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Topological Data Analysis

Definition

For metric space (X, d) and scale r > 0, the

Vietoris—Rips simplicial complex VR (X; r) is the set of all finite
o C X with diam(o) < r.
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Definition

For metric space (X, d) and scale r > 0, the

Vietoris—Rips simplicial complex VR<(X; r) is the set of all finite
o C X with diam(c) < r.

Remark

The Vietoris—Rips simplicial complex can be fully determined by
the the underlying graph of its one skeleton, i.e the graph made by
the zero and one dimensional simplices.
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Problem Description

Theorem (Chazal, Cohen-Steiner, Guibas, Mémoli, Oudot)

Suppose X C M is a finite sampling of a manifold M. Then:

dg(dgm{®(X), dgm/R(M)) < 2dgu(X, M)

= X



Regular Polygons

Definition

Given an integer n > 3, let the regular n-gon P, C R? be a set of
n points equally spaced on S!, with line segments connecting
adjacent points together. We endow P, with the Euclidean metric
of R2.

We fix a homeomorphism ¢ : P, — S! that we will sometimes use
implicitly when discussing points on P,.

A homeomorphism is an equivalence relation between metric
spaces that preserves dimension.




Definition

We use a ternary relation to describe an order on P, (actually S1),
writing x < y < z when x, y, and z appear in clockwise order.

Definition

Let d represent the clockwise geodesic distance on the circle of
circumference 1.




Main Result

Theorem

For fixed n, we have sequences of reals {s,;} and {t,,} that
correspond to the first and last scale parameters for which an
equilateral (2¢ + 1)-star can be inscribed within P,. Then:

97162 when s,y < r <ty
VR (Pp; r) ~ {\5/2€+1 n, S I,

\/3971 526 when Spe < 1 <thy
52£+1

when t, ¢ < r < Sp041

VR<(P,;r) ~
—( n ) when the < r <Speti,

where q = n/gcd(n,2¢ + 1). Furthermore, all of the above
homological features are persistent, except for 2q copies of 5%
during the even sphere regimes for <.




Main Result: Example
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Main Result: Example
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Why do we get homology above dimension 17



Figure: VR<(6 points; 1) ~ 52



Intuition












Intuition

Figure: VR<(9 points; 1) ~ \/?s?



Intuition
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Cyclic Graphs

Definition

A directed graph is a pair G = (V, E) with V the set of vertices
and E C V x V the set of directed edges, where no edge is
oriented in both directions.
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Definition

A directed graph G is cyclic if its vertices can be placed in a cyclic
order such that, whenever there is a directed edge v — u, then
there are also edges v - w — uforall v < w < u < v.

A\







Dynamical Systems

Definition

For a cyclic graph G and a vertex v, define f(v) to be the
clockwise-most point u such that there exists a directed edge
v — u.

Definition

If v is such that f/(v) = v for some integer i > 1, then we call v a
periodic vertex.

| \

Definition
If v is periodic, then we call the set {v, f(v), f?(v),...} a periodic
orbit and its length is the size of the set.

v

Every finite cyclic graph has at least one periodic orbit.




Dynamical Systems

Definition

The winding number w of a periodic orbit of length k is the value

x
[y

—

(F/(v), £ (v)).

I
o

Definition

The winding fraction of a cyclic graph G is

Wf(G)Zsup{cZ ‘ G contains a periodic orbit of}.

length k and winding number w.




Dynamical Systems

Figure: Left: 0 — 2 —> 5is a periodic orbit of length 4. Winding

number=1+ %+ 14 2= 1 = wf=1
Right: 0 % 2 % 3 % 4 —bisa perlodlc orbit of length 5. Wf_*




Dynamical Systems

Definition

For G a cyclic graph with wf(G)
vertex v fast if

s, we call a non-periodic

and slow if

That is, does v run “faster” or “slower” than periodic points?



Dynamical Systems

{

Figure: Left: 0, 2, 4, and 5 are periodic vertices. 1 and 3 are slow points.
Right: 0, 2, 3, 4, and 5 are periodic vertices. 1 is a fast point.



