 0 (4.1)

�P̃Fdl�1

b = 0.

Hence there exists some b0 2 P̃FSl with �P̃Fdlb
0 = b. Note

PFdl(a� �S
lb0) = PFdla� PFdl�

S
lb0

= PFdla� �S
l�1PFdlb

0

= PFdla� �S
l�1P̃Fdlb

0 since b0 2 P̃FSl

= PFdla + �S
l�1b by definition of b0

= 0 by (4.1).

Hence a � �S
lb0 2 ker(PFdl) = im(PFdl+1

), so there exists some a0 2 PFSl+1

with

PFdl+1

a0 + �S
lb0 = a. For l � 2, we have shown

im

0

@

2

4PFdl+1

�S
l

0 �P̃Fdl

3

5

1

A = ker

0

@

2

4PFdl �S
l�1

0 �P̃Fdl�1

3

5

1

A .

The verifications for l = 0 and 1 are similar.

The projective dimension of a ring R is the minimum integer l (or 1) such that

every M 2 R –Mod has a resolution by projective modules

0! Sl ! . . .! S
1

! S
0

!M ! 0

of length at most l. The injective dimension is defined dually. For any ring R the

projective and injective dimensions are equal, and this common number is called the

global dimension of R [Wei95].
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Lemma 12. If ring R has global dimension l then ring RD has global dimension at

most l + 1.

Proof. Let M 2 RD –Mod. Since R has global dimension l there exists a projective

resolution

0! S̃l

˜d
l�! . . .

˜d2�! S̃
1

˜d1�! S̃
0

˜d0�! FM ! 0

in (R –Mod)D
�

. For each morphism j ! i in D of length one, we use the fact that

(S̃
0

)j is projective to find a lift pS0
i,j making the following diagram commute.

(S̃
0

)j Mj

(S̃
0

)i Mi

(

˜d0)
j

(

˜d0)
i

pS0
i,j

pM
i,j

For j ! i of length greater than one we define pS0
i,j by composition. Hence we have

an exact sequence

S
0

d0�!M ! 0

in AD –Mod, with each (S
0

)j = (S̃
0

)j and with each (d
0

)j = (d̃
0

)j. Continuing

inductively, we produce a resolution

0! Sl
d
l�! . . .

d2�! S
1

d1�! S
0

d0�!M ! 0

in (R –Mod)D that is not necessarily projective, but in which each (Sl)i 2 R –Mod is

projective. By Lemma 11 we have a projective resolution

. . . P̃FSl PFSl . . . PS
1

PS
0

M 0
� �

P̃FSl�1

P̃FS
0

2

4 �Sl

� ˜PFd
l

3

5

2

4PFd
l

�Sl�1

0 � ˜PFd
l�1

3

5

2

4PFd2 �S1

0 � ˜PFd1

3

5 h
PFd1 �S0

i
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of length at most l + 1.

It follows that if R is a semisimple ring then RD has global dimension at most

one, and if R is a hereditary ring then RD has global dimension at most two. In

particular, VectDk has global dimension at most one and AbD has global dimension

at most two.

4.6 Monads

Let C be a category and let 1C be its identity functor. A monad (T, ⌘, µ) on C

consists of an endofunctor T : C ! C together with a unit natural transformation

⌘ : 1C ! T and a multiplication natural transformation µ : T 2 ! T such that the

following diagrams commute [Mac98].

T 3 T 2 T T 2

T 2 T T 2 T

Tµ

µ

µT µ

T⌘

µ

⌘T µ

Monads are also often called triples. Every adjunction F : C $ C 0 : F 0 gives a monad

on the category C with T = F 0F .

From a monad (T, ⌘, µ) on category C and an object C 2 C we can produce an

augmented cosimplicial object C ! T •C 2 cC [EM65, BB69]. It is defined by setting

(T •C)n = T n+1C for n � �1.

C TC T 2C T 3C T 4C . . .
d0 d0, d1 d0, d1, d2 d0, . . . , d3

s0 s0, s1 s0, s1, s2
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The coface maps di and codegeneracy maps si are given by

di = T i⌘T n�i : T nC ! T n+1C

si = T iµT n�i : T n+2C ! T n+1C.

4.7 The homotopy spectral sequence of a cosim-

plicial space

The material in this section can be found in [BK72a, GJ09]. Let X• 2 cS⇤ be a

cosimplicial space. If X• is not fibrant, then choose a weak equivalence X• ! Y •

with Y • fibrant and replace X• with Y •. The extended homotopy spectral sequence

for cosimplicial space X• is the extended homotopy spectral sequence of the following

tower of fibrations.

. . .! Tot
2

X• ! Tot
1

X• ! Tot
0

X• ! ⇤

Let Es,t
r for t � s � 0 denote the Er page of this second quadrant spectral sequence,

whose di↵erentials are of the form dr : Es,t
r ! Es+r,t+r�1

r . The Er page consists of

abelian groups in dimensions t � s � 2, possibly non-abelian groups in dimension

t � s = 1, and pointed sets in dimension t � s = 0. Under favorable conditions the

spectral sequence for cosimplicial space X• converges to ⇡t�s TotX•. If X ! X• is

an agumented cosimplicial space then we have a map X ! TotX•.

For r = 2 there are natural isomorphisms Es,t
2

⇠= ⇡s⇡tX
• for t � s � 0, where

⇡s is defined as follows. For a cosimplicial abelian group A• 2 cAb, let ⇡sA• be the

cohomology of the cochain complex

A0

@�! A1

@�! A2

@�! . . .
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with coboundary map @ =
P

(�1)idi the alternating sum of the coface maps. For

G• 2 cGrp a cosimplicial group that is not necessarily abelian, group ⇡0G• is the

equalizer of d0 and d1, giving

⇡0G• = {g 2 G0 | d0g = d1g}.

