
COMPLEX ANALYSIS MISCELLANY

Abstract. I will use this to record proofs, examples, and explanations that I might have
planned to give in class but was not able to. It also may contain other odds and ends.

1. The complex numbers form a field (Jan 6)

Let us quickly recall some basic properties of the real numbers, which we denote by R.

Proposition 1.1. Let a, b, c be real numbers.

(1) a+ b and ab are also real numbers (closure).
(2) Addition is associative: a+ (b+ c) = (a+ b) + c.
(3) Addition is commutative: a+ b = b+ a.
(4) There exists a real number, named 0, such that a+ 0 = a = 0 + a.
(5) There exists a real number −a such that a + (−a) = 0 = (−a) + a. For shorthand,

we write a+ (−b) as a− b.
(6) Multiplication is associative: a(bc) = (ab)c.
(7) Multiplication is commutative: ab = ba.
(8) There exists a real number, named 1, such that a · 1 = a = 1 · a.
(9) If a 6= 0, then there exists a real number a−1 (the reciprocal of a) such that a · a−1 =

1 = a−1 · a. We sometimes write a · b−1 as a/b or a
b
.

(10) The distributive property holds: a(b+ c) = ab+ ac.

Remark. These properties imply that R is a field.

A complex number is an ordered pair z = (a, b) of real numbers (ordered: (a, b) does not
necessarily equal (b, a)). We call a the real part, written as Re(z), and b the imaginary
part of z, written as Im(z). Let z1 = (a1, b1) and z2 = (a2, b2) be complex numbers. We
write

x = y if and only if a1 = a2 and b1 = b2.

We define addition and multiplication on complex numbers by

(1.1) z1 + z2 = (a1 + a2, b1 + b2), z1z2 = (a1a2 − b1b2, a1b2 + a2b1).

We observe that if b = d = 0, then

z1 + z2 = (a1 + a2, 0), z1z2 = (a1a2, 0),

so we can think of z1 and z2 as being just like real numbers when their imaginary parts equal
zero.

Observe that (a, b) = (a, 0) + (0, b) and (0, 1)(b, 0) = (0, b). Thus we can write

z = (a, b) = (a, 0) + (0, 1)(b, 0).

It will be convenient to introduce the shorthand i = (0, 1) and (a, 0) = a. Therefore, we can
represent any complex number z = (a, b) as

z = a+ ib.
1
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With these conventions, we will show that the properties of R outlined in Proposition 1.1
also holds for the set of complex numbers, which we denote by C.

Proposition 1.2. Let z1, z2, z3 be complex numbers.

(1) z1 + z2 and z1z2 are also complex numbers (closure).
(2) Addition is associative: z1 + (z2 + z3) = (z1 + z2) + z3.
(3) Addition is commutative: z1 + z2 = z2 + z1.
(4) There exists a complex number, named 0 = (0, 0), such that z1 + 0 = z1 = 0 + z1.
(5) There exists a complex number −z1 such that z1 + (−z1) = 0 = (−z1) + z1. For

shorthand, we write z1 + (−z2) as z1 − z2.
(6) Multiplication is associative: z1(z2z3) = (z1z2)z3.
(7) Multiplication is commutative: z1z2 = z2z1.
(8) There exists a complex number, named 1 = (1, 0), such that z1 · 1 = z1 = 1 · z1.
(9) If z1 6= 0, then there exists a complex number z−11 (the reciprocal of z1) such that

z1 · z−11 = 1 = z−11 · z1. We sometimes write z1 · z−12 as z1/z2 or z1
z2

.

(10) The distributive property holds: z1(z2 + z3) = z1z2 + z1z3.

Proof. I’ll verify (2) and (6). I leave the rest to you as an exercise. We will discuss (9) at
length next class.

– (2): Let z1 = (a1, b1) and z2 = (a2, b2). Using (1.1), we find that

z1+z2 = (a1, b1)+(a2, b2) = (a1+a2, b1+b2), z2+z1 = (a2, b2)+(a1, b1) = (a2+a1, b2+b1).

Since a1 + a2 = a2 + a1 and b1 + b2 = b2 + b1 by Proposition 1.1 (3), we have the desired
equality.

