
COMPLEX ANALYSIS COURSE NOTES

1. January 6

Let us quickly recall some basic properties of the real numbers, which we denote by R.

Proposition 1.1. Let a, b, c be real numbers.

(1) a+ b and ab are also real numbers (closure).
(2) Addition is associative: a+ (b+ c) = (a+ b) + c.
(3) Addition is commutative: a+ b = b+ a.
(4) There exists a real number, named 0, such that a+ 0 = a = 0 + a.
(5) There exists a real number �a such that a + (�a) = 0 = (�a) + a. For shorthand,

we write a+ (�b) as a� b.
(6) Multiplication is associative: a(bc) = (ab)c.
(7) Multiplication is commutative: ab = ba.
(8) There exists a real number, named 1, such that a · 1 = a = 1 · a.
(9) If a 6= 0, then there exists a real number a�1 (the reciprocal of a) such that a · a�1 =

1 = a�1 · a. We sometimes write a · b�1 as a/b or a

b

.
(10) The distributive property holds: a(b+ c) = ab+ ac.

Remark. These properties imply that R is a field.

A complex number is an ordered pair z = (a, b) of real numbers (ordered: (a, b) does not
necessarily equal (b, a)). We call a the real part, written as Re(z), and b the imaginary
part of z, written as Im(z). Let z

1

= (a
1

, b
1

) and z
2

= (a
2

, b
2

) be complex numbers. We
write

x = y () a
1

= a
2

and b
1

= b
2

.

We define addition and multiplication on complex numbers by

(1.1) z
1

+ z
2

= (a
1

+ a
2

, b
1

+ b
2

), z
1

z
2

= (a
1

a
2

� b
1

b
2

, a
1

b
2

+ a
2

b
1

).

We observe that if b = d = 0, then

z
1

+ z
2

= (a
1

+ a
2

, 0), z
1

z
2

= (a
1

a
2

, 0),

so we can think of z
1

and z
2

as being just like real numbers when their imaginary parts equal
zero.

Observe that (a, b) = (a, 0) + (0, b) and (0, 1)(b, 0) = (0, b). Thus we can write

z = (a, b) = (a, 0) + (0, 1)(b, 0).

It will be convenient to introduce the shorthand i = (0, 1) and (a, 0) = a. Therefore, we can
represent any complex number z = (a, b) as

z = a+ ib.

With these conventions, we will show that the properties of R outlined in Proposition 1.1
also holds for the set of complex numbers, which we denote by C.

Proposition 1.2. Let z
1

, z
2

, z
3

be complex numbers.
1
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(1) z
1

+ z
2

and z
1

z
2

are also complex numbers (closure).
(2) Addition is associative: z

1

+ (z
2

+ z
3

) = (z
1

+ z
2

) + z
3

.
(3) Addition is commutative: z

1

+ z
2

= z
2

+ z
1

.
(4) There exists a complex number, named 0 = (0, 0), such that z

1

+ 0 = z
1

= 0 + z
1

.
(5) There exists a complex number �z

1

such that z
1

+ (�z
1

) = 0 = (�z
1

) + z
1

. For
shorthand, we write z

1

+ (�z
2

) as z
1

� z
2

.
(6) Multiplication is associative: z

1

(z
2

z
3

) = (z
1

z
2

)z
3

.
(7) Multiplication is commutative: z

1

z
2

= z
2

z
1

.
(8) There exists a complex number, named 1 = (1, 0), such that z

1

· 1 = z
1

= 1 · z
1

.
(9) If z

1

6= 0, then there exists a complex number z�1

1

(the reciprocal of z
1

) such that
z
1

· z�1

1

= 1 = z�1

1

· z
1

. We sometimes write z
1

· z�1

2

as z
1

/z
2

or z1
z2
.

(10) The distributive property holds: z
1

(z
2

+ z
3

) = z
1

z
2

+ z
1

z
3

.

Proof. I’ll prove (2) and (6). I leave the rest to you as an exercise. We will discuss (9) at
length next class.

– (2): Let z
1

= (a
1

, b
1

) and z
2

= (a
2

, b
2

). Using (1.1), we find that

z
1

+z
2

= (a
1

, b
1

)+(a
2

, b
2

) = (a
1

+a
2

, b
1

+b
2

), z
2

+z
1

= (a
2

, b
2

)+(a
1

, b
1

) = (a
2

+a
1

, b
2

+b
1

).

Since a
1

+ a
2

= a
2

+ a
1

and b
1

+ b
2

= b
2

+ b
1

by Proposition 1.1 (3), we have the desired
equality.

– (6): Using (1.1), we first compute

z
1

(z
2

z
3

) = (a
1

, b
1

)((a
2

, b
2

) · (a
3

, b
3

))

= (a
1

, b
1

)(a
2

a
3

� b
2

b
3

, a
2

b
3

+ a
3

b
2

)

= (a
1

(a
2

a
3

� b
2

b
3

)� b
1

(a
2

b
3

+ a
3

b
2

), a
1

(a
2

b
3

+ a
3

b
2

) + b
1

(a
2

a
3

� b
2

b
3

))

A similar computation yields

(z
1

z
2

)z
3

= ((a
1

a
2

� b
1

b
2

)a
3

� (a
1

b
2

+ a
2

b
1

)b
3

, (a
1

a
2

� b
1

b
2

)b
3

+ a
3

(a
1

b
2

+ a
2

b
1

)).