Pointed set ⇡1G• is equal to Z1G•/G0, where Z1G• is the pointed set of cocycles

Z1G• = {x 2 G1 | (d2x)(d1x)�1(d0x) = e},

and where G0 acts on Z1G via g · x = (d0g)x(d1g)�1. For S• a cosimplicial pointed

set we let pointed set ⇡0S• be the equalizer of d0 and d1.

4.8 Homotopy limits

Since S⇤ has finite products we have an adjunction F : SD
⇤ $ SD�

⇤ : G. We also write G

for the resulting monad G = GF on category SD
⇤ . For X 2 SD

⇤ we have an augmented

cosimplicial object X ! G•X, and applying limD gives an augmented cosimplicial

space limD X ! limD G•X called the cosimplicial replacement of X. The homotopy

limit of X is defined as holimD X = Tot limD G•X, and if X 2 SD
⇤ is fibrant then so

is holimD X 2 S⇤ [GJ09, Hir09].

We give a second description of the homotopy limit. For an object i in D, let

B(D # i)+ be the nerve of the overcategory (D # i) with a disjoint basepoint added.

Then diagram B(D # �)+ in SD
⇤ has at object i the space B(D # i)+. Since D is a

small category, Proposition 18.2.6 of [Hir09] gives the following lemma.

Lemma 13. For X 2 SD
⇤ , the homotopy limit holimD X is naturally isomorphic to

homD(B(D # �)+, X).
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We now consider a spectral sequence that, under favorable circumstances, con-

verges to the homotopy groups of a homotopy limit [GJ09]. Let Es,t
r denote the

homotopy spectral sequence for augmented cosimplicial space limD X ! limD G•X.

We describe the E
2

term using the right derived functors lims
D of limD. Since the

limit functor is left exact, lim0

D = limD. For a diagram of abelian groups A 2 AbD,

we have a natural isomorphism lims
D A ⇠= ⇡s limD G•A. By analogy, for a diagram of

possibly non-abelian groups G 2 GrpD, we define lim1

D G = ⇡1 limD G•G. Since

(Gm+1X)i =
Y

i!i0!...!i
m

Xi
m

and limD GX ⇠=
Q

i Xi, it follows that

⇡t limD Gm+1X ⇠= ⇡t

Y

i0!...!i
m

Xi
m

⇠=
Y

i0!...!i
m

⇡tXi
m

⇠= limD Gm+1⇡tX.

Since (G•X)m = Gm+1X, the E
2

term of this spectral sequence is

Es,t
2

⇠= ⇡s⇡t limD G•X ⇠= ⇡s limD G•⇡tX ⇠= lims
D ⇡tX.

Under favorable conditions the spectral sequence converges to

⇡t�s Tot limD G•X = ⇡t�s holimD X.

Since D is the free category generated from a quiver of type An, Lemma 12 implies

Es,t
2

= 0 for s > 2.

Recall from Section 4.1 that we are interested in using homotopy limits to describe

spaces of sections. The following two low-dimensional examples model the uncovered

regions for the sensor networks in Figure 3.9, one with an evasion path and one

without, before taking the disjoint union with a basepoint.
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Example 3. Let D be the free category generated from quiver

•! • •! • •

and let X 2 SD
⇤ be the diagram below.

x
1

x
2

x
3

x
4

x00
3

x0
2

x0
3

x0
4

x0
5

⇤ ⇤ ⇤ ⇤ ⇤

Each Xi is the union of a basepoint ⇤ and some subset of the points xi, x0
i, and x00

i .

All terms on the E
2

page are trivial except for E0,0
2

⇠= limD ⇡
0

X = S0. By Corol-

lary VI.2.21 of [GJ09], the spectral sequence converges completely to the homotopy

groups of holimD X = S0. We recover the existence of an evasion path.

Example 4. Suppose X 2 SD
⇤ is instead given by the following diagram.

x
1

x
2

x
3

x
4

x00
3

x0
2

x0
3

x0
4

x0
5

⇤ ⇤ ⇤ ⇤ ⇤

In this case E0,0
2

⇠= limD ⇡
0

X = ⇤, and the spectral sequence converges completely to

the homotopy groups of holimD X = ⇤. No evasion path exists.

The spectral sequence for a homotopy limit converges to desirable information, but

its input depends on homotopy groups and maps between homotopy groups which are
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not easily accessible. For this reason, in Section 5.2 we consider a homotopy spectral

sequence for diagrams of spaces whose input depends on homology information.



Chapter 5

The Homotopy Spectral Sequence

for Diagrams

The homotopy spectral sequence for a space with coe�cients in a ring R goes from

R-homology to R-homotopy, roughly speaking [BK72a, BK72b]. A generalization for

function complexes between diagrams of spaces, which we refer to as the homotopy

spectral sequence for diagrams, is given in [DZ87]. In this chapter we apply the

homotopy spectral sequence for diagrams to study the space of evasion paths of a

sensor network. The resulting spectral sequence has input depending on unstable

invariants of the uncovered region and under favorable circumstances converges to

information about the space of evasion paths. It remains to obtain these unstable

invariants of the uncovered region from embedding invariants of the sensor network.

The homotopy spectral sequence for diagrams is constructed using the composition

of two monads. The first monad R maps a based simplicial set to the R-module

generated by its simplices; this monad is used to construct the homotopy spectral

sequence for a space in Section 5.1. The second monad is the right adjoint G to

the forgetful functor on diagrams, which we studied in Section 4.8 on the spectral

sequence for a homotopy limit. Composing monads G and R produces a monad on

49
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the category of diagrams of spaces, whose cosimplicial object is used to construct the

homotopy spectral sequence for diagrams.

The diagrams of spaces studied in [DZ87] are indexed by a small simplicial cat-

egory. Our setting is the specific case when the indexing category is generated by

a quiver of type An. This allows us to simplify the proofs of Theorems 6 and 7

describing the E
2

term algebraically for coe�cients modulo a prime.

The authors in [DMN89] construct an unstable Adams spectral sequence which is

adapted to studying the space of sections of a fibration. We do not use their spectral

sequence because the fibers of a fibration are all homotopy equivalent, but in sensor

network problems the homotopy types of the covered and uncovered regions vary with

time.