– (6): Using (1.1), we first compute

z1(z2z3) = (a1, b1)((a2, b2) · (a3, b3))
= (a1, b1)(a2a3 − b2b3, a2b3 + a3b2)

= (a1(a2a3 − b2b3)− b1(a2b3 + a3b2), a1(a2b3 + a3b2) + b1(a2a3 − b2b3))
A similar computation yields

(z1z2)z3 = ((a1a2 − b1b2)a3 − (a1b2 + a2b1)b3, (a1a2 − b1b2)b3 + a3(a1b2 + a2b1)).

We are now left with the (tedious) task of using Proposition 1.1 to check that these complex
numbers are equal. Give it a try, only using Proposition 1.1. �

Note that with these properties,

i2 = (0, 1)2 = (−1, 0) = −1, i3 = (i2)i = −i, i4 = i3 · i = −i · i = −(−1) = 1.
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2. “Reverse” triangle inequality proof (Jan 8)

I stated this in class and did not prove it. Here is a proof. It is different from the book’s
but it uses more of the arithmetic of the complex numbers that we went over in class today.

Lemma 2.1. If z1, z2 are complex numbers, then |z1 + z2| ≥ ||z1| − |z2||.

Proof. Since |z1| − |z2| is a real number, we compute

||z1| − |z2||2 = (|z1| − |z2|)2 = |z1|2 + |z2|2 − 2|z1| · |z2|
≤ |z1|2 + |z2|2 + 2|z1| · |z2|
≤ |z1|2 + |z2|2 + 2Re(z1z2)

= z1z1 + z2z2 + z1z2 + z2z1 = (z1 + z2)(z1 + z2) = |z1 + z2|2.
Thus ||z1| − |z2||2 ≤ |z1 + z2|2. Hence ||z1| − |z2|| ≤ |z1 + z2|, as desired. �
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3. de Moivre’s formula example (Jan 10)

At the end of class, we arrived at de Moivre’s formula: If n is an integer and θ is a real
number, then

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

To give you an idea of how this might be used, consider the following example.

Example 3.1. Consider de Moivre’s formula with n = 2. Then

(cos θ + i sin θ)2 = cos(2θ) + i sin(2θ).

We expand the left-hand side and obtain

(3.1) (cos θ)2 + 2i(sin θ)(cos θ)− (sin θ)2 = cos(2θ) + i sin(2θ).

(We used the fact that i2 = −1.) Recall that z1 = x1 + iy1 equals z2 = x2 + iy2 precisely
when the two equalities x1 = x2 and y1 = y2 hold. Thus (3.1) tells us that

(cos θ)2 − (sin θ)2 = cos(2θ) and 2(sin θ)(cos θ) = sin(2θ).

Recall that (cos θ)2 + (sin θ)2 = 1. This leaves us with

2(cos θ)2 − 1 = cos(2θ) and 2(sin θ)(cos θ) = sin(2θ).

These are trigonometric identities that arise often in geometry and calculus.

Here is another example.

Example 3.2. Let us compute (1− i)8. On one hand, you could expand out this 8th power
using the binomial formula, but that is quite painful! On the other hand, we can realize that
the principal argument of 1− i lies in the 4th quadrant and satisfies

tan Θ =
−1

1
= −1.

Thus the principal argument Θ of 1− i is −π/4, and the modulus is
√

2. Thus

1− i =
√

2
(

cos
(
− π

4

)
+ i sin

(
− π

4

))
.

Now, by de Moivre (3.1),

(1− i)8 = (
√

2)8
(

cos
(
− π

4

)
+ i sin

(
− π

4

))8
= 16

(
cos
(
− π

4
· 8
)

+ i sin
(
− π

4
· 8
))
.

This simplifies to
(1− i)8 = 16(cos(−2π) + i sin(−2π)).

Since cos(−2π) = 1 and sin(−2π) = 0, we are left with

(1− i)8 = 16.
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4. Interior, exterior, and boundary points of unit circle (Jan 15)

Let S = {z : |z| < 1}.

Theorem 4.1. The set S is open.

To complement the geometrically intuitive discussion I gave in class, I will give some
rigorous proofs here. There are a few pieces that are required.

Lemma 4.2. If z0 is a complex number such that |z0| < 1, then z0 is an interior point of S.

Proof. If z0 lies in S, then one can take ε = 1 − |z0| (which is positive since |z0| < 1), and
then the ε-neighborhood {z : |z − z0| < ε} is a neighborhood of z0 containing only points in
S. Thus z0 satisfies the definition for an interior point. �

Lemma 4.3. If z0 is a complex number such that |z0| > 1, then z0 is an exterior point of S.