Use Proposition 1.1 to check that these complex numbers are equal. ⇤
Note that with these properties,

i2 = (0, 1)2 = (0, 1) = (�1, 0) = �1, i3 = (i2)i = �i, i4 = i3 · i = �i · i = �(�1) = 1.
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2. January 8

Let us look at (9) from Proposition 1.2. First, given a complex number z = Re(z)+iIm(z),
we define the conjugate of z to be z = Re(z)� iIm(z). We compute

zz = zz = Re(z)2 + Im(z)2.

This leads us to the notion of the modulus of z, denoted |z|, which is
p

Re(z)2 + Im(z)2.
We have the quick corollaries

Re(z)  |Re(z)|  |z|, Im(z)  |Im(z)|  |z|.
Moreover, one can compute

z+z = Re(z)+iIm(z)+(Re(z)�iIm(z)) = 2Re(z), z�z = Re(z)+iIm(z)�(Re(z)�iIm(z)) = 2iIm(z)

and
(z) = Re(z)� iIm(z) = Re(z) + iIm(z) = z

and

z
1

+ z
2

= Re(z
1

) + iIm(z
1

) + Re(z
2

) + iIm(z
2

)

= Re(z
1

) + Re(z
2

)� i(Im(z
1

) + Im(z
2

)) = z
1

+ z
2

and
|z| =

p
Re(z)2 + (�Im(z))2 =

p
Re(z)2 + Im(z)2 = |z|.

Lemma 2.1. If z is a complex number, then |z| � 0, with equality if and only if z = 0.

Proof. The first part is immediate from the definition of |z|. Now, suppose that z = a + ib

satisfies |z| = 0. This is equivalent to saying that
p
Re(z)2 + Im(z)2 = 0, which is equivalent

to saying that Re(z)2+Im(z)2 = 0. Since Re(z) and Im(z) are real, we have Re(z)2 � 0 (resp.
Im(z)2 � 0), with equality if and only if Re(z) = 0 (resp. Im(z) = 0). Thus Re(z)2 + Im(z)2

is equivalent to saying that Re(z) = Im(z) = 0, so z = 0. ⇤
Suppose that z 6= 0. Then |z| 6= 0, and we can consider the product of the real number

1/|z|2 with the complex number z:

1

|z|2 · z =
1

Re(z)2 + Im(z)2
(Re(z)� Im(z)i) =

Re(z)

Re(z)2 + Im(z)2
+ i

�Im(z)

Re(z)2 + Im(z)2
.

But since z · ( 1

|z|2 · z) =
zz

|z|2 = |z|2
|z|2 = 1. Thus we have proved that if z = a+ bi, then

z�1 =
Re(z)

Re(z)2 + Im(z)2
+ i

�Im(z)

Re(z)2 + Im(z)2
.

(The book gives a slightly di↵erent presentation which is ultimately equivalent.) Now, using
our law for how to multiply complex numbers, we find that if z

1

= a
1

+b
1

i and z
2

= a
2

+b
2

i 6=
0, then

z
1

z
2

=
a
1

a
2

+ b
1

b
2

a2
2

+ b2
2

+ i
a
2

b
2

� a
1

b
2

a2
2

+ b2
2

.

Example 2.2.
2� 3i

4 + i
=

(2� 3i)(4� i)

(4 + i)(4� i)
=

5� 14i

17
=

5

17
+ i

�14

17
.



4

Example 2.3. There is an analogue of the binomial formula: For each integer n � 1,

(z
1

+ z
2

)n =
nX

k=0

✓
n

k

◆
zk
1

zn�k

2

,

✓
n

k

◆
=

n!

k!(n� k)!
, 0! = 1.

(The proof is an exercise.)

There is an important geometric interpretation of complex numbers. In particular, we can
associate z = (a, b) with the vector in R2 starting at (0, 0) and ending at (a, b). With this
interpretation, our rule of addition

z
1

+ z
2

= (a
1

+ b
1

, a
2

+ b
2

)

corresponds with the usual notion of vector addition. (Draw the parallelogram picture.)
Also, the modulus |z| corresponds with the length of the vector. Moreover, if z

1

= (a
1

, b
1

)
and z

2

= (a
2

, b
2

), then the distance between the points (a
1

, b
1

) and (a
2

, b
2

) in R2 is
p

(a
1

� a
2

)2 + (b
1

� b
2

)2 = |z
1

� z
2

|.
Negating a complex number �z = (�a,�b) can be seen geometrically as reflecting the vector
corresponding with z across the origin.

Recall the equation for a circle with center (x
0

, y
0

) and radius r > 0: (x�x
0

)2+(y�y
0

)2 =
R2. But thinking of z = x+ iy and z

0

= x
0

+ iy
0

, we observe that

R2 = (x� x
0

)2 + (y � y
0

)2 = |z � z
0

|2.
Thus the equation for the circle becomes |z � z

0

| = R.

Example 2.4. The equation |z � 3 + 2i| = 1 represents the circle centered at z
0

= (3,�2)
with radius 1.

Lemma 2.5 (Triangle inequality). If z
1

, z
2

are complex numbers, then |z
1

+ z
2

|  |z
1

|+ |z
2

|.

Proof. We compute

|z
1

+ z
2

|2 = (z
1

+ z
2

)(z
1

+ z
2

) = |z
1

|2 + |z
2

|2 + (z
1

z
2

+ z
2

z
1

)

= |z
1

|2 + |z
2

|2 + 2Re(z
1

z
2

)

 |z
1

|2 + |z
2

|2 + 2|z
1

| · |z
2

|
= |z

1

|2 + |z
2

|2 + 2|z
1

| · |z
2

| = (|z
1

|+ |z
2

|)2.
Since the modulus of a complex number is nonnegative, we can take the square root of both
sides, and the conclusion follows. ⇤

Using induction, one can prove for any n � 1 that

|z
1

+ · · ·+ z
n

|  |z
1

|2 + · · ·+ |z
n

|2.

