The Argument Principle Recall: $\frac{1}{2\pi i} \int_{|z|=1}^{\frac{d^2}{2}} = 1.$ $2(t) = e^{it}, 0 \leq t \leq Q \pi$ But if $Z(t)=e^{int}$. $0 \leq t \leq 2\pi$, $n \in \mathbb{Z}$, then with χ parametrized by Z(t), we have $\exists \pi$ int $\frac{1}{2\pi i} \int_{\chi} \frac{dz}{z} = \frac{1}{3\pi i} \int_{\chi} \frac{int}{dt}$

Def A Function F is Meromorphic on or domain D if f is holomorphic on Dexcept possibly for finitely many poles.

Let
$$Y$$
 be a simple closed
contour, and let F be
analytic on Y , and
meromorphic interior to Y ,
 $f(z) \neq D$ on Y .

Y parametrized by
$$Z(t)$$
,
 $a \leq t \leq b$.
When we think about
 $S_{\chi} f(z) dz$, we one

really thinking about

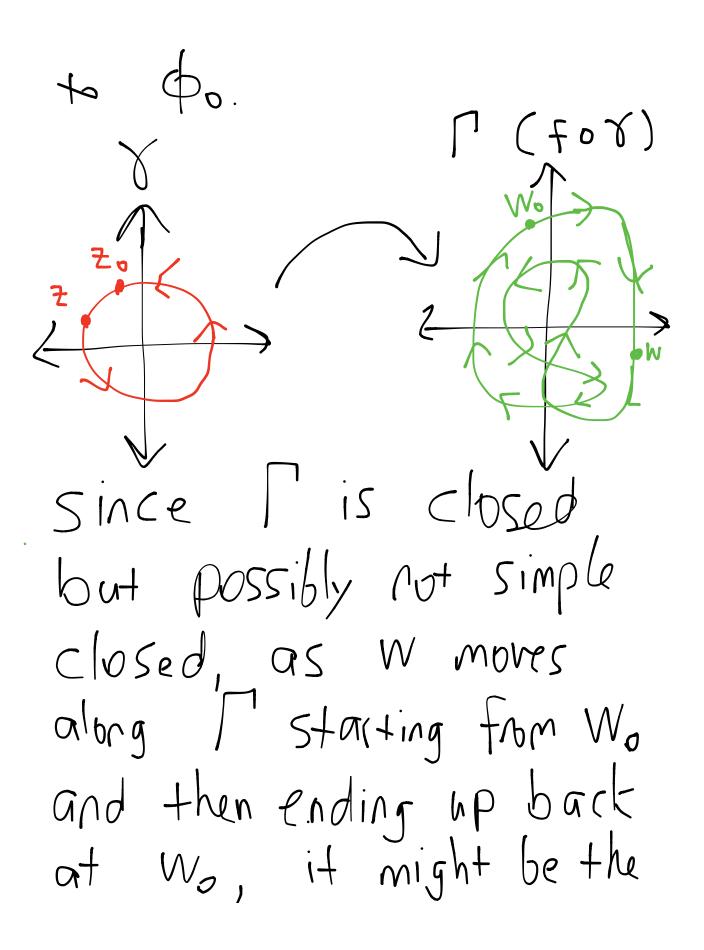
$$\int_{a}^{b} f(z(t)) z'(t) dt$$

Let $\int (copital gamma)$
be the image of $f(z(t))$
for $a \leq t \leq b$.

Note: f(z(t)) might not be a positively oriented simple closed curve. Mote: Since f(z)=0

tor Z or D, l'neves touches ()

Let W, Wo lie on M Let & Earg Wo. We will consider W as moving along l', Starting at Wo. Idea: Track how arg W Varies along / relative



Corse that arg W changes a lot From the time we start at W. and then end up at Wo again. If we call \$, the ending argument once we circle back to W6, then we can define

(*) $\bigwedge_{X} \arg f(z) = \phi_{1} - \phi_{0}$ This will be an integer

multiple of 2TT, and it detects the number of times that W circles the origin along r (accounting for orientation) as W starts at Wo and traverses all of [, ending back at Wo. We call by arg f(7) the winding number of Γ = fo X (with respect to the origin).

Thm (Argument principle) Let Y be a simple closed positively-oriented contour. Let f be analytic and nonzero on Y and meromorphic interior to Y. then $\frac{1}{2\pi} \bigwedge_{\gamma} \operatorname{arg} f(z) = \frac{1}{2\pi} \int_{\gamma} \frac{f(z)}{f(z)} dz$ which equals 7-P. where 2 is the number of

Zeros of f interior to V and P is the number of poles of f interior to 8.

We will prove this noxt time. This uses the residue +hm