In Sections 5.1 and 5.2 we describe the homotopy spectral sequences for spaces

and for diagrams. We study several low-dimensional examples relevant for sensor

networks. In Sections 5.3 and 5.4 we give algebraic descriptions, when R = Z/pZ,

of the E
2

term for spaces and for diagrams. We consider rational coe�cients for

spaces in Section 5.5. In Section 5.6 we show that a diagram of modules over a

diagram of algebras is equivalent to a module over a more complicated algebra, and

in Section 5.7 we construct projective resolutions over a diagram of algebras. We use

these projective resolutions in Section 5.8 to study the rational E
2

page for diagrams

of spaces.

5.1 The homotopy spectral sequence for spaces

We describe the homotopy spectral sequence of a space with coe�cients in a ring

[BK72a, BK72b, BK73]. Other useful expositions of this sequence include [GJ09,

Mil84]. Let R be a ring and let SR be the category of simplicial R-modules. We have
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an adjunction

R : S⇤ $ SR : S, (5.1)

where S is the forgetful functor and where R takes a pointed simplicial set X 2 S⇤

to the simplicial R-module generated by the simplices of X. That is, (RX)n is the

free R-module on Xn with the basepoint of X put equal to 0. We also write R for

the resulting monad R = RS on category S⇤. This monad (R, ⌘, µ) has ⌘ : X ! RX

and µ : R2X ! RX via

⌘(x) = [x] and µ
⇣P

r0
⇥P

r[x]
⇤⌘

=
P

r0r[x].

Consider the homotopy spectral sequence for the fibrant augmented cosimplicial

space X ! R•X. The total complex R1X = TotR•X is the Bousfield–Kan R-

completion of X, and under favorable conditions the spectral sequence converges

to ⇡⇤R1X. When R = Z/pZ, this produces an unstable Adams spectral sequence

converging, for X nilpotent and for each ⇡nX finitely generated, to ⇡⇤X modulo

torsion prime to p. For R = Q and X connected, the spectral sequence consists of the

primitive elements in the rational cobar spectral sequence and converges to ⇡⇤X⌦Q.

There is also a function complex version, which for W,X 2 S⇤ is the homotopy

spectral sequence built from the cosimplicial space hom(W,X)! hom(W,R•X).

5.2 The homotopy spectral sequence for diagrams

The homotopy spectral sequence for a space is generalized by Dror Farjoun and

Zabrodsky in [DZ87] for function complexes between diagrams of spaces. Though

they consider diagrams indexed by any small simplicial category, we restrict attention

to the special case when the indexing category is generated by a quiver of type An.

Let D be the free category generated by a quiver of type An. The adjunction in
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(5.1) induces an adjunction R : SD
⇤ $ SD

R : S between functors which, by an abuse of

notation, we denote with the same names. Since category SR has finite products, by

Lemma 7 we have an adjoint pair F : SD
R $ SD�

R : G. We combine these adjunctions

in the diagram

SD
⇤ SD

R SD�

R

R F

S G

to get the adjunction FR : SD
⇤ $ SD�

R : SG. We define monad T = (SG)(FR) on

category SD
⇤ as the composition of these adjoint functors. Monad T is equal to

that of [DZ87] but we have defined it di↵erently in order to simplify the proofs in

Section 5.4.

For an object X 2 SD
⇤ we form the augmented cosimplicial object X ! T •X in

cSD
⇤ . Let W 2 SD

⇤ be cofibrant1. Applying homD(W, ) produces the augmented

cosimplicial space homD(W,X) ! homD(W,T •X). Let Es,t
r denote the Er page of

the homotopy spectral sequence. We have

Es,t
2

⇠= ⇡s⇡t homD(W,T •X),

and under favorable conditions the spectral sequence converges to

⇡⇤ Tot homD(W,T •X) ⇠= ⇡⇤ homD(W,R1X).

Since D has a finite number of objects and morphisms, Theorem 1.2 of [DZ87] gives

the following.

Theorem 5. Let R = Z/pZ. If W is cofibrant and W and X have finite Z/pZ

homology in each dimension, then the homotopy spectral sequence for homD(W,T •X)

converges completely to ⇡⇤ homD(W,R1X).

1
By [Dro87a, Dro87b], the function complex homD(W, X) has some homotopy meaning even for

W not cofibrant.
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We are interested in the case when W = B(D # �)+. By Lemma 13, the E
2

term

is then

Es,t
2

⇠= ⇡s⇡t holimD T •X.

The spectral sequence converges to ⇡t�s holimD R1X, the homotopy groups of the

homotopy limit of the R-completion of the diagram. We obtain information related

to the homotopy limit of X, which as we saw in Section 4.1 can model a space of

evasion paths. The advantage of this spectral sequence for diagrams over the one in

Section 4.8 is that algebraic descriptions of the E
2

term are more accessible.

The following two low-dimensional computations are analogous to Examples 3 and

4 from Section 4.8.

Example 5. Let D be the free category generated from quiver

•! • •! • •,

let W = B(D # �)+, and let X 2 SD
⇤ be the diagram from Example 3.

x
1

x
2

x
3

x
4

x00
3

x0
2

x0
3

x0
4

x0
5

⇤ ⇤ ⇤ ⇤ ⇤

Each Xi is the union of a basepoint ⇤ and some subset of the points xi, x0
i, and x00

i .

All terms on the E
2

page are trivial except for E0,0
2

⇠= ⇡0⇡
0

holimD T •X. We have

holimD TX ' RX
1

⇥RX
2

⇥RX
3

⇥RX
4

⇥RX
5
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and

holimD T 2X '

R[RX
1

⇥RX
2

]⇥R2X
2

⇥R[RX
2

⇥RX
3

⇥RX
4

]⇥R2X
4

⇥R[RX
4

⇥RX
5

].

Let

b =
�
r
1

x
1

, r
2

x
2

+ r0
2

x0
2

, r
3

x
3

+ r00
3

x00
3

+ r0
3

x0
3

, r
4

x
4

+ r0
4

x0
4

, r0
5

x0
5

) 2 ⇡
0

holimD TX.