Lemma 2.6. If z
1

, z
2

are complex numbers, then |z
1

� z
2

| � ||z
1

|� |z
2

||.

Proof. Since |z
1

|� |z
2

| is a real number, we compute

||z
1

|� |z
2

||2 = (|z
1

|� |z
2

|)2 = |z
1

|2 + |z
2

|2 � 2|z
1

| · |z
2

|
 |z

1

|2 + |z
2

|2 � 2Re(z
1

z
2

)

= z
1

z
1

+ z
2

z
2

� z
1

z
2

� z
2

z
1

= (z
1

� z
2

)(z
1

� z
2

) = |z
1

� z
2

|2.
⇤
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3. January 10

Let (r, ✓) be the polar coordinates of the point (x, y) corresponding to a nonzero complex
number z = x+ iy. Since x = r cos ✓ and y = r sin ✓, we can write z in polar form

z = r(cos ✓ + i sin ✓).

Recall that if (x, y) corresponds with z = x + iy, then |z| is the length of the vector from
(0, 0) to (x, y). So in fact r = |z|. The real number ✓ represents the angle (radians) that z
makes with the positive real axis when interpreting z as a vector. This is determined up to
an integer multiple of 2⇡ by means of the equation

tan ✓ = y/x,

where the quadrant containing z must be specified. Each value of ✓ satisfying these equations
is called an argument of z, and the set of all such values is called arg(z). The principal
value of arg z, denoted Arg z, is the unique value ⇥ such that �⇡ < ⇥  ⇡. Thus

arg z = {Arg z + 2n⇡ : n 2 Z}.

Example 3.1. The complex number z = �1� 2i lies in the third quadrant. Thus Arg z =
�2⇡/3 and arg z = {�2⇡/3 + 2⇡n : n 2 Z}.

Definition 3.2. We define the symbol ei✓ to equal cos ✓ + i sin ✓.

This definition requires some discussion, which will be made rigorous later on. Recall the
everywhere absolutely convergent Taylor series expansions

sin ✓ =
1X

n=0

(�1)n✓2n+1

(2n+ 1)!
, cos ✓ =

1X

n=0

(�1)n✓2n

(2n)!
.

Now, since i2 = �1, i3 = �i, and i4 = 1, we find that

cos ✓ + i sin ✓ =
⇣
1� ✓2

2
+ · · ·+ (�1)n✓2n

(2n!)

⌘
+ i

⇣
✓ � ✓3

6
+ · · ·+ (�1)n✓2n+1

(2n+ 1)!

⌘

= 1 + i✓ +
(i✓)2

2
+

(i✓)3

6
+ · · ·+ (i✓)n

n!
+ · · · ,

which looks like the everywhere absolutely convergent Taylor expansion for ex evaluated at
x = i✓. Of course, we have not developed Taylor series for complex variables yet.

This leads to a more compact expression of the polar form of z, the exponential form:

z = rei✓.

Example 3.3. Let z = �1� 2i. Then |z| =
p
5 and Arg z = �2⇡/3. Hence z =

p
5e�2⇡i/3.

Of course, for each n 2 Z, we also have z =
p
5e�2⇡i/3+2⇡in.

Using standard trigonometric identities, we find that

ei✓1ei✓2 = (cos ✓
1

+ i sin ✓
1

)(cos ✓
2

+ i sin ✓
2

)

= (cos ✓
1

cos ✓
2

� sin ✓
1

sin ✓
2

) + i(sin ✓
1

cos ✓
2

+ cos ✓
1

sin ✓
2

)

= cos(✓
1

+ ✓
2

) + i sin(✓
1

+ ✓
2

) = ei(✓1+✓2).

Hence if z
1

= r
1

ei✓1 and z
2

= r
2

ei✓2 , then

z
1

z
2

= r
1

r
2

ei(✓1+✓2), z
1

/z
2

= r
1

/r
2

ei(✓1�✓2).
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In particular, if z = rei✓, then
z�1 = 1/z = r�1e�i✓.

Lemma 3.4. If z = rei✓, then for each integer n, we have zn = rnein✓, with the convention
that z0 = 1.

Proof. First, we prove that if n � 1, then zn = rnein✓. For n = 1, we recover the polar
form already mentioned above. So suppose that zn = rnein✓ for some integer n � 1. This
inductive hypothesis implies that

zn+1 = znz = (rnein✓)(rei✓) = rn+1ein✓ei✓ = rn+1ei(n+1)✓.

Hence, by mathematical induction, we have the claimed result for n � 1. A similar appli-
cation of mathematical induction will indicate that z�n = r�ne�in✓ for all integers n � 1,
which completes the proof. ⇤

Example 3.5. Let z = �1�2i. Then z =
p
5e�2⇡i/3, and z6 =

p
5
6

e(�2⇡i/3)·6 = 53e�4⇡i = 53.

Note that when r = 1, the above lemma indicates that (ei✓)n = ein✓ for each integer n.
Hence we arrive at de Moivre’s formula

(cos ✓ + i sin ✓)n = cos(n✓) + i sin(n✓).

Example 3.6. de Moivre’s formula with n = 2 implies that (cos ✓ + i sin ✓)2 = cos(2✓) +
i sin(2✓). Hence cos2 ✓ � sin2 ✓ + i(2 sin ✓ cos ✓) = cos(2✓) + i sin(2✓). Equating the real and
imaginary parts, we arrive at the familiar identities

cos(2✓) = cos2 ✓ � sin2 ✓, sin(2✓) = 2 sin ✓ cos ✓.
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4. January 13

For z
1

= r
1

ei✓1 and z
2

= r
2

ei✓2 , the expression z
1

z
2

= r
1

r
2

ei(✓1+✓2) leads to the important
identity for arguments:

arg(z
1

z
2

) = arg(z
1

) + arg(z
2

), arg(z
1

/z
2

) = arg(z
1

)� arg(z
2

).

