More examples of integrals to compute using the residue the:

Ex) $\int_{0}^{\infty} \frac{\sin (x)}{x} d x$
This integral does not converge absolutely: $\int_{0}^{\infty}\left|\frac{\sin (x)}{x}\right| d x$ diverges.
Strategy: Proceed like wedid
for $\int_{0}^{\infty} \frac{\cos (x)}{x^{2}+1} d x$:

- Associate the integral with its Cauchy principal value:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\sin (x)}{x} d x \\
= & \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin (x)}{x} d x \\
= & \frac{1}{2} \lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{\sin (x)}{x} d x
\end{aligned}
$$

$$
=\frac{1}{2} \ln \left(\lim _{R \rightarrow \infty} \int_{-R}^{k} \frac{e^{1 \lambda}}{x} d x\right)
$$

- Semi-circular contour

Idea: Proceed as
before, but include the semicircle around zero, and take $\varepsilon \rightarrow 0^{+}$

- The integral along γ_{R} tendsto zero as $R \rightarrow \infty$ by arguing similarly as we did with $\int_{0}^{\infty} \frac{\cos (x)}{x^{2}+1} d x$ (triangle ines. For integrals).
- Integral along γ equals zero by Cauchy's the $\left(\frac{e^{i z}}{z}\right.$ analytic when $z \neq 0$).
- Summary so far:

$$
\begin{aligned}
& \int_{-R}^{T h u s} \frac{e^{i x}}{x} d x+\int_{\varepsilon}^{R} \frac{e^{i x}}{x} d x \\
& =-\int_{-\gamma_{\varepsilon}} \frac{e^{i z}}{z} d z \\
& =\int_{\gamma_{\varepsilon}} \frac{e^{i z}}{z} d z \\
& \tau_{i}^{\text {counterclockwise }} \begin{array}{l}
\text { direction now !!! }
\end{array}
\end{aligned}
$$

Lemma: If $z=0$ is a pole of order 1 for a function $g(z)$, then

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\gamma_{\varepsilon}} g(z) d z=\pi i \cdot \operatorname{Res}_{z=0} g(z) .
$$

Pf) The Laurent series for $g(z)$ at $z=0$ is

$$
\begin{align*}
& =0 \text { is } a_{-1}+\left(\sum_{n=0}^{\infty} a_{n} z^{n}\right. \text {. } \tag{z}
\end{align*}
$$

If ε is small enough, then

$$
\int_{\gamma_{\varepsilon}} g(z) d z=\int_{\gamma_{\varepsilon}} \frac{a_{-1}}{z} d z+\int_{\gamma_{\varepsilon}} h(z) d z
$$

This $\rightarrow 0$
as $\varepsilon \rightarrow 0^{+}$
because $h(z)$
is analytic
at $z=0$.

Thus as $\varepsilon \rightarrow 0^{+}$, we are left with $\pi i a_{-1}$

Thus if R is big, then

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{+}}\left(\int_{-R}^{-\varepsilon} \frac{e^{i x}}{x} d x+\int_{\varepsilon}^{R} \frac{e^{R i x}}{x} d x\right. \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \int_{\gamma_{\varepsilon}} \frac{e^{i z}}{z} d z \\
& (\text { lemma) } \\
& =\prod_{z=0} \frac{e^{i z}}{z}=\pi i .
\end{aligned}
$$

Now, recall from before

$$
\begin{aligned}
\text { that } & \frac{1}{2} \lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{\sin (x)}{x} d x \\
= & \frac{1}{2} \ln \left(\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{e^{i x}}{x} d x\right) \\
= & \frac{1}{2} \ln (\pi i \\
= & \pi / 2 .
\end{aligned}
$$

Next Time:

Last integral example

