Residue $\mathrm{Thm}_{\mathrm{m}}$
Let $f$ be analytic on and interior to a simple closed curve $\gamma$, except possibly at isolated singularities

$$
\begin{gathered}
Z_{1}, z_{2}, \ldots, z_{n} \\
\int_{\gamma} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}},
\end{gathered}
$$

where $\operatorname{Res}_{z=z_{k}} f$ is the notation for the residue of $f$ at $z=z_{k}$

$$
\begin{aligned}
& =z_{k}: \\
& f(z)=\sum_{n=-\infty}^{\infty} a_{n}\left(z-z_{k}\right)^{n},
\end{aligned}
$$

$0<\left|z-z_{k}\right|<R$,
and the residue at $z=z_{k}$ is precisely $a_{-1}$
Isolated singularities come in 3 flavors:

1) Removable singularities
ex: $f(z)=\frac{1}{1!}+\frac{z}{2!}+\frac{z^{2}}{3!}+\ldots$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty} \frac{z^{n}}{(n+1)!} \\
& =\left\{\begin{array}{c}
\frac{e^{z}-1}{z}, z \neq 0 \\
1, \\
z=0
\end{array}\right.
\end{aligned}
$$

Thus $\frac{e^{z}-1}{z}$ has a removable
singularity at $z=0$.
More generally, if

$$
\begin{aligned}
f(z) & =\sum_{\sum_{n=0}^{n} a_{n}\left(z-z_{k}\right)^{n}} \\
& +\underbrace{\sum_{n=-\infty}^{-1} a_{n}\left(z-z_{k}\right)^{n}}_{P(z)}
\end{aligned}
$$

(principal part)
and $P(z)$ is identically zero, then $f(z)$ has a removable singularity at
2) Essential Singularity
ex

$$
\begin{aligned}
& 1+\frac{1}{(z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+ \\
& =e^{1 / z} \quad \text { a+ } \quad z=0 .
\end{aligned}
$$

Here, the principal part has infinitely many terms.
3) Pole of finite order $m_{1}$ with $1 \leq m \angle \infty$.
ex $\frac{1}{z}+1+\frac{z}{2!}+\frac{z^{2}}{3!}+\frac{z^{3}}{4!}+\cdots$ liz)

$$
=\frac{e^{z}}{z}
$$

at $z=0$. Since there is one term in the principal part, $e^{z} / z$ has a pole of order one.
Order $m$ of the pole = the largest degree of any term in the principal part.
Ex $f(z)=\frac{1}{z^{3}}+1+z+\ldots$ has a pole of order 3 .
Q) Given $f(z)$ with a pole of order $m$ at $z=z_{0}$, how do we $z=z o)$
calculate the residue?

2 approaches
1 Use traditional power series manipulations, much like the HW so far. This gives the full Laurent series, and the residue is $a_{-1}$.
$2]$ Do the following:

$$
\begin{aligned}
& f(z)=\sum_{n=0}^{\sim} a_{n}\left(z-z_{0}\right)^{n}+\frac{a_{-1}}{z-z_{0}}+\ldots+\frac{a_{-m}}{\left(z-z_{0}\right)^{n}} \\
& C\left(z-z_{0}\right)^{m} f(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n+} \\
& +a_{-1}\left(z-z_{0}\right)^{m-1}+\ldots+a_{-m} \\
& G \frac{d^{m-1}}{d z_{\infty}^{m-1}}\left(z-z_{0}\right)^{m} f(z) \\
& =\sum_{n=0}^{\infty}(n+m)(n+m-1) \cdots(n+2) a_{n}\left(z-z_{0}\right) \\
& +q_{-1}(m-1)! \\
& \lim _{z \rightarrow z_{0}} \frac{d^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{n} f(z) \\
& =a_{-1}(m-1)!
\end{aligned}
$$

Conclusion

$$
\operatorname{Res} f(z)^{\text {Conclusion: }} \frac{1}{(m-1)!} \lim _{z \rightarrow z_{0}} \frac{d_{0}^{m-1}}{d z^{m-1}}\left(z-z_{0}\right)^{m} f(z) \text {. }
$$

(always holds for computing residues at poles of order)
This fails for essential $\frac{\text { singularities. }}{\text { the }}$
The above calculation shows:
Thy Let zo be an isolated singularity of $f(z)$. Then $Z_{0}$ is a pole of order $m \geq 1$ of $f$ if and only if there exists
a function $\phi(z)$, holm. and nonzero in a NBHD of $z_{0}$, such that

$$
\begin{aligned}
& \left.f(z)-\phi(z)\left(z-z_{0}\right)^{-m}\right) \\
& \operatorname{Res}_{z=z_{0}} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!} .
\end{aligned}
$$

Ex) Let $m \geq 1$ be an integer. Then

$$
\begin{aligned}
& \operatorname{Res} \frac{e^{z}}{z^{m}} \\
& z=0 \\
& =\frac{1}{(n-1)!} \lim _{z \rightarrow 0} \frac{d^{n-1}}{d z^{m-1}}(z-0)^{m} \frac{e^{z}}{z^{n}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(m-1)!} \lim _{z \rightarrow 0} \frac{d^{m-1}}{d z^{m-1}} e^{z} \\
& =\frac{1}{(m-1)!} \lim _{z \rightarrow 0} e^{z} \\
& =\frac{1}{(m-1)!}
\end{aligned}
$$

Please have a look at the notes for some additional exposition on these themes.