However, this identity does not hold for Arg; an easy counterexample can be seen with
Arg(�1) = ⇡ and Arg(i) = ⇡/2.

We observe [DRAW A PICTURE] that if z
1

= r
1

ei✓ and z
2

= r
2

ei✓2 , then z
1

= z
2

if and
only if r

1

= r
2

and ✓
1

� ✓
2

= 2k⇡ for some integer k. In other words,

z
1

= z
2

() |z
1

| = |z
2

| and arg z
1

= arg z
2

.

We use this to solve the equation zn = z
0

, where z
0

is a given complex number and n 6= 0 is
an integer. We write z

0

= r
0

ei✓0 , and we have zn = rnein✓. Hence we must have rn = r
0

, so
r = r

1/n

0

, and there must exist an integer k such that n✓� ✓
0

= 2⇡k. Solving for ✓, we must
have

✓ =
✓
0

n
+

2⇡k

n
.

Hence our solutions to the equation zn = z
0

= r
0

ei✓0 are

z = r
1/n

0

exp
h
i
⇣✓

0

n
+

2k⇡

n

⌘i
, k 2 Z.

All of these solutions lie on the circle |z| = r
1/n

0

, and they are equally spaced every 2⇡/n
radians, starting at ✓

0

/n. Thus all of the distinct roots are obtained by considering k =
0, 1, . . . , n�1, and for other values of k, we obtain repeats of these distinct roots. Hence the
set of distinct solutions to the equation zn = z

0

are

c
k

= r
1/n

0

exp
h
i
⇣✓

0

n
+

2k⇡

n

⌘i
, k = 0, 1, . . . , n� 1.

Example 4.1. Let us find the three cube roots of �27i. We first write

�27i = 27 exp
h
i
⇣
� ⇡

2
+ 2⇡k

⌘
], k 2 Z

and conclude that the desired roots are

c
k

= 3 exp
h
i
⇣
� ⇡

6
+

2k⇡

3

⌘i
, k = 0, 1, 2.

In rectangular form, these are c
0

= 3

p
3

2

� 3

2

i, c
1

= 3i, c
2

= �3

p
3

2

� 3

2

i.

Example 4.2. Let n � 1 be an integer, and let us find the n-th roots of 1. These are often
called the n-th roots of unity. Thus we want to find the solutions to zn = 1, in which case
r
0

= 1 and we may take ✓
0

= 0. Then the solutions are given by

1,!
n

,!2

n

, . . . ,!n�1

n

, ! = exp(2⇡i/n).

Example 4.3. Using de Moivre’s formula, we know that

cos(5✓) + i sin(5✓) = (cos ✓ + i sin ✓)5,

which, upon binomial expansion, equals

cos5 ✓ � 10 cos3 ✓ sin2 ✓ + 5 cos ✓ sin4 ✓ + i(5 cos4 ✓ sin ✓ � 10 cos2 ✓ sin3 ✓ + sin5 ✓).
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Using the identity cos2 ✓ + sin2 ✓ = 1, we equate the real and imaginary parts to find

cos(5✓) = 5 cos ✓ � 20 cos3 ✓ + 16 cos5 ✓, sin(5✓) = 5 sin ✓ � 20 sin3 ✓ + 16 sin5 ✓.

Choosing ✓ = ⇡/5 for the sine identity and substituting x = sin(⇡/5) and y = x2, we arrive
at the equation 0 = x(5� 20x2 + 16x4) = x(5� 20y + 16y2). Therefore, we can solve for x,
hence sin(⇡/5), using the quadratic formula and the fact that sin(⇡/5) < sin(⇡/4) = 1/

p
2.

We conclude that

sin(⇡/5) =

s
5�

p
5

8
,

and thus by sin2(⇡/5) + cos2(⇡/5) = 1 we conclude that

cos(⇡/5) =
1 +

p
5

4
.

Hence we can find the rectangular coordinates for the fifth roots of unity (I leave to you).

We begin by covering some vocabulary on region in the plane that we will use regularly
throughout the course.

Definition 4.4. An "-neighborhood (centered at z
0

) is a set of the shape {z : |z� z
0

| <
"}. (One often drops the " and simply uses “neighborhood”. A deleted neighborhood is
a set of the shape {z : 0 < |z � z

0

| < "}.

In what follows, let S be a region in the complex plane; this can also be viewed as a set
of complex numbers.
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5. January 15

Definition 5.1. A point z
0

is an interior point of S if there exists a neighborhood centered
at z

0

which contains only points in S. The point z
0

is an exterior point of S if there exists a
neighborhood centered at z

0

which consists only of points not in S. A point z
0

which is neither
an interior point nor an exterior point is called a boundary point; every neighborhood of
a boundary point contains at least one point in S and at least one point not in S. The union
of all boundary points is called the boundary of S.

Example 5.2. Let S = {z : |z| < 1}. The point z = 1/2 is an interior point of S because
S contains the neighborhood {z : |z � 1

2

| < 1

2

}. The point z = 3/2 is an exterior point of
S because the neighborhood {z : |z � 3

2

| < 1

2

} contains no point within S. The point z = 1
is a boundary point. To see this, fix " > 0. Note that the set {z : |z � 1| < "} contains
1 � "

2

(which lies in S) and 1 + "

2

(which does not lie in S). Since " was arbitrary, each
neighborhood of z = 1 contains at least one point in S and at least one point not in S.

