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Topological Data Analysis

Definition

For metric space (X , d) and scale r ≥ 0, the
Vietoris–Rips simplicial complex VR<(X ; r) is the set of all finite
σ ⊆ X with diam(σ) < r .

Definition

For metric space (X , d) and scale r ≥ 0, the
Vietoris–Rips simplicial complex VR≤(X ; r) is the set of all finite
σ ⊆ X with diam(σ) ≤ r .

Remark

The Vietoris–Rips simplicial complex can be fully determined by
the the underlying graph of its one skeleton, i.e the graph made by
the zero and one dimensional simplices.
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Problem Description

Theorem (Chazal, Cohen-Steiner, Guibas, Mémoli, Oudot)

Suppose X ⊂ M is a finite sampling of a manifold M. Then:

dB(dgmVR
k (X ), dgmVR

k (M)) ≤ 2dGH(X ,M)

X
M



Regular Polygons

Definition

Given an integer n ≥ 3, let the regular n-gon Pn ⊆ R2 be a set of
n points equally spaced on S1, with line segments connecting
adjacent points together. We endow Pn with the Euclidean metric
of R2.

We fix a homeomorphism φ : Pn → S1 that we will sometimes use
implicitly when discussing points on Pn.

Remark

A homeomorphism is an equivalence relation between metric
spaces that preserves dimension.



Definition

We use a ternary relation to describe an order on Pn (actually S1),
writing x � y � z when x , y , and z appear in clockwise order.

Definition

Let ~d represent the clockwise geodesic distance on the circle of
circumference 1.



Main Result

Theorem

For fixed n, we have sequences of reals {sn,`} and {tn,`} that
correspond to the first and last scale parameters for which an
equilateral (2`+ 1)-star can be inscribed within Pn. Then:

VR<(Pn; r) '

{∨q−1 S2` when sn,` < r ≤ tn,l

S2`+1 when tn,` < r ≤ sn,`+1

VR≤(Pn; r) '

{∨3q−1 S2` when sn,` < r < tn,`

S2`+1 when tn,` < r < sn,`+1,

where q = n/gcd(n, 2`+ 1). Furthermore, all of the above
homological features are persistent, except for 2q copies of S2`

during the even sphere regimes for ≤.



Main Result: Example

VR<(P15; r)

VR≤(P15; r)

Why do we get homology above dimension 1?



Main Result: Example

VR<(P15; r)

VR≤(P15; r)

Why do we get homology above dimension 1?



Intuition

Figure: VR≤(6 points; 1
3 ) ' S2



Intuition
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Intuition

Figure: VR≤(9 points; 1
3 ) '

∨2 S2
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Cyclic Graphs

Definition

A directed graph is a pair G = (V ,E ) with V the set of vertices
and E ⊆ V × V the set of directed edges, where no edge is
oriented in both directions.

Definition

A directed graph G is cyclic if its vertices can be placed in a cyclic
order such that, whenever there is a directed edge v → u, then
there are also edges v → w → u for all v ≺ w ≺ u ≺ v .
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Figure: a cyclic graph



Dynamical Systems

Definition

For a cyclic graph G and a vertex v , define f (v) to be the
clockwise-most point u such that there exists a directed edge
v → u.

Definition

If v is such that f i (v) = v for some integer i ≥ 1, then we call v a
periodic vertex.

Definition

If v is periodic, then we call the set {v , f (v), f 2(v), . . . } a periodic
orbit and its length is the size of the set.

Remark

Every finite cyclic graph has at least one periodic orbit.



Dynamical Systems

Definition

The winding number ω of a periodic orbit of length k is the value

k−1∑
i=0

~d(f i (v), f i+1(v)).

Definition

The winding fraction of a cyclic graph G is

wf(G ) = sup

{
ω

k

∣∣∣∣ G contains a periodic orbit of
length k and winding number ω.

}
.



Dynamical Systems
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Figure: Left: 0→ 2→ 4→ 5 is a periodic orbit of length 4. Winding
number= 1
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Right: 0→ 2→ 3→ 4→ 5 is a periodic orbit of length 5. wf= 1
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Dynamical Systems

Definition

For G a cyclic graph with wf(G ) = p
q , we call a non-periodic

vertex v fast if

q−1∑
i=0

~d(f i (v), f i+1(v)) > p

and slow if

q−1∑
i=0

~d(f i (v), f i+1(v)) < p

That is, does v run “faster” or “slower” than periodic points?



