Vietoris-Rips Complexes of Regular Polygons

Adam Jaffe Stanford University Bonginkosi Sibanda Brown University

Advisor: Henry Adams TA: Samir Chowdhury

August 10, 2017

Summer@ICERM 2017

For metric space (X, d) and scale $r \ge 0$, the *Vietoris–Rips simplicial complex* $\mathbf{VR}_{<}(X; r)$ is the set of all finite $\sigma \subseteq X$ with diam $(\sigma) < r$.

Definition

For metric space (X, d) and scale $r \ge 0$, the *Vietoris–Rips simplicial complex* $\mathbf{VR}_{\le}(X; r)$ is the set of all finite $\sigma \subseteq X$ with diam $(\sigma) \le r$.

Remark

The *Vietoris–Rips simplicial complex* can be fully determined by the the underlying graph of its one skeleton, i.e the graph made by the zero and one dimensional simplices.

Theorem (Chazal, Cohen-Steiner, Guibas, Mémoli, Oudot)

Suppose $X \subset M$ is a finite sampling of a manifold M. Then:

 $d_B(dgm_k^{VR}(X), dgm_k^{VR}(M)) \leq 2d_{GH}(X, M)$

Given an integer $n \ge 3$, let the *regular n-gon* $P_n \subseteq \mathbb{R}^2$ be a set of n points equally spaced on S^1 , with line segments connecting adjacent points together. We endow P_n with the Euclidean metric of \mathbb{R}^2 .

We fix a homeomorphism $\phi: P_n \to S^1$ that we will sometimes use implicitly when discussing points on P_n .

Remark

A homeomorphism is an equivalence relation between metric spaces that preserves dimension.

We use a ternary relation to describe an order on P_n (actually S^1), writing $x \leq y \leq z$ when x, y, and z appear in clockwise order.

Definition

Let \vec{d} represent the clockwise geodesic distance on the circle of circumference 1.

Theorem

For fixed n, we have sequences of reals $\{s_{n,\ell}\}$ and $\{t_{n,\ell}\}$ that correspond to the first and last scale parameters for which an equilateral $(2\ell + 1)$ -star can be inscribed within P_n . Then:

$$\mathbf{VR}_{<}(P_{n};r) \simeq \begin{cases} \bigvee^{q-1} S^{2\ell} & \text{when } s_{n,\ell} < r \le t_{n,l} \\ S^{2\ell+1} & \text{when } t_{n,\ell} < r \le s_{n,\ell+1} \end{cases} \\ \mathbf{VR}_{\leq}(P_{n};r) \simeq \begin{cases} \bigvee^{3q-1} S^{2\ell} & \text{when } s_{n,\ell} < r < t_{n,\ell} \\ S^{2\ell+1} & \text{when } t_{n,\ell} < r < s_{n,\ell+1}, \end{cases}$$

where $q = n/gcd(n, 2\ell + 1)$. Furthermore, all of the above homological features are persistent, except for 2q copies of $S^{2\ell}$ during the even sphere regimes for \leq .

Main Result: Example

Main Result: Example

Why do we get homology above dimension 1?

Figure: VR_{\leq}(6 points; $\frac{1}{3}$) $\simeq S^2$

Figure: VR_{\leq}(9 points; $\frac{1}{3}$) $\simeq \bigvee^2 S^2$

A *directed graph* is a pair G = (V, E) with V the set of vertices and $E \subseteq V \times V$ the set of directed edges, where no edge is oriented in both directions.

Definition

A directed graph G is *cyclic* if its vertices can be placed in a cyclic order such that, whenever there is a directed edge $v \rightarrow u$, then there are also edges $v \rightarrow w \rightarrow u$ for all $v \prec w \prec u \prec v$.

Figure: a cyclic graph

For a cyclic graph G and a vertex v, define f(v) to be the clockwise-most point u such that there exists a directed edge $v \rightarrow u$.

