

For fixed
$$\alpha \in (0,1)$$
,

$$\int_{0}^{\infty} \frac{dx}{x^{\alpha}(1+x)}$$
(Exercise: What happens
when $\alpha = 0$ or 1
or when $\alpha > 1$.)
Note: Our usual even/
odd trick to pass
from \int_{0}^{∞} to $\int_{-\infty}^{\infty}$

Won't work here. So we need another type of contour !

Our closed loop for integrating with the residue thr carrot cross the branch cut!

 $\frac{\mathrm{ldea}}{\mathrm{Eake}} \quad \mathrm{Take} \quad \mathcal{R} \rightarrow \mathcal{O}^{+} \quad \mathcal{E} \rightarrow \mathcal{E$

 $\int_{\Sigma} f(z) dz = \int_{\Sigma} G_{0\alpha}$ $\int R f(x) dx$ On one side of the branch cut, Z is $(|Z|e^{i\theta})^{\alpha} = |Z|^{\alpha}e^{i\theta\alpha}$ On the other side, $2^{\alpha} = (12|e^{i(0+a_{\pi})})^{\alpha}$

tend to zero as $R \rightarrow \omega \quad \& \quad \Xi \rightarrow O$ (triangle inequality, parametrization). We are left with $(1-e^{-2\pi i \alpha}) \int_{\varepsilon}^{R} \frac{dx}{x(1+x)}$ $= \int_{X} \frac{dz}{z^{\alpha}(1+z)}$ $= a \pi i \quad Res \quad \overline{z^{\alpha}(1+z)}$

