
 

Residue hin

Let f be analytic on and

interior to a simple closed

curve 8 except possibly
at isolated singularities
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where Res f is the notation
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for the residue
of fat
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and the residue at 7 He is

precisely
Isolated singularities come

in 3 flavors
1 Removable singularities
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Thus EEL has a removable
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singularity at 7 0

More generally
if
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and PG is identically
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removable singularity azt



2 Essential singularity
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Here the principal part
has infinitely many terms
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at 7 0 Since there is

One term in the principal

patt EA has a pole of

order one

Order m of the pole
the largest degree
of any tern in the

principal part
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Given fat with a

pole of order m at

E Zo how do we
calculate the residue

2 approaches

Use traditional power

series manipulations
much

like the HW so far This
gives the full Laurent series
and the residue is a

Do the following
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Conclusion

I time III Gaffes
always holds for computing
residues at poles oforderm

This fails for essentialsingularities

The above calculation shows

ThI Let to be an isolated

singularity of ftz Then

Zo is a pole of order m 21

off if and only if there exists



a function 0ft holon and
nonzero in a NBAD of 2 o
such that
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Please have a look

at the notes for some

additional exposition
on these themes