Definition

If v is such that $f^i(v) = v$ for some integer $i \ge 1$, then we call v a *periodic* vertex.

Definition

If v is periodic, then we call the set $\{v, f(v), f^2(v), ...\}$ a *periodic* orbit and its *length* is the size of the set.

Remark

Every finite cyclic graph has at least one periodic orbit.

The winding number ω of a periodic orbit of length k is the value

$$\sum_{i=0}^{k-1} \vec{d}(f^i(v), f^{i+1}(v)).$$

Definition

The winding fraction of a cyclic graph G is

wf(G) = sup
$$\left\{ \frac{\omega}{k} \mid G \text{ contains a periodic orbit of} \right\}$$
 length k and winding number ω .

Dynamical Systems

Figure: Left: $0 \rightarrow 2 \rightarrow 4 \rightarrow 5$ is a periodic orbit of length 4. Winding number= $\frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{2}{5} = 1 \Rightarrow wf = \frac{1}{4}$ Right: $0 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$ is a periodic orbit of length 5. $wf = \frac{1}{5}$

For G a cyclic graph with $wf(G) = \frac{p}{q}$, we call a non-periodic vertex v fast if

$$\sum_{i=0}^{q-1} ec{d}(f^i(v), f^{i+1}(v)) > p$$

and *slow* if

$$\sum_{i=0}^{q-1} \vec{d}(f^i(v), f^{i+1}(v)) < p$$

That is, does v run "faster" or "slower" than periodic points?

Dynamical Systems

Figure: Left: 0, 2, 4, and 5 are periodic vertices. 1 and 3 are slow points. Right: 0, 2, 3, 4, and 5 are periodic vertices. 1 is a fast point.

For any graph G (not necessarily directed), the *clique complex* of G is the simplicial complex containing an *n*-simplex $[v_1, \ldots v_{n+1}]$ whenever the set $\{v_1, \ldots v_{n+1}\}$ is pairwise connected.

Theorem (Adamaszek, Adams, Reddy)

Let G be a cyclic graph with P periodic orbits and F "fast orbits".

- If $\frac{\ell}{2\ell+1} < wf(G) \le \frac{\ell+1}{2\ell+3}$ for some integer $\ell \ge 0$, then $Cl(G) \simeq S^{2\ell+1}$.
- If wf(G) = $\frac{\ell}{2\ell+1}$, then Cl(G) $\simeq \bigvee^{P+F-1} S^{2\ell}$.

Geometric Lemmas for Regular Polygons

Question

For which scale parameters r are $VR_{<}(P_n; r)$ and $VR_{\leq}(P_n; r)$ cyclic graphs?

Let's denote the maximal such r by r_n .

It is equivalent to find values of r such that $B_r(c) \cap P_n$ is connected for all $c \in P_n$.

Figure: Some disconnected intersections in $P_5(left)$ and $P_6(right)$

Geometric Lemmas for Regular Polygons

Lemma

If $n \ge 4$ and $r < r_n$ then both $VR_{<}(P_n; r)$ and $VR_{\le}(P_n; r)$ are cyclic graphs.

Lemma

If $n \ge 4$ and $r < r_n$ then both $VR_{<}(P_n; r)$ and $VR_{\le}(P_n; r)$ are cyclic graphs.

Proof

Let c be an arbitrary point on P_n . Suppose that c is in edge [x, y] and that edge [a, b] is on the opposite side, contained in line L.

Now parity considerations:

Proof (Cont.)

If *n* is odd:

Let q be the unique point on [x, y] such that $proj_L(q) = a$. Let m be the midpoint of [a, b] and check that $proj_L(x) = m$.

Observe that the distance function from c is monotonic on [a, b] if and only if $proj_L(c) \notin [a, m] \leftrightarrow c \notin [x, q]$.

Moreover, the shortest distance from c to L approaches |a - q| as c approaches q.

Hence,
$$r_n = |a - q| = 1 + \frac{\cos(\frac{2\pi}{n})}{\cos(\frac{\pi}{n})}$$
.