Proof. If |z0| > 1, then we choose ε = |z0| − 1 (which is positive since |z0| > 1). Then the
neighborhood {z : |z − z0| < ε} contains only points outside of S. Hence if |z0| > 1, then z0
is an exterior point �

Lemma 4.4. If z0 is a complex number such that |z0| = 1, then z0 is a boundary point of S.

Proof. I will prove that z0 = 1 is a boundary point, and I leave it to you to handle the
other cases. To begin, fix ε > 0. We have two cases: ε > 1 or ε ≤ 1. If ε > 1, then the
ε-neighborhood {z : |z − 1| < ε} contains both 1

2
(interior to S) and 3

2
(exterior to S).

Now, consider the case where 0 < ε < 1. Note that the set {z : |z − 1| < ε} contains both
1− ε

2
(which is interior to S) and 1 + ε

2
(which is exterior to S).

By combining the two cases, we see that no ε-neighborhood of z0 = 1 contains either only
points interior to S or only points exterior to S. Thus z0 = 1 is neither an interior nor an
exterior point. Thus z0 = 1 is a boundary point.

(Again, I leave it to you to complete the proof for other choices of z0 with |z0| = 1.) �

Proof of Theorem 4.1. We have identified the boundary of S to be ∂S = {z : |z| = 1}, and
S does not contain any point in ∂S. Thus S is open. �
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5. Another δ − ε limit example (Jan. 22)

Proposition 5.1. Pick an integer n ≥ 0 and a complex number z0. We have that

lim
z→z0

zn = zn0 .

My discussion here will be long, because I will provide lots of details so that you have a
sense of how these arguments work. Again, because we our work is taking place in the plane
instead of on the real line, we really need this δ − ε definition. Our work here will also use
mathematical induction. The book states this result in Section 16 but does not give any
details.

Case 0: n = 0. If n = 0, the claimed result reduces to

lim
z→z0

1 = 1.

Verifying this is purely a matter of knowing the definition of the limit. I leave this straight-
forward step to you.

Case 1: n = 1. If n = 1, then the claimed result reduces to

lim
z→z0

z = z0.

Let ε > 0, and let δ′ = ε. If |z − z0| < δ′, then |z − z0| < ε. This is simply unraveling the
definition of the limit, and in this case it’s pretty straightforward. We will use the number
δ′ later.

Case 1 provides us with the base case in our use of mathematical induction. Now, suppose
that for some n ≥ 1, we have that

(5.1) lim
z→z0

zn = zn0 .

Goal: Prove that lim
z→z0

zn+1 = zn+1
0 .

We start with (5.1) and unravel what this means using the definition of the limit: Given
ε > 0 (the same as in Case 1), we can find some δ′′ > 0 such that

(5.2) |zn − zn0 | < ε whenever |z − z0| < δ′′.

We know that |zn − zn0 | will be small by our inductive hypothesis (5.2) and |z − z0| will be
small as we can see from the base case n = 1. So we want to try to express |zn+1 − zn+1

0 | in
terms of |zn − zn0 | and |z − z0|. Observe that

zn+1 − zn+1
0 = z · (zn − zn0 ) + zn0 (z − z0).

Now, if δ < min{δ′, δ′′, 1}, and |z − z0| < δ, then by the triangle inequality,

|zn+1 − zn+1
0 | = |z · (zn − zn0 ) + zn0 (z − z0)|
≤ |z| · |zn − zn0 |+ |z0|n · |z − z0|
< |z| · ε+ |z0|n · ε
< (|z0|+ δ) · ε+ |z0|n · ε
≤ (|z0|+ 1 + |z0|n)ε.

This is very close to what we want, but there is a problem: The limit definition requires
that we have

|zn+1 − zn+1
0 | < ε,
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not
|zn+1 − zn+1

0 | < (|z0|+ 1 + |z0|n)ε.

There is a simple fix for this: We simply rescale ε. Since ε was chosen arbitrarily anyway
and z0 is a constant chosen at the beginning of the problem (it is not varying as z varies),
we can replace every instance of ε with ε/(|z0|+ 1 + |z0|n). Since the denominator is always
a positive constant, we are in good shape, and by mathematical induction, we have finished
our work.

