The Argument Principle Recall: $\frac{1}{2 \pi i} \int_{|z|=1} \frac{d z}{z}=1$. $z(t)=e^{i t}, \quad 0 \leq t \leq 2 \pi$ But if $z(t)=e^{\text {int }}$, $0 \leq t \leq 2 \pi, \quad n \in \mathbb{Z}$, then with γ parametrized by $z(t)$. we have ar int

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{d z}{z}=\frac{1}{2 \pi i} \int_{0}^{i n} \frac{i n e^{i n t}}{e^{i n t}} d t
$$

$$
\begin{aligned}
& =\frac{i n}{2 \pi i} \int_{0}^{2 \pi} d t \\
& =n \\
& =\# \text { of times } \\
& z(t) \text { circles } \\
& \text { around zero. }
\end{aligned}
$$

Def A function f is meromorphic on a domain D if f is holomorphic on 0 except possibly for finitely many poles.

Let γ be a simple closed contour, and let f be - analytic on γ, and - meromorphic interior to γ, - $f(z) \neq 0$ on γ.
γ parametrized by $z(t)$, $a \leq t \leq b$.
When we think about $\int_{\gamma} f(z) d z$, we are
really thinking about

$$
\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Let Γ (capital gamma) be the image of $f(z(t))$ for $a \leq t \leq b$.
Note: $f(z(t))$ might not be a positively oriented simple closed curve.
Note: Since $f(z) \neq 0$
for z or γ, Γ nerves touches 0 .

Let W, W_{0} lie on Γ.
Let $\phi_{0} \in \arg W_{0}$.
We will Consider W as moving along Γ, Starting at W_{0}.
Idea: Track how arg W varies along Γ relative
to ϕ_{0}.

since Γ is closed but possibly rut simple closed as W moves along Γ starting from W_{0} and then ending up back at w_{0}, it might be the

Case that $\arg W$ changes a lot from the time we start at w_{0} ard then end us at wo again. If we call ϕ_{1} the ending argument once we circle back to W_{0}, then we can define
(*) $\Delta \gamma \arg f(z)=\phi_{1}-\phi_{0}$
This will be an integer
multiple of 2π, and it detects the number of times that W circles the origin along Γ Caccounting for orientation) as w starts at wo and traverses all of Γ, ending back at Wo
We call $\Delta_{\gamma} \arg f(z)$ the winding number of $\Gamma=f_{0} \gamma$ (with respect to the origin).

Thy (Argument principle)
Let γ be a simple closed positively-oriented contour. Let f be analytic and nonzero on γ and meromorphic interior to γ. Then

$$
\frac{1}{2 \pi} \Delta_{\gamma} \arg f(z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

which equals $\angle-P$ where Z is the number of
zeros of f interior to γ and P is the number of poles of f interior tor.

We will prove this next time.
This uses the res idle tho.