Proof (Cont.)

If *n* is even:

Observe that $proj_L(c) \in [a, b]$, so the distance function from c is not monotonic on [a, b].

Moreover, the shortest distance from c to L is constant for all $c \in [x, y]$, since [x, y] and [a, b] are parallel.

Hence, $r_n = |a - y| = 2\cos(\frac{2\pi}{n})$.

Geometric Lemmas for Regular Polygons

What about P_3 ?

Question

For which scale parameters r are $VR_{<}(P_n; r)$ and $VR_{\leq}(P_n; r)$ cyclic graphs?

Answer

For $n \ge 4$, we conclude that $VR_{\leq}(P_n; r)$ and $VR_{\leq}(P_n; r)$ are cyclic graphs for $r \in (0, r_n)$, where

$$r_n = \begin{cases} 2\cos(\frac{2\pi}{n}) & \text{if } n \text{ even} \\ \\ 1 + \frac{\cos(\frac{2\pi}{n})}{\cos(\frac{\pi}{n})} & \text{if } n \text{ odd} \end{cases}$$

Moreover, $\mathbf{VR}_{<}(P_3; r)$ and $\mathbf{VR}_{\leq}(P_3; r)$ are not cyclic graphs for any r > 0.

In a cyclic graph, a periodic orbit which has length $2\ell + 1$ and winding number ℓ is called a $(2\ell + 1)$ -star. If all the adjacent distances are equal, then we call the star *equilateral*.

Remark

The winding fraction of G becomes $\frac{\ell}{2\ell+1}$ when the first equilateral $(2\ell+1)$ -star can be inscribed, and it stays $\frac{\ell}{2\ell+1}$ until the last equilateral $(2\ell+1)$ -star can be inscribed.

Lemma

For any point $x \in P_n$, there exists a unique equilateral $(2\ell + 1)$ -star which contains x as one of its vertices.

Definition

For $x \in P_n$ and an integer $\ell \ge 1$, denote the unique inscribed $(2\ell + 1)$ -star containing x by $S_{2\ell+1}(x)$, and its side length by $s_{2\ell+1}(x)$.

Lemma

The function $s_{2\ell+1}: P_n \to \mathbb{R}$ is continuous.

Question

How many distinct equilateral $(2\ell + 1)$ -stars of side length r can be inscribed into P_n ?

Geometric Lemmas for Regular Polygons

Definition

A "crossing" is a value $x \in P_n$ such that at least one vertex of $S_{2\ell+1}(x)$ falls on a vertex of P_n .

Lemma

If [a, b) is a maximal half-open interval of P_n such that no $x \in [a, b)$ is a crossing, then the graph of $s_{2\ell+1}$ must look like:

Geometric Lemmas for Regular Polygons

Lemma

For any $(2\ell + 1)$ -star S inscribed in P_n , the number of vertices of S coinciding with vertices of P_n is equal to either 0 or $gcd(n, 2\ell + 1)$.

Lemma

For any $(2\ell + 1)$ -star S inscribed in P_n , the number of vertices of S coinciding with vertices of P_n is equal to either 0 or $gcd(n, 2\ell + 1)$.

Proof

Suppose $x \in P_n$ is a vertex, and consider the $(2\ell + 1)$ -pointed star $S = S_{2\ell+1}(x)$.

Let $x, y \in P_n$ be the closest together vertices of S which are also vertices of P_n . Let m denote the number of steps between them via S.

Observe $m|(2\ell+1)$, so we can write $m=(2\ell+1)/d$ for some $d|(2\ell+1)$.

Proof (Cont.)

Now *d* is exactly equal to the number of vertices of *S* which coincide with vertices of P_n .

Observe that we also have d|n.

Since *m* is defined to be minimal, *d* must be maximal, hence $d = \gcd(n, 2\ell + 1)$.

Corollary

The total number of crossings in P_n is equal to $n(2\ell + 1)/gcd(n, 2\ell + 1)$.

