Last "real integration" example

Previous example:

$$
\int_{0}^{\infty} \frac{\sin (x)}{x} d x
$$

Ccan't be evaluated using (ale 2 ideas)

Here is another such example:

For fixed $\alpha \in(0,1)$,

$$
\int_{0}^{\infty} \frac{d x}{x^{\alpha}(1+x)}
$$

(Exercise: What happens when $\alpha=0$ or 1 or when $\alpha>1$.)
Note: Our usual evert odd trick to pass from \int_{0}^{∞} to $\int_{-\infty}^{\infty}$
won't work here. So we need another type of contour:

Notice that as a function of z,

$$
f(z)=\frac{1}{z^{\alpha}(1+z)}, \quad 0<\alpha<1
$$

is multivalued!

$$
\left(z^{\alpha}=e^{\alpha \log z}\right)
$$

Need to pick a branch!!
Typical Choice for log: remove the nonpositive reals:

Our choice here: remove the nonnegative reals.

Our closed loop for integrating with the residue the cannot cross the branch cut.
Idea: Take $R \rightarrow \infty$

$$
\varepsilon \rightarrow 0^{+}
$$

this leads to

$$
\begin{aligned}
\partial \pi i \sum_{z k} R_{z=k} f & =\int_{\gamma} f(z) d z \\
& =\int_{\gamma_{R}} f(z) d z \\
& +\int_{[R, i]} f(x) d x
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{\gamma_{\varepsilon}} f(z) d z \text { Goal } \\
& +\int_{\varepsilon}^{R} f(x) d x
\end{aligned}
$$

On ore side of the branch cut, z^{α} is

$$
\left(|z| e^{i \theta}\right)^{\alpha}=|z|^{\alpha} e^{i \theta \alpha}
$$

On the other sides

$$
z^{\alpha}=\left(|z| e^{i(\theta+\alpha \pi)}\right)^{\alpha}
$$

$$
=z^{\alpha} e^{2 \pi i \alpha}
$$

Thus

$$
\begin{aligned}
& \int_{[\varepsilon, R]^{1}} \frac{1}{x^{\alpha}(1+x)} d x+\int_{\left[R_{1} \varepsilon\right]}^{x^{\alpha}(1+x)} d x \\
= & \int_{[\varepsilon, R]} \frac{d x}{x^{\alpha}(1+x)}-\frac{1}{e^{2 \pi i \alpha}} \int_{\varepsilon} \frac{d x}{x^{\alpha}(1+x)} \\
= & \left(1-e^{-\alpha \pi i \alpha}\right) \int_{\varepsilon}^{R} \frac{d x}{x^{\alpha}(1+x)} .
\end{aligned}
$$

The integrals $\delta_{\gamma_{p}}$ and $\int_{\gamma_{\varepsilon}}$
tend to zero as

$$
R \rightarrow \infty \quad \& \quad \varepsilon \rightarrow 0
$$

(triangle inequality, parametrization)

We are left with

$$
\begin{aligned}
& \left(1-e^{-2 \pi i \alpha}\right) \int_{\varepsilon x^{\alpha}(1+x)}^{R} \frac{d x}{} \\
& =\int_{\gamma} \frac{d z}{z^{\alpha}(1+z)} \\
& =2 \pi i \frac{\operatorname{Res}}{z=-1} \overline{z^{\alpha}(1+z)}
\end{aligned}
$$

Take $R \rightarrow \infty, \varepsilon \rightarrow 0^{+}$

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d x}{x^{\alpha}(1+x)}=\frac{2 \pi i}{1-e^{-\lambda \pi i \alpha}} \operatorname{Res} \frac{1}{z=-1} \frac{1}{z^{\alpha}(+z)} \\
& =\frac{2 \pi i}{1-e^{-2 \pi \alpha}} \frac{1}{\left.\frac{d}{d z}\left(z^{\alpha}(1+z)\right)\right|_{z=-1}} \\
& =\frac{2 \pi i}{1-e^{-2 \pi i \alpha}} \cdot \frac{1}{(-1)^{\alpha}}
\end{aligned}
$$

$\stackrel{(\text { branch }}{=} \frac{1 u t)}{1-e^{-2 \pi i \alpha}} \cdot \frac{1}{e^{\pi i \alpha}}$

$$
\begin{aligned}
& =\pi \frac{2 i}{e^{\pi i \alpha}-e^{-\pi i \alpha}} \\
& =\frac{\pi}{\sin (\pi \alpha)}
\end{aligned}
$$