Definition 5.3. The set S is open if it does not contain any of its boundary points. The
set S is closed if it contains all of its boundary points. The closure of a set S is the closed
set containing all points in S and all of the boundary points of S.

Example 5.4. Let S = {z : |z| < 1}. This set is open: If z
0

2 S, then {z : |z�z
0

| < 1�|z
0

|} is
a neighborhood of z

0

containing only points in S. Note that if |z
0

| > 1, then the neighborhood
{z : |z � z

0

| < |z
0

|� 1} contains only points outside of S. Hence each such z
0

is an exterior
point. We conclude that the boundary of S is {z : |z| = 1}.

Remark. Sets of points in the complex plane can be neither closed nor open, like the punc-
tured disk {z : 0 < |z|  1}.

Definition 5.5. An open set S is (path)-connected if any two points can be connected by
a path without exiting S.

Example 5.6. The sets {z : |z| < 1} and {z : 1 < |z| < 2} are each both open and connected.

Definition 5.7. A set S is bounded if there exists a finite real number R > 0 such that
every point z in S satisfies |z| < R.

Example 5.8. The sets {z : |z| < 1} and {z : 1 < |z| < 2} are bounded, but the set
{z : Im(z) > 0} is not bounded.

Definition 5.9. An accumulation point, or limit point, of a set S is a point z
0

such
that each deleted neighborhood of z

0

contains at least one point in S.

I leave it as an exercise to prove that S is closed if and only if it contains all of its accu-
mulation points.

Quiz
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6. January 17

With this vocabulary in place, we can now start to develop the theory of functions of a
complex variable. Let S be a set of complex numbers. A function f defined on S is a rule
that assigns to each z in S a complex number w. We will often use the shorthand f : S ! C.
The set S is called the domain of f . When the rule f is specified but S is not, then we
agree that the largest possible set is to be taken. Also, it is not always convenient to use
notation that distinguishes a given function from its values.

Example 6.1. Let S = C� {0}. Consider the function f : S ! C given by f(z) = 1/z. We
might simply refer to the function as 1/z with largest domain (which is C� {0}).

Suppose that f(x+ iy) = u+ iv, where x, y, u, v are real numbers. Then each of the real
numbers u and v depend on the real numbers x and y. We sometimes phrase this as

f(z) = u(x, y) + iv(x, y).

If the function v(x, y) always equals zero, then f(x + iy) is always real, in which case f
is a real-valued function of a complex variable. We can play the same game in polar
coordinates: Write z = rei✓ instead of z = x+ iy, in which case f(rei✓) = u+ iv and

f(z) = u(r, ✓) + iv(r, ✓).

Example 6.2. If f(z) = z2, then in writing z = x + iy, we find that f(x + iy) = u(x, y) +
iv(x, y), where u(x, y) = x2 � y2 and v(x, y) = 2xy. We can also think about this in polar
coordinates. Writing z as rei✓, we find

f(z) = z2 = (rei✓)2 = r2e2i✓ = r2(cos(2✓) + i sin(2✓)).

Thus u(r, ✓) = r2 cos(2✓) and v(r, ✓) = r2 sin(2✓).

Example 6.3. The function f(z) = |z|2 is an example of a real-valued function.

If n � 1 is a positive integer and a
0

, a
1

, . . . , a
n

are complex numbers, then we call

f(z) = a
0

+ a
1

z + · · ·+ a
n

zn

a polynomial of degree n. The quotient P (z)/Q(z) of two polynomials P (z) and Q(z) is
called a rational function, and it is defined whenever Q(z) 6= 0.

We can generalize the concept of a function to incorporate a rule that assigns more than one
value to a point z in the domain of definition. These so-called multiple-valued functions
occur frequently in complex analysis.

Example 6.4. Let z = rei✓ with principal argument ⇥. From our earlier work, we see that
z1/2 has two values, namely

z1/2 =
p

|z| exp[i(⇥/2 + ⇡k)], k = 0, 1.

Since e⇡i = �1, we in fact have

z1/2 = ±
p
|z| exp(i⇥/2).

Thus z1/2 is multiple-valued. But, if we only choose the positive value of ±
p

|z| and write

(⇤) f(z) =
p

|z| exp(i⇥/2),

then the (single-valued) function (⇤) is well-defined on the nonzero numbers in the complex
plane. Since zero is the only square root of zero, we also write f(0) = 0, so that the function
(⇤) is well-defined on all of C.
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For a function f whose domain is a subset U ⇢ C that sends numbers in U to numbers
in a subset V ⇢ C, we have the shorthand f : U ! V . We sometimes say that f is a map
or mapping from U to V . If the pair (u, v) 2 U ⇥ V satisfies v = f(u), then we say that v
is the image of u under the mapping f . Sometimes, if we know f explicitly, I might write
z 7! f(z) to denote the function (like z 7!

p
z).

Definition 6.5. If f : U ! V has the property that for any pair of numbers u
1

6= u
2

in
U we have f(u

1

) 6= f(u
2

), then the mapping f is injective (or one-to-one). If for every
v 2 V there exists a u 2 U such that v = f(u), then the mapping f is surjective (or onto).
If a mapping is both injective and surjective, then the mapping is called bijective.

If f : U ! V is not injective, then a given v 2 V could be the image of many u 2 U .
Hence we define the inverse image (or preimage) of v 2 V to be {u 2 U : f(u) = v}.

Assignment: Look at Section 14, study the mapping z 7! z2.

Notation 6.6. Let U, V be sets. The notation u 2 U means that an element u lies in U .
The notation U ⇢ V or U ✓ V means that U is a subset of V (that is, if u 2 U , then u 2 V ).