Clique Complexes of Cyclic Graphs

Definition

For any graph G (not necessarily directed), the cliqgue complex of
G is the simplicial complex containing an n-simplex [vi, ... Vpi1]
whenever the set {vi,...vp11} is pairwise connected.

Theorem (Adamaszek, Adams, Reddy)
Let G be a cyclic graph with P periodic orbits and F “fast orbits”.

° h‘%;1 < wi(G) < % for some integer £ > 0, then
CI(G) ~ 52“1
o Ifwf(G) = 55, then CI(G) =~ \/PT 1 52,




Geometric Lemmas for Regular Polygons

For which scale parameters r are VR-(Pp; r) and VR<(Pp; r)
cyclic graphs?

Let’s denote the maximal such r by r,.

It is equivalent to find values of r such that B,(c) N P, is
connected for all ¢ € P,,.

Figure: Some disconnected intersections in Ps(left) and Pg(right)



Geometric Lemmas for Regular Polygons

If n>4 and r < r, then both VR(Pp; r) and VR<(Py; r) are
cyclic graphs.




Geometric Lemmas for Regular Polygons

If n>4 and r < r, then both VR(Pp; r) and VR<(Py; r) are
cyclic graphs.

Let ¢ be an arbitrary point on P,. Suppose that c is in edge [x, y]
and that edge [a, b] is on the opposite side, contained in line L.

Now parity considerations:




Geometric Lemmas for Regular Polygons

Proof (Cont.)
If nis odd:

Let g be the unique point on [x, y| such that proj (q) = a. Let m
be the midpoint of [a, b] and check that proj;(x) = m.

Observe that the distance function from ¢ is monotonic on [a, b] if
and only if proji(c) ¢ [a, m] <> ¢ ¢ [x, q].

Moreover, the shortest distance from ¢ to L approaches |a — g as
¢ approaches g.

cos( )
cos(%) -

Hence, r,=|la—q| =1+




Geometric Lemmas for Regular Polygons

Proof (Cont.)

If nis even:

Observe that proji(c) € [a, b], so the distance function from c is
not monotonic on [a, b].

Moreover, the shortest distance from ¢ to L is constant for all
¢ € [x,y], since [x,y] and [a, b] are parallel.

Hence, r, = |a — y| = 2 cos(X). O

n




Geometric Lemmas for Regular Polygons

What about P3?



Geometric Lemmas for Regular Polygons

For which scale parameters r are VR (Py; r) and VR<(Py; r)
cyclic graphs?

Answer

For n > 4, we conclude that VR<(Pp; r) and VR<(Pp; r) are cyclic
graphs for r € (0, r,), where

2 cos(%Z) if n even
'n = 27 .
1+ ZSS((E)) if n odd

Moreover, VR (Ps; r) and VR<(P3; r) are not cyclic graphs for
any r > 0.




Geometric Lemmas for Regular Polygons

Definition

In a cyclic graph, a periodic orbit which has length 2¢ + 1 and
winding number /¢ is called a (2¢ + 1)-star. If all the adjacent
distances are equal, then we call the star equilateral.

Remark

| A

The winding fraction of G becomes ﬁ when the first equilateral

(2¢ 4 1)-star can be inscribed, and it stays
equilateral (2¢ + 1)-star can be inscribed.

2£+1 until the last

A\




Geometric Lemmas for Regular Polygons

For any point x € P, there exists a unique equilateral

(2¢ + 1)-star which contains x as one of its vertices.

For x € P, and an integer £ > 1, denote the unique inscribed
(2¢ + 1)-star containing x by Sys+1(x), and its side length by

52€+1(X)-

The function spp11 : P, — R is continuous.




Geometric Lemmas for Regular Polygons

How many distinct equilateral (2¢ 4 1)-stars of side length r can
be inscribed into P,7?




Geometric Lemmas for Regular Polygons

Definition

A “crossing” is a value x € P, such that at least one vertex of
Sor+1(x) falls on a vertex of P,,.