Dynamical Systems
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Figure: Left: 0, 2, 4, and 5 are periodic vertices. 1 and 3 are slow points.
Right: 0, 2, 3, 4, and 5 are periodic vertices. 1 is a fast point.



Clique Complexes of Cyclic Graphs

Definition

For any graph G (not necessarily directed), the clique complex of
G is the simplicial complex containing an n-simplex [v1, . . . vn+1]
whenever the set {v1, . . . vn+1} is pairwise connected.

Theorem (Adamaszek, Adams, Reddy)

Let G be a cyclic graph with P periodic orbits and F “fast orbits”.

If `
2`+1 < wf(G ) ≤ `+1

2`+3 for some integer ` ≥ 0, then

Cl(G ) ' S2`+1.

If wf(G ) = `
2`+1 , then Cl(G ) '

∨P+F−1 S2`.



Geometric Lemmas for Regular Polygons

Question

For which scale parameters r are VR<(Pn; r) and VR≤(Pn; r)
cyclic graphs?

Let’s denote the maximal such r by rn.

It is equivalent to find values of r such that Br (c) ∩ Pn is
connected for all c ∈ Pn.

Figure: Some disconnected intersections in P5(left) and P6(right)



Geometric Lemmas for Regular Polygons

Lemma

If n ≥ 4 and r < rn then both VR<(Pn; r) and VR≤(Pn; r) are
cyclic graphs.

Proof

Let c be an arbitrary point on Pn. Suppose that c is in edge [x , y ]
and that edge [a, b] is on the opposite side, contained in line L.

Now parity considerations:
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Geometric Lemmas for Regular Polygons

Proof (Cont.)

If n is odd:

Let q be the unique point on [x , y ] such that projL(q) = a. Let m
be the midpoint of [a, b] and check that projL(x) = m.

Observe that the distance function from c is monotonic on [a, b] if
and only if projL(c) /∈ [a,m]↔ c /∈ [x , q].

Moreover, the shortest distance from c to L approaches |a− q| as
c approaches q.

Hence, rn = |a− q| = 1 +
cos( 2π

n
)

cos(π
n
) .



Geometric Lemmas for Regular Polygons

Proof (Cont.)

If n is even:

Observe that projL(c) ∈ [a, b], so the distance function from c is
not monotonic on [a, b].

Moreover, the shortest distance from c to L is constant for all
c ∈ [x , y ], since [x , y ] and [a, b] are parallel.

Hence, rn = |a− y | = 2 cos(2πn ).



Geometric Lemmas for Regular Polygons

What about P3?



Geometric Lemmas for Regular Polygons

Question

For which scale parameters r are VR<(Pn; r) and VR≤(Pn; r)
cyclic graphs?

Answer

For n ≥ 4, we conclude that VR<(Pn; r) and VR≤(Pn; r) are cyclic
graphs for r ∈ (0, rn), where

rn =


2 cos(2πn ) if n even

1 +
cos( 2π

n
)

cos(π
n
) if n odd

.

Moreover, VR<(P3; r) and VR≤(P3; r) are not cyclic graphs for
any r > 0.



Geometric Lemmas for Regular Polygons

Definition

In a cyclic graph, a periodic orbit which has length 2`+ 1 and
winding number ` is called a (2`+ 1)-star. If all the adjacent
distances are equal, then we call the star equilateral.

Remark

The winding fraction of G becomes `
2`+1 when the first equilateral

(2`+ 1)-star can be inscribed, and it stays `
2`+1 until the last

equilateral (2`+ 1)-star can be inscribed.



Geometric Lemmas for Regular Polygons

Lemma

For any point x ∈ Pn, there exists a unique equilateral
(2`+ 1)-star which contains x as one of its vertices.

Definition

For x ∈ Pn and an integer ` ≥ 1, denote the unique inscribed
(2`+ 1)-star containing x by S2`+1(x), and its side length by
s2`+1(x).

Lemma

The function s2`+1 : Pn → R is continuous.



Geometric Lemmas for Regular Polygons

Question

How many distinct equilateral (2`+ 1)-stars of side length r can
be inscribed into Pn?