HOWEVER...
We “worked backwards” to find the δ > 0 that works for every ε > 0. Proofs almost

always read better when they have a “forward flow”. So we will tidy up our work and make
the proof a little more presentable.

Proposition 5.2. Pick an integer n ≥ 0 and a complex number z0. We have that

lim
z→z0

zn = zn0 .

Proof. The case when n = 0 is immediate from the definition of the limit. We proceed by
mathematical induction for n ≥ 1. Our base case, n = 1, is proved as follows:

Let ε > 0, and let δ′ = ε
|z0|+1+|z0|n .

Whenever |z − z0| < δ′, we also have |z − z0| < ε
|z0|+1+|z0|n < ε.

Now, let n ≥ 1 be an integer, and suppose that limz→z0 z
n = zn0 . This means that:

Given an ε > 0, there exists δ′′ > 0 such that
|zn − zn0 | < ε

|z0|+1+|z0|n whenever |z − z0| < δ′′.

We choose δ = min{δ′, δ′′, 1}. If ε > 0 and |z − z0| < δ, then by the triangle inequality, we
have

|zn+1 − zn| = |z · (zn − zn0 ) + zn0 (z − z0)|
≤ |z| · |zn − zn0 |+ |z0|n · |z − z0|

< (|z0|+ δ)
ε

|z0|+ 1 + |z0|n
+ |z0|n ·

ε

|z0|+ 1 + |z0|n

≤ (|z0|+ 1)
ε

|z0|+ 1 + |z0|n
+ |z0|n ·

ε

|z0|+ 1 + |z0|n

=
(|z0|+ 1 + |z0|n)ε

(|z0|+ 1 + |z0|n)

= ε.

�
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6. A limit non-example (Jan 24)

The end of class was a bit rushed, so I thought I would take the time to spell out the
details of the last example.

Proposition 6.1. The function f(z) = |z|2 is differentiable at z0 = 0 and nowhere else.

Proof. To recap from class: If z0 = 0 and z 6= 0, then

|z|2 − |z0|2

z − z0
=
|z|2

z
=
zz

z
= z.

It is then clear that for z0 = 0, we have

lim
z→z0

|z|2 − |z0|2

z − z0
= lim

z→0
z = 0.

Thus f ′(0) = 0.
To give more detail about the remaining cases: Let z0 6= 0 and z 6= z0. Then

|z|2 − |z0|2

z − z0
=
zz − z0z0
z − z0

.

We add zero in the form zz0 − zz0 to the numerator:

zz − z0z0
z − z0

=
zz + zz0 − zz0 − z0z0

z − z0
=
z(z − z0)− z0(z − z0)

z − z0
= z

z − z0
z − z0

− z0.

(Notice that z−z0
z−z0 has modulus 1. The numerator is the conjugate of the denominator, and

|w/w| = |w|/|w| = |w|/|w| = 1 whenever w 6= 0.)
If z approaches z0 by traveling along the complex numbers such that Im(z) = Im(z0) (this

means that the imaginary part of z is fixed, which gives us a horizontal line in the complex
plane), then

z
z − z0
z − z0

− z0 simplifies to Re(z) + Re(z0),

and so we combine our work from above to obtain

lim
z→z0

|z|2 − |z0|2

z − z0
= lim

z→z0

(
z
z − z0
z − z0

− z0
)

= lim
z→z0

(Re(z) + Re(z0)) = 2Re(z0).

On the other hand, if z approaches z0 by traveling along the complex numbers such that
Re(z) = Re(z0) (this means that the real part of z is fixed, which gives us a vertical line in
the complex plane), then

z
z − z0
z − z0

− z0 simplifies to − i(Im(z) + Im(z0)),

and so we combine our work from above to obtain

lim
z→z0

|z|2 − |z0|2

z − z0
= lim

z→z0

(
z
z − z0
z − z0

− z0
)

= −i lim
z→z0

(Im(z) + Im(z0)) = −2iIm(z0).