Definition 6.7. Let z
0

2 C, and let f be a function defined on some deleted NBHD of z
0

.
The statement “f(z) has limit w

0

as z approaches z
0

”, written as

lim
z!z0

f(z) = w
0

,

if for all " > 0, we can find some � > 0 (maybe depending on ") such that

|f(z)� w
0

| < " whenever 0 < |z � z
0

| < �.

(Note that we can always make � smaller if necessary.)

DRAW A PICTURE, TALK ABOUT THIS FOR A LITTLE WHILE

Example 6.8. Let f(z) = z + z. I claim that

lim
z!i

f(z) = 0.

Let " > 0. We first compute

|f(z)� 0| = |z + z| = |z � i+ z + i| = |(z � i) + z � i|  2|z � i|.
Let � = "/2. If 0 < |z � i| < �, then |f(z)� 0| < ".
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7. January 20

MLK Jr Day
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8. January 22

Theorem 8.1. When the limit of a function f(z) exists at a point z
0

, the limit is unique.

Proof. Suppose that

lim
z!z0

f(z) = w
0

and lim
z!z0

f(z) = w
1

.

Thus for all " > 0, there exist numbers �
0

, �
1

> 0 such that

|f(z)� w
0

| < "/2 whenever 0 < |z � z
0

| < �
0

.

and
|f(z)� w

1

| < "/2 whenever 0 < |z � z
0

| < �
1

.

Now, if |z � z
0

| < min{�
0

, �
1

}, then
|w

0

� w
1

| = |w
0

� f(z) + f(z)� w
1

|  |w
0

� f(z)|+ |w
1

� f(z)| < "/2 + "/2 = ".

Since " > 0 can be made arbitrarily small, we have w
0

= w
1

. ⇤
Example 8.2. Let f(z) = z/z. I claim that

lim
z!0

f(z)

does not exist. Note that if x 6= 0 is real, then f(x) = 1, and if y 6= 0 is real, then f(iy) = �1.
Thus as we approach z = 0 from two di↵erent directions, the limits are di↵erent. Since the
limit as z ! 0 is unique if it exists, we must conclude that lim

z!0

f(z) does not exist.

Theorem 8.3. Let z = x + iy, z
0

= x
0

+ iy
0

, w
0

= u
0

+ iv
0

, and f(z) = u(x, y) + iv(x, y).
We have that

lim
z!z0

f(z) = w
0

if and only if

lim
(x,y)!(x0,y0)

u(x, y) = u
0

and lim
(x,y)!(x0,y0)

v(x, y) = v
0

.

Proof. See Section 16. The result is useful, but the proof is tedious. ⇤
Theorem 8.4. Suppose that

lim
z!z0

f(z) = w
0

, lim
z!z0

F (z) = W
0

.

Then
lim
z!z0

(f(z) + F (z)) = w
0

+W
0

, lim
z!z0

f(z)F (z) = w
0

W
0

,

and, if W
0

6= 0,

lim
z!z0

f(z)

F (z)
=

w
0

W
0

.

Proof. Use the previous theorem to reduce the proof to statements about limits of functions
in two real variables, then use properties of limits from multivariable calculus. ⇤
Example 8.5. By induction, one can prove that if n � 1 is an integer and z

0

2 C, then
lim

z!z0 z
n = zn

0

. If p(z) = a
0

+ a
1

z + · · · + a
n

zn is a polynomial, then for any z
0

2 C,
lim

z!z0 p(z) = p(z
0

).

Quiz...
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9. January 24

It is sometimes convenient to include the point at infinity, denoted 1, with the complex
plane (and to use limits involving it).

STEREOGRAPHIC PROJECTION PICTURE, 1 IS THE NORTH POLE N , UNIT CIR-
CLE CENTERED AT z = 0, RIEMANN SPHERE

Definition 9.1. Let " > 0. We call {z 2 C : |z| > 1/"} a neighborhood of 1.

CONVENTION: If we refer to a point z in the complex plane, then we refer to a point
that is not 1. If 1 is considered, it will be explicitly mentioned.

Theorem 9.2. If z
0

, w
0

2 C, then:
(1) lim

z!z0 f(z) = 1 if lim
z!z0 1/f(z) = 0.

(2) lim
z!1 f(z) = w

0

if lim
z!0

f(1/z) = w
0

.
(3) lim

z!1 f(z) = 1 if lim
z!0

1/f(1/z) = 0.

Proof. I’ll prove the first part; the others are similar. If lim
z!z0 1/f(z) = 0, then for all

" > 0, there exists � > 0 such that

|1/f(z)� 0| < " whenever 0 < |z � z
0

| < �.

We rewrite this as

|f(z)| > 1/" whenever 0 < |z � z
0

| < �.

This a restatement of lim
z!z0 f(z) = 1. ⇤

Example 9.3. We have

lim
z!1

z + 2

z � 1
= 1 since lim

z!0

(1/z) + 2

(1/z)� 1
= lim

z!0

1 + 2z

1� z
= 1.

Definition 9.4. A function f is continuous at a point z
0

if lim
z!z0 f(z) exists, f(z0) exists,

and lim
z!z0 f(z) = f(z

0

). In the � � " language, a function f is continuous at a point z
0

if
for all " > 0 there exists � > 0 such that |f(z)� f(z

0

)| < " whenever |z � z
0

| < �.

From our limit arithmetic discussed last class, we have that the sum, di↵erence, product,
and quotient of two functions which are continuous at z

0

is also continuous at z
0

. The
following is much more subtle, which I will not prove.