Geometric Lemmas for Regular Polygons

Definition

A “crossing” is a value x ∈ Pn such that at least one vertex of
S2`+1(x) falls on a vertex of Pn.

Lemma

If [a, b) is a maximal half-open interval of Pn such that no
x ∈ [a, b) is a crossing, then the graph of s2`+1 must look like:

x
a b



Geometric Lemmas for Regular Polygons

Lemma

For any (2`+ 1)-star S inscribed in Pn, the number of vertices of S
coinciding with vertices of Pn is equal to either 0 or gcd(n, 2`+ 1).

Proof

Suppose x ∈ Pn is a vertex, and consider the (2`+ 1)-pointed star
S = S2`+1(x).

Let x , y ∈ Pn be the closest together vertices of S which are also
vertices of Pn. Let m denote the number of steps between them
via S .

Observe m|(2`+ 1), so we can write m = (2`+ 1)/d for some
d |(2`+ 1).
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Geometric Lemmas for Regular Polygons

Proof (Cont.)

Now d is exactly equal to the number of vertices of S which
coincide with vertices of Pn.

Observe that we also have d |n.

Since m is defined to be minimal, d must be maximal, hence d =
gcd(n, 2`+ 1).



Geometric Lemmas for Regular Polygons

Corollary

The total number of crossings in Pn is equal to
n(2`+ 1)/gcd(n, 2`+ 1).

Corollary

The number of local minima/maxima on s2`+1 is equal to
n(2`+ 1)/gcd(n, 2`+ 1).

Lemma

All local minima/maxima of s2`+1 are global minima/maxima.



Geometric Lemmas for Regular Polygons

We let sn,` be the value of the global min and tn,` be the value of
the global max of s2`+1 on Pn.

Corollary

The number of equilateral (2`+ 1)-stars inscribed into Pn which
have minimal side length is equal to n/gcd(n, 2`+ 1).

The number of equilateral (2`+ 1)-stars inscribed into Pn which
have maximal side length is equal to n/gcd(n, 2`+ 1).

The number of equilateral (2`+ 1)-stars inscribed into Pn which
have side length r satisfying sn,` < r < tn,` is equal to
2n/gcd(n, 2`+ 1).



Geometric Lemmas for Regular Polygons

Question

How many distinct equilateral (2`+ 1)-stars of side length r can
be inscribed into Pn?

Answer

The number of equilateral (2`+ 1)-stars of side length r that can
be inscribed into Pn is equal to:

n/gcd(n, 2`+ 1) if r = sn,` or tn,`

2n/gcd(n, 2`+ 1) if sn,` < r < tn,`

0 otherwise



Geometric Lemmas for Regular Polygons

From this result we can determine P and F for a fixed r .

Let q = n/gcd(n, 2`+ 1). We remark that:

For ≤, we have P = 2q and F = q.

For <, we have P = 0 and F = q.

(Take, n = 6, ` = 1 as an example.)

Recall

If wf(G ) = `
2`+1 , then Cl(G ) '

∨P+F−1 S2`.



Main Result

Theorem

For r ∈ (0, rn) we have:

VR<(Pn; r) '

{∨q−1 S2` when sn,` < r ≤ tn,l

S2`+1 when tn,` < r ≤ sn,`+1

VR≤(Pn; r) '

{∨3q−1 S2` when sn,` < r < tn,`

S2`+1 when tn,` < r < sn,`+1,

where q = n/gcd(n, 2`+ 1). Furthermore,

For sn,` < r < r̃ ≤ tn,` or tn,` < r < r̃ ≤ sn,`+1, inclusion
VR<(Pn; r) ↪→ VR<(Pn; r̃) is a homotopy equivalence.

For tn,` < r < r̃ < sn,`+1, inclusion VR≤(Pn; r) ↪→ VR≤(Pn; r̃) is a
homotopy equivalence.

For sn,` ≤ r < r̃ ≤ tn,`, inclusion VR≤(Pn; r) ↪→ VR≤(Pn; r̃)
induces a rank q− 1 map on 2`-dimensional homology H2`(−;F) for
any field F.



Main Result: Example

VR<(P15; r)

VR≤(P15; r)



Future Work

Find analytical formulas when 2`+ 1 does not divide n

Given n, find maximal ` such that a (2`+ 1)-star can be inscribed
into Pn

Finish paper and post to arXiv



Thank you!