We have d0, d1 : ⇡
0

holimD TX ! ⇡
0

holimD T 2X via

d0b =

0

BBBBBBBBB@

1
⇥
r
1

x
1

, r
2

x
2

+ r0
2

x0
2

⇤

1
⇥
r
2

x
2

+ r0
2

x0
2

⇤

1
⇥
r
2

x
2

+ r0
2

x0
2

, r
3

x
3

+ r00
3

x00
3

+ r0
3

x0
3

, r
4

x
4

+ r0
4

x0
4

⇤

1
⇥
r
4

x
4

+ r0
4

x0
4

⇤

1
⇥
r
4

x
4

+ r0
4

x0
4

, r0
5

x0
5

⇤

1

CCCCCCCCCA

and

d1b =

0

BBBBBBBBB@

r
1

⇥
1x

1

, 1x
2

⇤

r
2

[1x
2

] + r0
2

[1x0
2

]

r
3

⇥
1x

2

, 1x
3

, 1x
4

⇤
+ r00

3

⇥
1x

2

, 1x00
3

, 1x0
4

⇤
+ r0

3

⇥
1x0

2

, 1x0
3

, 1x0
4

⇤

r
4

[1x
4

] + r0
4

[1x0
4

]

r0
5

⇥
1x0

4

, 1x0
5

⇤

1

CCCCCCCCCA

.
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Hence

E0,0
2

⇠= ⇡0⇡
0

holimD X

= {b 2 ⇡
0

TX | d0b = d1b}

= {(⇤, ⇤, ⇤, ⇤, ⇤) and (1x
1

, 1x
2

, 1x00
3

, 1x0
4

, 1x0
5

)}

= S0.

By Theorem 5 the spectral sequence converges completely to the homotopy groups

of holimD R1X = S0. We recover the existence of an evasion path.

Example 6. Suppose X 2 SD
⇤ is instead given by the diagram in Example 4.

x
1

x
2

x
3

x
4

x00
3

x0
2

x0
3

x0
4

x0
5

⇤ ⇤ ⇤ ⇤ ⇤

In this case the third coordinate of d1b changes to

r
3

⇥
1x

2

, 1x
3

, 1x
4

⇤
+ r00

3

⇥
1x0

2

, 1x00
3

, 1x
4

⇤
+ r0

3

⇥
1x0

2

, 1x0
3

, 1x0
4

⇤
.

Now E0,0
2

⇠= {(⇤, ⇤, ⇤, ⇤, ⇤)} = ⇤ and the spectral sequence converges completely to

the homotopy groups of holimD R1X = ⇤. No evasion path exists.

5.3 The E2 term for spaces when R = Z/pZ

Let p be prime and let Z/pZ be the finite field with p elements. For R = Z/pZ, the

homotopy spectral sequence for spaces from Section 5.1 is an unstable Adams spectral
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sequence. In this section we describe the E
2

term for R = Z/pZ as an unstable Ext

[BK72b]; other useful expositions include [GJ09, Mil84]. In the following section we

consider the diagram case.

Let A be the mod-p Steenrod algebra and let C A be the category of unstable

A -coalgebras in [BK72b]. Let ML p be the category of connected graded Z/pZ-

modules, where by connected we mean trivial in nonpositive degrees. We have a pair

of adjoint functors

J : C A $ML p : V. (5.2)

Here J is the forgetful functor given by (JC)n = Cn for C 2 C A and n � 1. For

M 2ML p, functor V is given by

VM = H̃⇤

⇣ 1Y

n=0

K(Mn, n); Z/pZ
⌘
,

where each K(Mn, n) is an Eilenberg-MacLane space. We also write V for the result-

ing monad V = V J on category C A .

Let S⇤c be the category of connected pointed simplicial sets. Homology with

coe�cients in Z/pZ is a functor

H̃⇤( ; Z/pZ) : S⇤c ! C A ,

with comultiplication induced from the diagonal map X ! X ⇥X. Theorem 11.5 of

[BK72b] states that for X 2 S⇤c and t > s � 0, we have a natural isomorphism

Es,t
2

⇠= ⇡s HomC A

�
H̃⇤(S

t; Z/pZ), V •H̃⇤(X; Z/pZ)
�
.

We can also describe the E
2

term as an unstable Ext. Let V be the class of all

C 2 C A with C ⇠= VM for some M 2 ML p. By Proposition 7.8 of [Bou70], V
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is a class of injective models for C A . If B 2 C A has trivial comultiplication, for

example if B = H̃⇤(St; Z/pZ) for t > 0, then HomC A (B, ) is actually a functor

HomC A (B, ) : C A ! Z/pZ –Mod .

For such B we define the unstable Ext functors ExtsC A (B, ) as the right derived

functors

ExtsC A (B, ) = Rs HomC A (B, ) : C A ! Z/pZ –Mod

with respect to V . Theorem 12.1 of [BK72b] states that for X 2 S⇤c and t > s � 0,

we have a natural isomorophism

Es,t
2

⇠= ExtsC A

�
H̃⇤(S

t; Z/pZ), H̃⇤(X; Z/pZ)
�
.

5.4 The E2 term for diagrams when R = Z/pZ

The diagrams of spaces studied in [DZ87] are indexed by a small simplicial category,

which is more general than our context in which the free category D is generated

by a quiver of type An. By restricting to this special case, we simplify the proofs of

Theorems 6 and 7 describing the E
2

term algebraically for R = Z/pZ. In addition,

our proofs more closely follow [BK72b].

The adjunction in (5.2) induces an adjunction J : C A D $ ML D
p : V between

functors which, by an abuse of notation, we denote with the same names. Since

category ML p has finite products given by degreewise product, Lemma 7 gives an

adjoint pair F : ML D
p $ML D�

p : G. We combine these adjunctions in the diagram

C A D ML D
p ML D�

p

J F

V G

to get the adjunction FJ : C A D $ML D�

p : V G. We define monad U = (V G)(FJ)
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on category C A D as the composition of these adjoint functors. So for an object

C 2 C A D we can form the cosimplicial object U•C 2 cC A D.