Corollary

The number of local minima/maxima on $s_{2\ell+1}$ is equal to $n(2\ell+1)/gcd(n,2\ell+1)$.

Lemma

All local minima/maxima of $s_{2\ell+1}$ are global minima/maxima.

We let $s_{n,\ell}$ be the value of the global min and $t_{n,\ell}$ be the value of the global max of $s_{2\ell+1}$ on P_n .

Corollary

The number of equilateral $(2\ell + 1)$ -stars inscribed into P_n which have minimal side length is equal to $n/gcd(n, 2\ell + 1)$.

The number of equilateral $(2\ell + 1)$ -stars inscribed into P_n which have maximal side length is equal to $n/gcd(n, 2\ell + 1)$.

The number of equilateral $(2\ell + 1)$ -stars inscribed into P_n which have side length r satisfying $s_{n,\ell} < r < t_{n,\ell}$ is equal to $2n/gcd(n, 2\ell + 1)$.

Question

How many distinct equilateral $(2\ell + 1)$ -stars of side length r can be inscribed into P_n ?

Answer

The number of equilateral $(2\ell + 1)$ -stars of side length r that can be inscribed into P_n is equal to:

$$\left\{egin{aligned} n/gcd(n,2\ell+1) & ext{ if } r=s_{n,\ell} ext{ or } t_{n,\ell} \ 2n/gcd(n,2\ell+1) & ext{ if } s_{n,\ell} < r < t_{n,\ell} \ 0 & ext{ otherwise} \end{aligned}
ight.$$

Geometric Lemmas for Regular Polygons

From this result we can determine P and F for a fixed r.

Let $q = n/\gcd(n, 2\ell + 1)$. We remark that:

For \leq , we have P = 2q and F = q.

For <, we have P = 0 and F = q.

(Take, $n = 6, \ell = 1$ as an example.)

Recall

If wf(G) =
$$\frac{\ell}{2\ell+1}$$
, then Cl(G) $\simeq \bigvee^{P+F-1} S^{2\ell}$.

Main Result

Theorem

For $r \in (0, r_n)$ we have:

$$\mathbf{VR}_{<}(P_{n};r) \simeq \begin{cases} \bigvee^{q-1} S^{2\ell} & \text{when } s_{n,\ell} < r \le t_{n,l} \\ S^{2\ell+1} & \text{when } t_{n,\ell} < r \le s_{n,\ell+1} \end{cases} \\ \mathbf{VR}_{\le}(P_{n};r) \simeq \begin{cases} \bigvee^{3q-1} S^{2\ell} & \text{when } s_{n,\ell} < r < t_{n,\ell} \\ S^{2\ell+1} & \text{when } t_{n,\ell} < r < s_{n,\ell+1}, \end{cases}$$

where $q = n/gcd(n, 2\ell + 1)$. Furthermore,

- For $s_{n,\ell} < r < \tilde{r} \le t_{n,\ell}$ or $t_{n,\ell} < r < \tilde{r} \le s_{n,\ell+1}$, inclusion $VR_{<}(P_n; r) \hookrightarrow VR_{<}(P_n; \tilde{r})$ is a homotopy equivalence.
- For t_{n,ℓ} < r < r̃ < s_{n,ℓ+1}, inclusion VR_≤(P_n; r) → VR_≤(P_n; r̃) is a homotopy equivalence.
- For s_{n,ℓ} ≤ r < r̃ ≤ t_{n,ℓ}, inclusion VR_≤(P_n; r) → VR_≤(P_n; r̃) induces a rank q − 1 map on 2ℓ-dimensional homology H_{2ℓ}(−; F) for any field F.

Main Result: Example

 $VR_{\leq}(P_{15}; r)$

- Find analytical formulas when $2\ell + 1$ does not divide *n*
- Given n, find maximal ℓ such that a $(2\ell + 1)$ -star can be inscribed into P_n
- Finish paper and post to arXiv

Thank you!