As we discussed a little while ago, limits, when they exist, are unique—they remain the
same regardless of the directioin in which z approaches z0. We have shown that from one
direction, the limit equals 2Re(z0), and in a different direction, the limit equals −2iIm(z0).
The only complex number z0 which satisfies 2Re(z0) = −2iIm(z0) is z0 = 0 (check this), but
we assumed that z0 6= 0 (we handled this case earlier). So we must conclude that the limit
only exists when z0 = 0. �
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7. The Cauchy–Riemann converse (Jan 27)

I’ll expound a bit on the idea behind the result proved on Jan 27:

Theorem 7.1. Let z = x+iy, and let f(z) = u(x, y)+iv(x, y) be defined in an ε-neighborhood
of z0 = x0 + iy0. Suppose that

(1) the partial derivatives ux, uy, vx, and vy exist and continuous everywhere in the
neighborhood, and

(2) these partial derivatives satisfy the Cauchy–Riemann equations at (x0, y0).

Then f ′(z0) exists and equals ux(x0, y0) + ivx(x0, y0).

7.1. Notation. We write

∆x = x− x0, ∆y = y − y0, ∆z = z − z0 = ∆x+ i∆y.

7.2. Philosophy: Functions of a single real variable. Suppose that r(x) is a function
of a real variable x which is differentiable on (a, b), and let a < x0 < b. Then

lim
x→x0

r(x)− r(x0)
x− x0

= r′(x0).

In other words, when x 6= x0 is really close to x0 (perhaps within an ε-neighborhood. . .),
then we have the very close approximation

r(x)− r(x0)
x− x0

≈ r′(x0),

in which case

r(x)− r(x0) ≈ r′(x0)(x− x0).
This is a first-order Taylor expansion. Now, if you want to take the limit of r(x) as
x → x0, we see pretty clearly that the limit is r(x0) (since r(x) − r(x0) → 0 because
r′(x0)(x− x0)→ 0).

7.3. Philosophy: Functions of two real variables. We take the linear approximation
philosophy for computing limits of differentiable functions. Let F : R2 → R be differentiable
in an ε-neighborhood of (x0, y0). When Fx and Fy are continuous in a neighborhood of
(x0, y0), we have the multi-variable first-order Taylor expansion

F (x, y)− F (x0, y0) ≈ Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0).

7.4. Idea of the proof of Theorem 7.1. Assume that u and v satisfy (1) and (2) in the
theorem statement. Since (2) is satisfied, we have the first-order approximation

f(z)− f(z0) = u(x, y)− u(x0, y0) + i(v(x, y)− v(x0, y0))

≈ ux(x0, y0)∆x+ uy(x0, y0)∆y + i(vx(x0, y0)∆x+ vy(x0, y0)∆y).

Now, by (1), we have ux = vy and uy = −vx. Thus

ux(x0, y0)∆x+ uy(x0, y0)∆y + i(vx(x0, y0)∆x+ vy(x0, y0)∆y)

= ux(x0, y0)∆x− vx(x0, y0)∆y + i(vx(x0, y0)∆x+ ux(x0, y0)∆y)

= ux(x0, y0)(∆x+ i∆y) + i(vx(x0, y0)(∆x+ i∆y))

= (ux(x0, y0) + ivx(x0, y0))(∆x+ i∆y)
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Piecing these together, we find that

f(z)− f(z0) ≈ (ux(x0, y0) + ivx(x0, y0))(∆x+ i∆y)

= (ux(x0, y0) + ivx(x0, y0))(z − z0).
Since we are taking a limit as z → z0 (so z 6= z0), we conclude that as z comes to within an
ε-neighborhood of z0, we have that

f(z)− f(z0)

z − z0
≈ ux(x0, y0) + ivx(x0, y0).

Thus we can infer that

lim
z→z0

f(z)− f(z0)

z − z0
= ux(x0, y0) + ivx(x0, y0),

in which case (a) the derivative exists, and (b) it equals what we claimed.

7.5. Last remarks. This is NOT a proof! This is simply the idea of the proof. Notice that
never have we made clear what the symbol ≈ means! Notice that since the derivative is a
limit, we have to find for all ε > 0 that there exists a δ > 0 such that∣∣∣f(z)− f(z0)

z − z0
− (ux(x0, y0) + ivx(x0, y0))

∣∣∣ < ε whenever |z − z0| < δ.

We didn’t touch δ’s and ε’s at all! The idea is that the δ’s and the ε’s that arise in the limit
definition for the partial derivatives ux, uy, vx, and vy allow us to say very specifically what
≈ means at each step. This is spelled out in Section 23 of the book, but their approach is
motivated by the linear approximation philosophy that we described earlier.
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8. Complex differentiability vs. being holomorphic (uploaded on Feb 9)

There seemed to be some confusion on last week’s quiz regarding the (important!) differ-
ence between being holomorphic at a point and being complex-differentiable at a point.