Theorem 9.5. If g is continuous at z
0

and f is continuous at g(z
0

), then f �g is continuous
at z

0

.

As with limits, we can establish continuity by looking at the real and imaginary parts of
f .

Theorem 9.6. Write f(z) = f(x+iy) = u(x, y)+iv(x, y). The functions u, v are continuous
at (x

0

, y
0

) if and only if f is continuous at z
0

= x
0

+ iy
0

.

Definition 9.7. If a function f : U ! C is continuous at each point z 2 U , then f is
continuous on U .

One of the key results for continuous functions of a real variable is that if f : [a, b] ! R is
continuous, then f achieves its maximum and minimum. A related result for complex-valued
functions is:
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Theorem 9.8. Let U ✓ C be closed and bounded, and let f be continuous on U . There
exists a constant M > 0 such that |f(z)|  M for all z 2 U , where equality holds for at least
one such z. We then say that f is bounded on U .

This follows from applying an analogous result for functions from R2 to R to u(x, y) and
v(x, y).

Definition 9.9. Let f be a function whose domain contains a neighborhood {z 2 C : |z�z
0

| <
"} of a point z

0

. The derivative of f at z
0

is the limit

f 0(z
0

) = lim
z!z0

f(z)� f(z
0

)

z � z
0

.

The function f is di↵erentiable at z
0

if f 0(z
0

) exists. If f is di↵erentiable at all points in
a region U ✓ C, then f is di↵erentiable on U .

Example 9.10. Let f(z) = 1/z and z
0

6= 0. If z 6= z
0

, then

z�1 � z�1

0

z � z
0

= � 1

z
0

z
.

By the properties of limits, the limit as z ! z
0

is �1/z2
0

. Then f is di↵erentiable on C�{0}.

Example 9.11. Let f(z) = |z|2 and z
0

2 C. If z 6= z
0

and z
0

= 0, then

|z|2 � |z
0

|2

z � z
0

=
|z|2

z
= z,

whose limit is zero as z ! 0. On the other hand if z
0

6= 0, then

|z|2 � |z
0

|2

z � z
0

=
zz � z

0

z
0

z � z
0

=
zz � zz

0

+ zz
0

� z
0

z
0

z � z
0

= z
z � z

0

z � z
0

+ z
0

If z traverses the complex numbers such that Im(z) = Im(z
0

), then the limit is

lim
z!z0

⇣
z
z � z

0

z � z
0

+ z
0

⌘
= z

0

+ z
0

= 2Re(z
0

).

If z traverses the complex numbers such that Re(z) = Re(z
0

), then

lim
z!z0

⇣
z
z � z

0

z � z
0

+ z
0

⌘
= �z

0

+ z
0

= 2Re(z
0

) = �2iIm(z
0

).

Since z 6= z
0

, it follows from the uniqueness of limits that lim
z!z0 |z|2 does not exist.
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10. January 27

Theorem 10.1. If f 0(z
0

) exists, then f is continuous at z
0

.

Proof. We compute

lim
z!z0

(f(z)� f(z
0

)) = lim
z!z0

f(z)� f(z
0

)

z � z
0

· lim
z!z0

(z � z
0

) = f 0(z
0

) · 0 = 0.

⇤
All of the di↵erentiation rules from calculus carry forward to functions of a complex

variable because the limit definition is the same in both settings:

(fg)0 = fg0 + f 0g, (f/g)0 = (gf 0 � fg0)/g2, (f � g)0 = (f 0 � g) · g0.
Let f(z) = f(x + iy) = u(x, y) + iv(x, y), and suppose that f 0(z

0

) exists. We will begin
the setup for a critical relationship between the derivative of f (with respect to z) and the
derivatives of u and v (with respect to x and y). To do this, we recast the derivative as

f 0(z
0

) = lim
�z!0

f(z
0

+�z)� f(z
0

)

�z
, �z 2 C

and introduce some notation:

z
0

= x
0

+ iy
0

, �z = �x+ i�y,

in which case

f(z
0

+�z)� f(z
0

) = [u(x
0

+�x, y
0

+�y) + iv(x
0

+�x, y
0

+�y)]� [u(x
0

, y
0

) + iv(x
0

, y
0

)]

Now,

lim
�z!0

f(z
0

+�z)� f(z
0

)

�z
= lim

�z!0

�w

�z

= lim
�x!0

�y!0

⇣u(x
0

+�x, y
0

+�y)� u(x
0

, y
0

)

�x+ i�y
+ i

v(x
0

+�x, y
0

+�y)� v(x
0

, y
0

)

�x+ i�y

⌘
.

Since f 0(z
0

) exists, the above quotient will tend to the same value regardless of the manner
in which �x ! 0 and �y ! 0. First, suppose that �y = 0, in which case it remains for
�x ! 0. Upon substituting 0 for �y, we arrive at

f 0(z
0

) = lim
�x!0

⇣u(x
0

+�x, y
0

)� u(x
0

, y
0

)

�x
+i

v(x
0

+�x, y
0

)� v(x
0

, y
0

)

�x

⌘
= u

x

(x
0

, y
0

)+iv
x

(x
0

, y
0

).

Now, suppose that �x = 0, in which case it remains for �y ! 0. Upon substituting 0 for
�x, we arrive at

f 0(z
0

) = lim
�y!0

⇣u(x
0

, y
0

+�y)� u(x
0

, y
0

)

i�y
+i

v(x
0

, y
0

+�y)� v(x
0

, y
0

)

i�y

⌘
= �iu

y

(x
0

, y
0

)+v
y

(x
0

, y
0

).