Recall S⇤c is the category of connected pointed simplicial sets, and let Sp,c be the

category of connected simplicial Z/pZ-modules. Monad U is closely related to the

restriction of monad T to SD
⇤c.

Lemma 14. The rectangles in the following diagram commute up to natural isomor-

phism.

SD
⇤c C A D

SD
p,c ML D

p

SD�

p,c ML D�

p

˜H⇤( ;Z/pZ)

⇡⇤

⇡⇤

S

G

V

G

R

F

J

F

Proof. The top rectangle commutes up to natural isomorphism by Lemma 11.6 of

[BK72b]. For the bottom rectangle, note that ⇡⇤F = F⇡⇤ is obvious and that

⇡⇤G ⇠= G⇡⇤ follows from the fact that the homotopy groups of a finite product are

the products of the homotopy groups.

In [DZ87], the functor G is defined more generally and the diagram above does not

fully commute. Hence the proof of their more general version of Theorem 6 requires

additional steps.

Corollary 1. Let X 2 SD
⇤c. Then

H̃⇤(T
•X; Z/pZ) ⇠= U•H̃⇤(X; Z/pZ)

is a natural isomorphism of cosimplicial objects over C A D.
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Proof. This follows from Lemma 14. Note

H̃⇤(T
kX; Z/pZ) = H̃⇤

�
(SGFR)kX; Z/pZ

�
by definition of T

⇠= (V GFJ)kH̃⇤(X; Z/pZ) by Lemma 14

= UkH̃⇤(X; Z/pZ) by definition of U.

Lemma 15. Let W 2 SD
⇤ be cofibrant and let Y 2 SD

p,c. Then for t � 1, the functor

H̃⇤( ; Z/pZ) induces isomorphisms

⇡t homD(W,Y ) ⇠= [⌃tW,Y ] ⇠= HomC A D

�
H̃⇤(⌃

tW ; Z/pZ), H̃⇤(Y ; Z/pZ)
�
.

Proof. The first isomorphism is Lemma 5. The second isomorphism follows from the

naturality of Lemma 11.8 of [BK72b].

We obtain the following analogue of Theorem 11.5 from [BK72b].

Theorem 6. Let W 2 SD
⇤ be cofibrant and let X 2 SD

⇤c. Then for t > s � 0, we have

a natural isomorphism

Es,t
2

⇠= ⇡s HomC A D

�
H̃⇤(⌃

tW ; Z/pZ), U•H̃⇤(X; Z/pZ)
�
.

Proof.

Es,t
2

⇠= ⇡s⇡t homD(W,T •X)

⇠= ⇡s HomC A D

�
H̃⇤(⌃

tW ; Z/pZ), H̃⇤(T
•X; Z/pZ)

�
by Lemma 15

⇠= ⇡s HomC A D

�
H̃⇤(⌃

tW ; Z/pZ), U•H̃⇤(X; Z/pZ)
�

by Corollary 1.
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This theorem is a special case of the results in [DZ87], but for D the free category

generated by a quiver of type An we have given a simpler proof that more closely

follows [BK72b].

We can also describe the E
2

term as an unstable Ext. Let U be the class of all

C 2 C A D with C ⇠= UM for some M 2ML D�

p . By Proposition 7.8 of [Bou70], U

is a class of injective models for C A D. If B 2 C A D has trivial comultiplication at

each object in D, for example if B = H̃⇤(⌃tW ; Z/pZ) for some cofibrant W 2 SD
⇤

and t > 0, then functor HomC A D(B, ) is actually a functor

HomC A D(B, ) : C A D ! Z/pZ –Mod .

By Remark 7.9 of [Bou70], the right derived functors with respect to U satisfy

Rs HomC A D(B,C) ⇠= ⇡s HomC A D(B,U•C)

for C 2 C A D. For such B, we define the unstable Ext functors ExtsC A D

(B, ) by

ExtsC A D

(B, ) = Rs HomC A D(B, ) : C A D ! Z/pZ –Mod .

We have the following analogue of Theorem 12.1 from [BK72b].

Theorem 7. Let X 2 SD
⇤c. Then for t > s � 0, we have a natural isomorphism

Es,t
2

⇠= ExtsC A D

�
H̃⇤(⌃

tW ; Z/pZ), H̃⇤(X; Z/pZ)
�
.
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Proof.

Es,t
2

⇠= ⇡s HomC A D

�
H̃⇤(⌃

tW ; Z/pZ), U•H̃⇤(X; Z/pZ)
�

by Theorem 6

⇠= Rs HomC A D

�
H̃⇤(⌃

tW ; Z/pZ), H̃⇤(X; Z/pZ)
�

= ExtsC A D

�
H̃⇤(⌃

tW ; Z/pZ), H̃⇤(X; Z/pZ)
�
.

5.5 The E2 term for spaces when R = Q

To make computations more accessible, for the remainder of the chapter we consider

rational coe�cients. In this section we return to the homotopy spectral sequence

for spaces from Section 5.1 and discuss the E
2

page when R = Q. In the following

sections we consider the diagram case.

Let X 2 S⇤c with H⇤(X; Q) of finite type. By Corollary 15.6 of [BK73] we have

E
2

⇠= P CotorH⇤(X;Q)(Q,Q),

where P denotes the set of primitive elements. When H⇤(X; Q) is finite in each dimen-

sion, the Hopf algebra CotorH⇤(X;Q)(Q,Q) is equivalent to the classical cohomology

ExtH⇤
(X;Q)

(Q,Q). Under favorable circumstances this spectral sequence converges to

⇡⇤Q1X ⇠= ⇡⇤X ⌦Q.

