
 

Recap of Cauchy's
resid Fueth

If f is holomorphic
in a region of the
shape

z 042 2049
but if is not holon

at Zo itself then
f has an isolatedsingularity
atZ



Cauchy Residue 1hm

Let f be analytic on

and interior to a simple

closed contour 8 except
possibly at finitely many
isolated singularities
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each lying interior to

8 then
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where Res f is the
7 Zk

A coefficient in the

Laurent expansion
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where E is the radius
of the punctured NBHD
in f is holon near Zk



This implies Cauchy Goursat

If f is analytic on

and interior to 8 then

in a NBHD of any pt
Zo interior to 8 the

Laurent series
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will have 9 0 for n f l

this
is because by hypothesis

is analytic at 2 o

That is f has no
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isolated singularities
interior to T so
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since the sum is empty
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Principleofdeformation
ofcuries
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Recall that the residue
at F Zk is given by
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Note Integrand is not

holon at 2 points interior

to 8 121 2
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By the residue then
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Residue at 2 0
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Residue at 2 L
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Now I can proceed
like we did for the
residue at 7 0 but
now our residue is

the coefficient of
1

Z l

A small calculation shows



that this coefficient
our residue at 2 L

equals
r E i I

Now
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Computing
integrals in the antext

of the residue then

boils down to
understandingLaurent series
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Where
1 G an A z

Taylor series and
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n

principal
Principal parts come

in three flavors



Type of
isolated singularityB

frw

terms singularity
p

11mL 0

infinitely essential
many singularity
terms 1

See the online notes

for examples of



each type of singularity


