Topology in Machine Learning

Henry Adams
University of Florida

AATRN, wwwoaatrn.net, 1-2 live talks per week YouTube: 6,000 subscribers, 22 hours watched per day

Topology in Machine Learning

- How to vectorize geometry?
- Introduction to persistent homology
- Applications in materials science, computer vision, and explainable machine learning

What is the difference between geometry and topology?

Topology ignores some geometrical properties (distances, curvatures) but preserves holes.

Topology is computable.

Homology (counts holes)

$H_{0}: \operatorname{rank} 1$
H_{1} : rank 0
H_{2} : rank 1
H_{0} : rank 1
H_{1} : rank 2
$H_{2}: \operatorname{rank} 1$

Persistent Homology (tracks holes as a space grows)

Persistence Barcode

Persistent Homology (tracks holes as a space grows)

Images by Lander Ver Hoef

mexestiner
$\frac{\square}{\square}$
1

$$
0 \sigma^{\circ}
$$

$$
00 \%
$$

Convective

Non-Convective

Ver Hoef, Lee, Adams, King, Ebert-Uphoff

Persistent Homology (tracks holes as a space grows)

Persistence Barcode

Persistence Diagram

Global topology

Topology of cyclo-octane energy landscape Martin, Thompson, Contsias, Watson, 2010

Global topology

Topology of cyclo-octane energy landscape Martin, Thompson, Contsias, Watson, 2010

Global topology

Topology of cyclo-octane energy landscape Martin, Thompson, Contsias, Watson, 2010

Persistent homology measures topology and geometry

H_{1}

Persistent homology analysis of brain artery trees Bendich, Marron, Miller, Pieloch, Skwerer, 2014

Topology in Machine Learning

- How to vectorize geometry?
- Introduction to persistent homology
- Applications in materials science, computer vision, and explainable machine learning

Cl -centric

"Understanding diffraction patterns of glassy, liquid, and amorphous material via persistent homology analysis" by Onodera, Kohara, Tahara, Masuno, Inone, Shiga, Hirata, Tsuchiya, Hiraoka, Obayushi, Ohara, Mizuno, Sokata, 2019

Fig. 4 Input binary images and their 0th persistence diagrams. The left and right two images are sampled from the parameter pairs (A) and (B), respectively

(a)

(b)

Fig. 5 a The reconstructed persistence diagram from the learned vector w. The blue (resp. red) area contributes to the class 0 (resp. 1). b A thresholding of (a). c 1-4 The birth positions of the generators in blue and red areas in (b) are plotted with the same color (color figure online)

birth
\qquad

surface

"Persistence images: A stable vector representation of persistent homology" by Adams, Chepushtanova, Emerson, Hanson, Kirby, Motta, Neville, Peterson, Shipman, Ziegelmeier, 2017
"Quantitative and interpretable order parameters for phase transitions from persistent homology" by Cole, Loges, Shin, 2021

Low temperature

High temperature

Statistical physics
Ising model Phase transitions

"Topological descriptors help predict guest absorption in nanoporous materials" by Krishnaprigan, Haranczyk, Morozov, 2020

Methane absorption:
Accessible surface area Largest cavity diameter

Local geometry

Measures of order for nearly hexagonal lattices Motte, Neville, Shipman, Pearson, Bradley, 2018

Collective motion, self-organization
Topological data analysis of biological aggregation models Topaz, Ziegelmeier, Halverson, 2015

Collective motion, self-organization
Topological data analysis of biological aggregation models Topaz, Ziegelmeier, Halverson, 2015

(a)

(b)

Analysis of Kolmogorov flow and Rayleigh-Bēnard convection using persistent homology
Kramär, Levanger, Tithof, Suri, Xu, Paul, Schatz, Mischai kow, 2016

Persistence images: A stable vector representation of persistent homology. Adams, Chepushtanova, Emerson, Hanson, Kirby, Motta, Neville, Peterson, Shipman, Ziegelmeier, 2017

Different parameters:

Persistence images: A stable vector representation of persistent homology. Adams, Chepushtanova, Emerson, Hanson, Kirby, Motta, Neville, Peterson, Shipman, Ziegelmeier, 2017

Local geometry

Circle

Clusters Inside
Clusters

Unit Sphere

Torus

Persistence images: A stable vector representation of persistent homology. Adams, Chepushtanova, Emerson, Hanson, Kirby, Motta, Neville, Deterson, Shipman, Ziegelmeier, 2017

Local geometry

Persistent homology detects curvature Bubenik, Hull, Patel, Whittle, 2019

Local geometry

A fractal dimension for measures via persistent homology Adams, Aminian, Farrell, Kirby, Peterson, Mirth, Neville, Shonkwiler, 2020

See also work by Robins and MacPherson \& Schweinhart

Local geometry

A fractal dimension for measures via persistent homology Adams, Aminian, Farrell, Kirby, Peterson, Mirth, Neville, Shonkwiler, 2020

Local geometry

A fractal dimension for measures via persistent homology Adams, Aminian, Farrell, Kirby, Peterson, Mirth, Neville, Shonkwiler, 2020

Local geometry

On the choice of weight functions for linear representations of persistence diagrams Divol and Polonik, 2019

Fig. 2 For $n=500$ or 2000 points uniformly sampled on the torus, persistence images (Adams et al. 2017) for different weight functioas are displayed. For $\alpha<2$, the mass of the topological noise is far larger than the mass of the true signal, the latter being comprised by the two points with high-persistence. For $\alpha=2$, the two points with high-persistence are clearly distinguishable. For $\alpha=100$, the noise has also disappeared, but so has one of the point with high-persistence

On the choice of weight functions for linear representations of persistence diagrams Divol and Polonik, 2019

Topology in Machine Learning

- How to vectorize geometry?
- Introduction to persistent homology
- Applications in materials science, computer vision, and explainable machine learning