The rational homotopy spectral sequence for spaces is closely related to the Eilenberg–

Moore spectral sequence for the fibration ⌦X ! PX ! X, where path space

PX is contractible. This second quadrant spectral sequence has E
2

page given by

CotorH⇤(X;k)(Q,Q) and under favorable circumstances converges to H⇤(⌦X; Q). Note
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that upon taking primitives we obtain

PH⇤(⌦X; Q) ⇠= ⇡⇤(⌦X)⌦Q ⇠= ⇡⇤+1

(X)⌦Q.

5.6 Diagrams of algebras

In order to study the rational E
2

page for diagrams of spaces, in this section we define

a category M of diagrams of modules over a diagram of algebras. We show that M

is equivalent to the category of modules over a single algebra AD. This equivalence

allows us, in Section 5.8, to define the derived functors Ext over a diagram of algebras.

Let D be the free category generated from a quiver of type An. Let A 2 (k –Alg)D

be a diagram of k-algebras

A
1

$ A
2

$ . . .$ An,

where each arrow points either to the left or to the right. We define the category M

as follows. An object M 2M is a diagram

M
1

$M
2

$ . . .$Mn

in VectDk such that

• each Mi 2 Ai –Mod, and

• if there is a morphism in D from object j to i, then pMi,j(ajmj) = pAi,j(aj)p
M
i,j(mj)

for each aj 2 Aj and mj 2Mj.

The second condition is equivalent to saying that pMi,j is a morphism of Aj-modules,

where Mi is an Aj-module via restriction of scalars. A morphism h : M ! N in M

is a morphism
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M
1

M
2

. . . Mn

N
1

N
2

. . . Nn

h1 h2 h
n

in VectDk where each hi is also a morphism in Ai –Mod.

Recall from Theorem 1 that VectDk is equivalent to the category of modules over

the path algebra kD. In Theorem 8 we prove an analogous result for the category

M. First we must define the k-algebra AD.

Definition 3. Let D be the free category generated from a quiver of type An, let

k be a field, and let A 2 (k –Alg)D be a diagram of algebras. The k-algebra AD is

defined as follows. An element of AD is a matrix

a =

2

6664

a
1,1 . . . a

1,n

...
...

an,1 . . . an,n

3

7775
,

where each ai,j 2 Ai and where ai,j = 0 if there is no morphism in D from object j

to i. For a, b 2 AD, their product ab is given by

(ab)i,j = ai,1p
A
i,1(b1,j) + . . . + ai,np

A
i,n(bn,j).

The algebra structure comes from the embedding of k into the center of AD that

sends r 2 k to the diagonal matrix with r in each diagonal entry.

Suppose A is a diagram of graded k-algebras with Am
i the grading of k-algebra Ai

at level m. Then AD is a graded k-algebra with ADm = {a 2 AD | each ai,j 2 Am
i }.

Let AD –Mod be the category of left AD-modules.

Theorem 8. The categories M and AD –Mod are equivalent.
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Proof. We only give the correspondence defining the equivalence. Given M 2M, we

define module M̃ 2 AD –Mod by M̃ = �n
i=1

Mi. For

a =

2

6664

a
1,1 . . . a

1,n

...
...

an,1 . . . an,n

3

7775
2 AD and m =

2

6664

m
1

...

mn

3

7775
2 M̃,

we define am by letting its i-th component in M̃ be

ai,1p
M
i,1(m1

) + . . . + ai,np
M
i,n(mn).

For the reverse direction, let ei,j be the matrix with a 1 in entry i, j and with zeros

elsewhere. Given M̃ 2 AD –Mod, we define a diagram M 2M by setting Mi = ei,iM̃ .

For mj 2Mj we set

p
˜M
i,j(mj) = ei,jmj = ei,iei,jmj 2Mi.

It is possible to check that the correspondences above are inverses and that morphisms

behave appropriately.

We work interchangeably with the equivalent categories M and AD –Mod. As the

the category of modules over a ring, AD –Mod is an abelian category with enough

projectives. A morphism h : M ! N in AD –Mod is a monomorphism if each hi is a

monomorphism in Ai –Mod, and h is an epimorphism if each hi is an epimorphism.

The kernel ker(h) has ker(h)i = ker(hi), with the morphisms p
ker(h)
i,j defined by re-

stricting the morphisms pMi,j. The cokernel coker(h) has coker(h)i = coker(hi), with

the morphisms p
coker(h)
i,j induced from the morphisms pNi,j.
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5.7 Projective resolutions over a diagram of alge-

bras

In this section we construct convenient projective resolutions over a diagram of al-

gebras. In Section 5.8 we use these resolutions to compute the derived functors Ext

over a diagram of algebras, which is relevant for the rational E
2

term of the homotopy

spectral sequence for diagrams of spaces.

Let D be the free category generated by a quiver of type An. We have forgetful

functors

Fj : AD –Mod! Aj –Mod

and

F : AD –Mod! �n
j=1

(Aj –Mod).

The following lemmas are analogous to those in Sections 4.4 and 4.5.

Lemma 16. There is an adjunction Qj : Aj –Mod$ AD –Mod: Fj.

For N 2 Aj –Mod we define QjN using extension of scalars. If there is a morphism

j ! i in D then (QjN)i = Ai⌦A
j

N and p
Q

j

N
i,j = pAi,j ⌦1; otherwise both (QjN)i and

p
Q

j

N
i,j are zero.

Lemma 17. If N 2 Aj –Mod is projective then so is QjN 2 AD –Mod.

Lemma 18. There is an adjunction Q : �n
j=1

(Aj –Mod)$ AD –Mod: F .

For N 2 �n
j=1

(Aj –Mod) we have QN = �jQjNj. That is,

(QN)i =
M

j!i

Ai ⌦A
j

Nj,

where the coproduct is over the morphisms in D with target i. For example, suppose
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the quiver underlying D is

•
1

! •
2

 •
3

! •
4

 •
5

and N 2 �n
j=1

(Aj –Mod) is

N
1

N
2

N
3

N
4

N
5

.