Lemma

If [a, b) is a maximal half-open interval of P, such that no
x € [a, b) is a crossing, then the graph of sy;+1 must look like:




Geometric Lemmas for Regular Polygons

For any (2¢ + 1)-star S inscribed in P,, the number of vertices of S
coinciding with vertices of P, is equal to either 0 or gcd(n,2( + 1).




Geometric Lemmas for Regular Polygons

For any (2¢ + 1)-star S inscribed in P,, the number of vertices of S
coinciding with vertices of P, is equal to either 0 or gcd(n,2( + 1).

Proof

Suppose x € P, is a vertex, and consider the (2¢ + 1)-pointed star
S = Sara(x).

Let x,y € P, be the closest together vertices of S which are also
vertices of P,. Let m denote the number of steps between them
via S.

Observe m|(2¢ + 1), so we can write m = (2¢ + 1)/d for some
d|(2¢+1).




Geometric Lemmas for Regular Polygons

Proof (Cont.)

Now d is exactly equal to the number of vertices of S which
coincide with vertices of P,.

Observe that we also have d|n.

Since m is defined to be minimal, d must be maximal, hence d =
ged(n, 20 + 1). O

4




Geometric Lemmas for Regular Polygons

Corollary

The total number of crossings in P, is equal to
n(2¢ + 1) /ged(n,2¢ + 1).

| 5\

Corollary

The number of local minima/maxima on sy;41 is equal to
n(2¢ + 1) /ged(n, 20 + 1).

All local minima/maxima of spp11 are global minima/maxima.




Geometric Lemmas for Regular Polygons

We let s, be the value of the global min and t,, be the value of
the global max of syy11 on P,.

Corollary

The number of equilateral (2¢ + 1)-stars inscribed into P, which
have minimal side length is equal to n/gcd(n,2¢ + 1).

The number of equilateral (2¢ + 1)-stars inscribed into P, which
have maximal side length is equal to n/gcd(n,2¢ + 1).

The number of equilateral (2¢ + 1)-stars inscribed into P, which
have side length r satisfying s, , < r < t,, is equal to
2n/gecd(n, 20 + 1).




Geometric Lemmas for Regular Polygons

How many distinct equilateral (2¢ + 1)-stars of side length r can
be inscribed into P,?

| \

Answer

The number of equilateral (2¢ 4 1)-stars of side length r that can
be inscribed into P, is equal to:

n/ged(n,2¢ + 1) if r=s,00r thy
2n/ged(n,204+1) if s, <r<tpy
0 otherwise

A\




Geometric Lemmas for Regular Polygons

From this result we can determine P and F for a fixed r.
Let g = n/gcd(n,2¢ + 1). We remark that:

For <, we have P =2g and F = g.

For <, we have P=0and F = q.

(Take, n=6,¢ =1 as an example.)

If wi(G) = 545, then CI(G) =~ \/PTF 1 52,




Main Result

For r € (0, r,) we have:

VR_(Py: 1) \/q_1 S2t when Sne < r < tn
r) o
s G2+l when tn o < r < s,ei1

\/3q_1 s when Sne < r < thp
VR<(Pp; r) ~ {52“1

when tp, o < r < Spet1,

where q = n/gcd(n,2¢ + 1). Furthermore,

@ Fors,,<r<F<thporty,<r<F<s,p1, inclusion
VR_(Pp; r) = VR (P,; ) is a homotopy equivalence.

@ Fortnp <r<F<syp1, inclusion VR<(Pp; r) < VR<(P,; 7) is a
homotopy equivalence.

@ Fors,e <r <F<tyy, inclusion VR<(P,; r) = VR<(Py; F)
induces a rank g — 1 map on 2¢-dimensional homology Hp¢(—; F) for
any field .




Main Result: Example
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@ Find analytical formulas when 2¢ + 1 does not divide n

@ Given n, find maximal £ such that a (2¢ + 1)-star can be inscribed
into P,

@ Finish paper and post to arXiv



Thank you!