In order for a function

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

to be complex-differentiable at z0 means that

lim
z→z0

f(z)− f(z0)

z − z0
exists. Remember: You need to approach the same value as you approach z0 from any
direction. In the (special!) case when the first-order partial derivatives ux, uy, vx, and vy
are continuous in a neighborhood of z0 (the neighborhood part of this is important!!!), then
complex-differentiability is the same as u and v satisfying the Cauchy–Riemann equations
at z0 = x0 + iy0.

In order for f to be holomorphic at z0, we need to establish that f his complex-
differentiable everywhere in some ε-neighborhood of z0. This is a very important
distinction from complex-differentiability! On Quiz 4, you saw an example of a function f(z)
that is complex-differentiable only along a line Re(z) = Im(z) in the complex plane. When
you draw an ε-neighborhood around any point on a line, it must contain points off the line!
Therefore, you can’t prove complex-differentiability of f in any neighborhood of any point
on the line. Therefore, f is holomorphic nowhere, even though it is complex-differentiable
at many places!
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9. Midterm Review (Feb 9)

We have a review session in Little Hall, Room 368, on Monday, February 10, from 4:15pm–
6:15pm. The doors of Little Hall will lock at 4:30pm. If you cannot make it to the
review session, try to copy notes from someone who could come.

9.1. Problems. I gave lots of suggested problems. If you did all of the suggested problems,
great! Now you can do all of the other problems that I didn’t suggest in the sections that
we covered. If you did not do all of the suggested problems, finish those first. These are all
good preparation for the midterm.

9.2. Topics.

(1) Different ways to interpret complex numbers (ordered pairs, real part + i· imaginary
part, exponential form, point in the plane / vectors, point on Riemann sphere, etc.)

(2) δ-ε definition of the limit
(3) Full definitions of continuity, complex-differentiability
(4) Cauchy–Riemann equations, significance for the derivative
(5) What are sufficient conditions for differentiability?
(6) Holomorphic functions vs. complex-differentiable functions
(7) Finding arguments / principal argument. arg z as a set. What does arg(z1z2) =

arg(z1) + arg(z2) mean?
(8) Solving equations with complex solutions / computing complex n-th roots
(9) Proof of triangle inequality (and the “reverse” triangle inequality)

(10) Proof of: If f = u + iv is holomorphic on a domain D (viewed as a subset of the
complex plane), then u and v are harmonic on D (viewed as a subset of R2)

(11) Multi-valued functions (log, power function, etc.). log(z) as a set vs. Log(z) as a
function.

(12) Branches / branch cuts
(13) Exponential, trig, polynomial (etc.) functions of a complex variable
(14) Hyperbolic trigonometric functions (definitions, basic properties)
(15) Rules of taking derivatives (product, quotient, chain, etc.)
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10. Green’s theorem and complex integrals (Feb 17)

Recall Green’s theorem from multivariable calculus: If D is a region bounded by a closed
curve C and L = L(s, y) and M = M(x, y) are functions defined on an open region containing
D and having continuous partial derivatives there, then∫

C

(Ldx+Mdy) =

∫ ∫
D

(Mx − Ly)dxdy,

where C is positively oriented. Now, suppose that f(z) = u(x, y) + iv(x, y). Then∫
C

f(z)dz =

∫
C

(udx− vdy) + i

∫
C

(vdx+ udy).

By Green’s theorem, if the first order partial derivatives are continuous, then f being holo-
morphic implies, via the Cauchy–Riemann equations, that∫

C

f(z)dz =

∫ ∫
D

(−vx − ux)dxdy + i

∫
C

(ux − vy)dxdy = 0.

We have thus concluded a preliminary version of Cauchy’s theorem.

Theorem 10.1. If f is analytic on a region R with piecewise differentiable boundary ∂R,
and f ′ is continuous there, then ∫

∂R

fdz = 0.
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11. Cauchy’s Theorem for Simple Closed Curves

We used Goursat’s theorem to prove that if f is holomorphic along and inside of a disc D,
then

∫
γ
fdz = 0 for every simple closed curve contained in D. In this note, we show how one

can use Goursat to go beyond discs. Recall that a simple closed curve is a loop with no
self-intersections except at its starting and ending points (because the starting and ending
points equal each other).