Then diagram QN is

N
1

! (A
2

⌦A1N1

)�N
2

�(A
2

⌦A3N3

) N
3

! (A
4

⌦A3N3

)�N
4

�(A
4

⌦A5N5

) N
5

.

To construct projective resolutions in AD –Mod we define a functor

Q̃ : �n
j=1

(Aj –Mod)! AD –Mod .

Recall the length |j ! i| of a morphism j ! i in D is the number of arrows in

the corresponding path in the underlying quiver. For N 2 �n
j=1

(Aj –Mod), we de-

fine Q̃N = �|j!i|=1

QiNj. Moreover, given M 2 AD –Mod, we define morphism

�M : Q̃FM ! QFM by defining each �M
i : (Q̃FM)i ! (QFM)i. If |j ! i| � 1 and

(a,m) 2 Ai ⌦Mj ⇢ (Q̃FM)i, then

�M
i (a,m) =

8
>>>>><

>>>>>:

a⌦m in summand Ai ⌦Mj of (QFM)i

�pAi,j(a)⌦ pMi,j(m) in summand Ai ⌦Mi of (QFM)i

0 in all other summands.
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Lemma 19. Suppose

. . .
d
l+1��! Sl

d
l�! . . .

d2�! S
1

d1�! S
0

d0�!M ! 0

is a resolution in AD –Mod with each (Sl)j 2 Aj –Mod projective. Then

. . . QFS
3

QFS
2

QFS
1

QFS
0

M 0
� � �

Q̃FS
2

Q̃FS
1

Q̃FS
0

2

4QFd3 �S2

0 � ˜QFd2

3

5

2

4QFd2 �S1

0 � ˜QFd1

3

5 h
QFd1 �S0

i

is a projective resolution in AD –Mod.

Proof. The proof is analogous to that of Lemma 11.

Let M 2 AD –Mod, and suppose we have a projective resolution

. . .
˜d
l+1��! S̃l

˜d
l�! . . .

˜d2�! S̃
1

˜d1�! S̃
0

˜d0�! FM ! 0

of FM in �n
j=1

(Aj –Mod). This is exactly the data of a projective resolution for

each Mj in Aj –Mod. We show how to combine the resolutions for each Mj into a

projective resolution for M in AD –Mod. For each morphism j ! i in D of length

one, we use the fact that (S̃
0

)j is projective to find a lift pS0
i,j making the following

diagram in Aj –Mod commute.

(S̃
0

)j Mj

(S̃
0

)i Mi

(

˜d0)
j

(

˜d0)
i

pS0
i,j

pM
i,j
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The bottom row lives in Aj –Mod via restriction of scalars. For j ! i of length greater

than one we define pS0
i,j by composition. Hence we have an exact sequence

S
0

d0�!M ! 0

in AD –Mod, with each (S
0

)j = (S̃
0

)j and with each (d
0

)j = (d̃
0

)j. Continuing

inductively, we produce a resolution

. . .
d
l+1��! Sl

d
l�! . . .

d2�! S
1

d1�! S
0

d0�!M ! 0

that is not necessarily projective, but in which each (Sl)j 2 Aj –Mod is projective.

Lastly, we use Lemma 19 to produce a projective resolution of M in AD –Mod. In the

following section, we use this method for producing projective resolutions to compute

the derived functor Ext over a diagram of algebras.

5.8 The E2 term for diagrams when R = Q

In this section we illustrate a computation of the derived functor Ext over a diagram

of algebras. Such computations are relevant for the rational E
2

term of the homotopy

spectral sequence for diagrams.

We follow [McC01] in our exposition of the derived functor Ext. Let A 2 (Q –Alg)D

be a diagram of graded algebras over Q; thus AD is a graded algebra over Q. The sus-

pension functor s : AD –Mod! AD –Mod acts on M 2 AD –Mod via (sM)n = Mn�1

,

where for � 2 AD of degree |�| and m 2 M we have � · (sm) = (�1)|�|s(� · m). For

M,N 2 AD –Mod we define

Homt
AD(M,N) = HomAD(M, stN).
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Then ExtAD( , N) is the right derived functor of Hom⇤
AD( , N).

We describe the case we are most interested in, ExtAD(⇥Q,⇥Q), in more detail.

Let ⇥Q 2 AD –Mod be the constant diagram with Q at each object in D and with

identity maps in-between. We build a projective resolution

. . .
d3�! S

2

d2�! S
1

d1�! S
0

d0�! ⇥Q! 0

of ⇥Q in AD –Mod. We apply Homt
AD( ,⇥Q) and leave out the first nontrivial term

to get

. . .
(d3)⇤ ��� Homt

AD(S
2

,⇥Q)
(d2)⇤ ��� Homt

AD(S
1

,⇥Q)
(d1)⇤ ��� Homt

AD(S
0

,⇥Q) 0.

The cohomology of this sequence is the derived functor

Exts,tAD(⇥Q,⇥Q) =
�
Rs Homt

AD( ,⇥Q)
�
(⇥Q).

In the homotopy spectral sequence for a space X 2 S⇤c, the rational E
2

term

is given by the primitive elements in ExtH⇤
(X;Q)

(Q,Q). Now consider a diagram of

spaces X 2 SDop

⇤c . We apply rational cohomology to get A = H⇤(X; Q) 2 (Q –Alg)D.

Though we have not derived the rational E
2

term for the homotopy spectral sequence

for diagrams, we expect it will be related to the primitives in ExtAD(⇥Q,⇥Q). This

is motivated by Example 7, in which we perform a computation of ExtAD(⇥Q,⇥Q).

Example 7. Let Y 2 S⇤c have finite-dimensional rational cohomology. Let X 2 SDop

⇤c

and A = H⇤(X; Q) 2 (Q –Alg)D be as below.

X = ⇤ Y ⇤

A = Q H⇤(Y ; Q) Q
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The particular case when Y = S1 is Example 1. Let S• be a minimal projective

resolution of Q in H⇤(Y ; Q) –Mod.

