Residue Thy
Suppose that $f$ is analytic on and interior to a simple closed curve $\gamma$ except at isolated singularties

$$
\begin{aligned}
& z_{1} \ldots, z_{n} \\
& { }^{@} \quad Z_{2} \\
& \text { (1) } \square_{4} \\
& \text { Then } \int_{\gamma} f(z) d z=2 \pi i \sum_{k=1}^{n} \operatorname{Rer} f z_{k}
\end{aligned}
$$

Application: Compute integrals of a single real variable.

Lemma Suppose that $f$ has on isolated singularity $z_{0}$, and in a deleted NBAD of $Z_{0}$, we have

$$
\begin{gathered}
f(z)=\frac{g(z)}{h(z)} \\
h\left(z_{0}\right)=0, \quad h^{\prime}\left(z_{0}\right) \neq 0 .
\end{gathered}
$$

then $\operatorname{Res}_{z=z_{0}} f=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}$
Pf Follows from l'Hopital's rule. See the notes.
Example] $I=\int_{0}^{2 \pi} \frac{d t}{2+\sin (t)}$
Change of variables:

$$
\begin{aligned}
z & =e^{i t} \\
d z & =i e^{i t} d t=i z d t \\
\frac{d z}{i z} & =d t
\end{aligned}
$$

$$
\begin{aligned}
z=e^{i t} & \longrightarrow \ln (z)=\sin (t) \\
& \longrightarrow \frac{z-\bar{z}}{2 i}=\sin (t) \\
\text { since } \bar{z} & =e^{-i t}=\frac{1}{e^{i t}}=\frac{1}{z}, \\
& \longrightarrow \frac{z-z^{-1}}{2 i}=\sin (t)
\end{aligned}
$$

With this change of variables, we see that we are integrating (With respect to $z$ ) along the unit circle centered at $z=0$ :

$$
\begin{aligned}
I & =\int_{|z|=1} \frac{1}{2+\frac{z-z^{-1}}{2 i}} \frac{d z}{i z} \\
& =\int_{|z|=1} \frac{1}{2 i z+\frac{z^{2}-1}{2}} d z \\
& =\int_{|z|=1} \frac{2}{z^{2}+4 i z-1} d z \\
& =2 \int_{|z|=1} \frac{1}{z^{2}+4 i z-1} d z
\end{aligned}
$$

Quadratic formula:

$$
z^{2}+4 i z-1=\left(z-\left(\frac{-4 i+\sqrt{-16+4}}{2}\right)\right)
$$

$$
\begin{aligned}
& \cdot\left(z-\left(\frac{-4 i-\sqrt{-16+4})}{2}\right)\right. \\
= & (z-(-2 i+i \sqrt{3})) \\
\cdot & (z-(-2 i-i \sqrt{3}))
\end{aligned}
$$

The first root is interior to $|z|=1$, and the second is not.

Thus $I=$

$$
2 \cdot 2 \pi i \cdot \operatorname{Res} \frac{1}{z=-2 i+i \sqrt{3}}
$$

Option 1: Compute Laurent
series and find the residue

Option 2: Use the lemma from the beginning of the lecture:

$$
\begin{array}{cc}
g(z)=1 & h(z)= \\
z^{2}+i ; z-1 \\
z_{0}=-2 i+i \sqrt{3} .
\end{array}
$$

$$
\begin{aligned}
& \text { Thus } \\
& 2 \cdot 2 \pi i \operatorname{Res}_{z=-2 i+i \sqrt{3}} \frac{1}{z^{2}+4 i z-1} \\
& =\left.2 \cdot 2 \pi i \cdot \frac{1}{2 z+4 i}\right|_{z=-2 i+i \sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.2 \pi i \cdot \frac{1}{z+2 i}\right|_{z=-2 i+i \sqrt{3}} \\
& =2 \pi i \cdot \frac{1}{-2 i+i \sqrt{3}+2 i} \\
& =\frac{2 \pi i}{i \sqrt{3}} \\
& =2 \pi / \sqrt{3}=I
\end{aligned}
$$

This is a special case of a more general principle:

Let $R(x, y)=\frac{p(x, y)}{q(x, y)}$ be a rational function given by a ratio of +wo polynomials $p(x, y)$ and $q(x, y)$, where $R(x, y)$ has no poles on the circle $x^{2}+y^{2}=1$. Then

$$
\begin{aligned}
& \int_{0}^{\alpha \pi} R(\cos (t), \sin (t)) d t \\
& =\int_{|z|=1} R\left(\frac{z+z^{-1}}{\alpha}, \frac{z-z^{-1}}{2 i}\right) \frac{d z}{i z}
\end{aligned}
$$

Residue Th m

$$
\alpha_{i 1} i \sum_{k=1}^{n} \operatorname{Res}_{z=z_{k}} \frac{1}{i z} R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 i}\right),
$$

where $z_{1}, \ldots, z_{\text {a }}$ are the isolated singularities of $\frac{1}{i z} \cdot R\left(\frac{z+z^{-1}}{2}, \frac{z-z^{-1}}{2 i}\right)$ inside
the contour $|z|=1$.