Theorem 11.1. Let f be holomorphic on an open set D, and let γ is a simple closed curve
in the interior of D. Then

∫
γ
fdz = 0.

We require a little preliminary work.

Lemma 11.2. Let P be a simple polygon (that is, let P be a simple closed curve which is
the union of line segments which does not self-intersect). If f is holomorphic on P and on
the interior of P , then

∫
Pn
fdz = 0.

Sketch of proof. Take P oriented in the positive direction. Once we dissect P into a union
of triangles T1, T2, . . . and express

∫
Pn
fdz as a sum of

∫
T1
fdz,

∫
T2
fdz, . . ., each oriented in

the positive direction. Since the integral around each of the triangles is zero by Goursat, the
full integral

∫
Pn
fdz will also be zero. �

For a subset U ⊆ C, let U be the closure of U (the union of the interior of U and the
boundary of U).

Lemma 11.3. Let B(z, ρ) = {w ∈ C : |z−w| < ρ}. There exists a constant ρ > 0 such that

R =
⋃
z∈γ

B(z, ρ) ⊆ D.

Moreover, R is itself closed and bounded.

Sketch of proof. Since γ is on the interior of D, D is open, and γ is closed, we have that
the minimum distance between any point on γ and the boundary of U must be positive.
Whatever this positive distance is, we let ρ be 1/2 of that distance. Since R clearly contains
its boundary points (this can be seen geometrically since R is a “ribbon” contained in D
which envelopes γ), R is closed. Boundedness is clear. �

Proof of Cauchy’s Theorem for Simple Closed Curves. Parametrize our simple closed curve
γ (oriented in the positive direction) as z(t) with 0 ≤ t ≤ 1. Let 0 = t0 < t1 < t2 < · · · <
tn−1 < tn = 1 (notice that z(0) = z(1) since γ is closed), and let zj = z(tj). The Riemann
sum for

∫
γ
f(z)dz is

Sn =
n∑
j=1

f(zj)(zj − zj−1).

Let Pn be the polygon formed by connecting z0 to z1, z1 to z2,...,zn−2 to zn−1, zn−1 to zn = z0.
Observe that ∫

Pn

fdz − Sn =
n∑
j=1

(∫ zj

zj−1

fdz − f(zj)(zj − zj−1)
)
.

Note that by construction, we have

length(Pn) ≤ length(γ).
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Since R is closed and bounded by the lemma and f is continuous on D, we can find, for all
ε > 0, a δ > 0 (depending only on ε) such that

|f(z)− f(w)| < δ whenever |z − w| < ε/length(γ),

the point being that this one δ works for any pair z, w ∈ D. (This is called uniform
continuity.)

By increasing n, we can add more points to our polygon P so that |zj − zj−1| < δ for each
1 ≤ j ≤ n. We are now set up for our final calculation:∣∣∣ ∫

Pn

f(z)dz − Sn
∣∣∣ =

∣∣∣ n∑
j=1

∫ zj

zj−1

(f(z)− f(zj))dz
∣∣∣

≤
n∑
j=1

∣∣∣ ∫ zj

zj−1

(f(z)− f(zj))dz
∣∣∣

≤
n∑
j=1

∫ zj

zj−1

|f(z)− f(zj)| · |dz|

≤
n∑
j=1

∫ zj

zj−1

max
w∈[zj−1,zj ]

|f(w)− f(zj)| · |zj − zj−1|

<
n∑
j=1

(ε/length(γ)) · |zj − zj−1|

≤ (ε/length(γ)) · length(Pn)

≤ ε.

Now, note that by the triangle inequality,∣∣∣ ∫
Pn

fdz −
∫
γ

fdz
∣∣∣ ≤ ∣∣∣ ∫

Pn

fdz − Sn
∣∣∣+
∣∣∣ ∫

γ

fdz − Sn
∣∣∣.

The two absolute values on the right hand side can be made arbitrarily small when n is
sufficiently large: The first absolute value by the above calculation, the second absolute
value because Sn is the Riemann sum for

∫
γ
fdz. Thus if n is big enough, the right hand

side will be bounded by 2ε, say. And we can take ε to be arbitrarily small. Since∫
Pn

fdz = 0

by one of our lemmas above (the mild extension of Goursat’s theorem), we are left with∫
γ

fdz = 0.

�
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