. . .
d4�! S

3

d3�! S
2

d2�! S
1

d1�! H⇤(Y ; Q)
d0�! Q! 0

We build the following projective resolution of ⇥Q in AD –Mod, which is modified

from the resolution in Lemma 19 to be smaller.

...
...

...

Q⌦ (S
2

� S
3

) S
3

Q⌦ (S
3

� S
2

)

Q⌦ (S
1

� S
2

) S
2

Q⌦ (S
2

� S
1

)

Q⌦ S
1

S
1

Q⌦ S
1

Q H⇤(Y ; Q) Q

Q Q Q

0 0 0

1⌦

2

40 0

1 0

3

5

1⌦

2

40 0

1 0

3

5

1⌦
h
1 0

i

0

1

d4

d3

d2

d1

d0

1⌦

2

40 1

0 0

3

5

1⌦

2

40 1

0 0

3

5

1⌦
h
0 1

i

0

1

This resolution contains the projective chain complex in AD –Mod generated by S•,

and shifted copies of Q⌦ S• have been added to the left and right columns in order

to preserve exactness. After applying Hom⇤
AD( ,⇥Q) and taking cohomology, can-

cellation leaves one shifted copy of the cohomology of Hom⇤
H⇤

(Y ;Q)

(S•,⇥Q). That is,
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we have

Exts,tAD(⇥Q,⇥Q) ⇠=

8
>>>>><

>>>>>:

Q (s, t) = (0, 0)

Exts�1,t
H⇤

(Y ;Q)

(Q,Q) s � 2

0 otherwise.

If we define the primitives in ExtAD(⇥Q,⇥Q) to be the shifted copies of the primitives

in ExtH⇤
(Y ;Q)

(Q,Q), then the E
2

page for diagram X is congruent to a shifted copy

of the E
2

page for space Y , and converges as expected to

⇡t�s+1

(Q1Y ) ⇠= ⇡t�s(⌦Q1Y ) ⇠= ⇡t�s holimDop Q1X.

It remains to define an appropriate notion of the primitives in ExtAD(⇥Q,⇥Q) for A

the cohomology of an arbitrary diagram of spaces over D.



Chapter 6

Conclusions

In this thesis we study an evasion problem for mobile sensor networks in which the

sensors don’t know their locations and instead measure only local connectivity data.

De Silva and Ghrist in [dG06] provide a homological criterion, depending on this lim-

ited input, which rules out the existence of an evasion path in many sensor networks.

We use zigzag persistence to produce a criterion of equivalent discriminatory power

that is more amenable to streaming computation, which is an important feature for

sensor networks moving over a long period of time.

It turns out that no method relying on connectivity data alone can determine in

all cases if an evasion path exists. Indeed, we provide examples showing that the

fibrewise homotopy type of the sensor network does not determine the existence of

an evasion path; the embedding of the sensor network in spacetime also matters.

We therefore consider a stronger model of sensors which measure cyclic orders and

weak distance information, and given this model we provide necessary and su�cient

conditions for the existence of an evasion path. We are quite interested in the open

question stated in Section 3.5: can one determine the existence of an evasion path

using only the additional cyclic order data but no additional weak distance data?

The evasion problem motivates a more theoretical question: what is the entire
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space of evasion paths? This is the space of sections in the uncovered region of the

sensor network, which we show can be modeled as the homotopy limit of a corre-

sponding diagram of spaces. We apply the homotopy spectral sequence for function

complexes between diagrams of spaces, which in our context converges to the homo-

topy groups of the homotopy limit of the R-completion of the diagram. Our setting

is a specific case of the spectral sequence due to [DZ87], and for coe�cients modulo

a prime we provide a simpler derivation of their algebraic description of the E
2

term.

We show that a diagram of modules over a diagram of algebras is equivalent to a

single module over a more complicated algebra, and this allows us to perform Ext

calculations related to the E
2

term for rational coe�cients. The spectral sequence for

diagrams has input depending on unstable invariants of the uncovered region of the

sensor network, but it remains to obtain these unstable invariants of the uncovered

region from embedding invariants of the sensor network. One idea is to try to use the

tools of embedding calculus [Wei99] in a fibrewise setting.



Appendix A

The Vietoris–Rips complex

In this appendix we explain the Vietoris–Rips approximation to the C̆ech complex.

The Vietoris–Rips complex is the maximal simplicial complex built on top of the

connectivity graph, meaning a simplex is present in the complex if all its edges are in

the connectivity graph [Vie27]. See Figure A.1 for an example. Hence the Vietoris–

Rips complex can be constructed from the data measured by our sensors.

Out[98]=

Cech simplicial complex

Appearance

draw one simplices

draw Cech complex

draw Rips complex

Filtration parameter

t 0.186

CechRips.nb  5

Printed by Mathematica for Students

(a)

˘

Cech complex

Out[98]=

Cech simplicial complex

Appearance

draw one simplices

draw Cech complex

draw Rips complex

Filtration parameter

t 0.186

6   CechRips.nb

Printed by Mathematica for Students

(b) Vietoris–Rips complex

Figure A.1: Note the 2-simplex that is absent from the C̆ech complex but is present
in the Vietoris–Rips complex.

By changing the radii of the sensor balls, we can approximate the C̆ech complex

74



APPENDIX A. THE VIETORIS–RIPS COMPLEX 75

from either direction using Vietoris–Rips complexes. Let S ⇢ Rd be a set of points,

and let C[✏] denote the C̆ech complex built from balls of radius ✏. That is, C[✏] is

the nerve of the balls of radius ✏ centered at the points of S. Let V R[2✏] be the

Vietoris–Rips complex built from balls of radius ✏. So a simplex is in V R[2✏] if its

diameter is at most 2✏. Then

V R[✏] ⇢ C[✏] ⇢ V R[2✏].

Moreover, if S ⇢ R2 then we have

V R[
p

3✏] ⇢ C[✏] ⇢ V R[2✏].

Hence the C̆ech complex is approximated on either side by a Vietoris–Rips complex

measured by our sensors, perhaps after changing the radii of the sensor balls.
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