Equating the real and imaginary parts yields the Cauchy–Riemann equations

u
x

(x
0

, y
0

) = v
y

(x
0

, y
0

) and u
y

(x
0

, y
0

) = �v
x

(x
0

, y
0

).

Theorem 10.2. If f(z) = u(x, y) + iv(x, y) and f 0 exists at z
0

= x
0

+ iy
0

, then u and v
must satisfy the Cauchy–Riemann equations

u
x

= v
y

, u
y

= �v
x

.

Moreover, f 0(z
0

) = u
x

(x
0

, y
0

) + iv
x

(x
0

, y
0

).
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Example 10.3. Let f(z) = z2 = (x+ iy)2 = (x2 � y2) + i(2xy) = u+ iv. We already know
that f is di↵erentiable on C. We compute u

x

= 2x, u
y

= �2y, v
x

= 2x, v
y

= 2y. Then
u
x

= v
y

and u
y

= �v
x

, checking that f satisfies the Cauchy–Riemann equations. Moreover,
2z = 2(x+ iy) = 2x+ i(2y) = u

x

+ iv
x

= f 0(z).

Example 10.4. Let f(z) = |z|2 = x2 + y2. Then u
x

= 2x, u
y

= 2y, v
x

= v
y

= 0. The
Cauchy–Riemann equations are only satisfied at the point x

0

= y
0

= 0, which, as we showed
yesterday, is the only point at which f is di↵erentiable.

Right now, the Cauchy–Riemann equations are only suitable for showing where f is not
di↵erentiable. We will see that they can actually show us where f is di↵erentiable.

Theorem 10.5. Let f(z) = u(x, y) + iv(x, y) be defined in some " NBHD of a point z
0

=
x
0

+ iy
0

. Suppose that

(1) u
x

, u
y

, v
x

, v
y

exist and are continuous everywhere in the NBHD, and
(2) these partial derivatives satisfy the Cauchy–Riemann equations at (x

0

, y
0

).

Then f 0(z
0

) exists and equals u
x

(x
0

, y
0

) + iv
x

(x
0

, y
0

).

We begin with some notation that will help clean up the proof. Write

�x = x� x
0

, �y = y � y
0

, �z = z � z
0

= �x+ i�y.

If F : R2 ! R is a function di↵erentiable at (x
0

, y
0

), then this is equivalent in a NBHD of
(x

0

, y
0

) to having the Taylor expansion

F (x, y) = F (x
0

, y
0

) + F
x

(x
0

, y
0

)�x+ F
y

(x
0

, y
0

)�y + E
1

(�x)�x+ E
1

(�y)�y,

where E
1

! 0 (resp. E
2

! 0) as �x ! 0 (resp. �y ! 0).

Proof. Let " > 0. Assume conditions (1) and (2) for u and v. We then have

f(z)� f(z
0

) = [u(x, y) + iv(x, y)]� [u(x
0

, y
0

) + iv(x
0

, y
0

)].

By assuming condition (2) for u and v, we have that

u(x, y)� u(x
0

, y
0

) = u
x

(x
0

, y
0

)�x+ u
y

(x
0

, y
0

)�y + E
1

(�x)�x+ E
2

(�y)�y,

v(x, y)� v(x
0

, y
0

) = v
x

(x
0

, y
0

)�x+ v
y

(x
0

, y
0

)�y + E
3

(�x)�x+ E
4

(�y)�y.

Thus

f(z)� f(z
0

) = u
x

(x
0

, y
0

)�x+ u
y

(x
0

, y
0

)�y + i[v
x

(x
0

, y
0

)�x+ v
y

(x
0

, y
0

)�y]

+ E
5

(�x)�x+ E
6

(�x)�x.

By assuming condition (1) for u and v (so u
x

= v
y

and u
y

= �v
x

), we can rewrite this as

f(z)� f(z
0

) = u
x

(x
0

, y
0

)�x� v
x

(x
0

, y
0

)�y + i[v
x

(x
0

, y
0

)�x+ u
x

(x
0

, y
0

)�y]

+ E
5

(�x)�x+ E
6

(�x)�x

= u
x

(x
0

, y
0

)(�x+ i�y) + iv
x

(x
0

, y
0

)(�x+ i�y)

+ E
5

(�x)�x+ E
6

(�x)�x

= [u
x

(x
0

, y
0

) + iv
x

(x
0

, y
0

)]�z + E
5

(�x)�x+ E
6

(�x)�x.

Dividing through by z � z
0

= �z, we have

f(z)� f(z
0

)

z � z
0

= u
x

(x
0

, y
0

) + iv
x

(x
0

, y
0

) + E
5

(�x)�x/�z + E
6

(�y)�y/�z.
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Now, observe that since �z = �x + i�y, we have |�x|  |�z| and |�y|  |�z| by the
triangle inequality. Moreover, |E

5

(�x) +E
6

(�y)| ! 0 as �z ! 0, i.e., as z ! z
0

. This was
the desired conclusion. ⇤
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11. January 29

Example 11.1. Let f(z) = f(x + iy) = ex cos y + iex sin y. Then u(x, y) = ex cos y and
v(x, y) = ex sin y, and we compute u

x

= ex cos y, u
y

= �ex sin y, v
x

= ex sin y, v
y

= ex cos y.
We see that u, v are continuously di↵erentiable on all of R2, and u

x

= v
y

and u
y

= �v
x

on
all of R2. Thus f(z) is di↵erentiable everywhere, and f 0(z) = f(z). Notice that f(z) = exeiy.

Example 11.2. Let f(z) = f(x+ iy) = x3 + i(1� y)3. Then u, v are continuously di↵eren-
tiable on all of R2, and u

x

= 3x2, u
y

= 0, v
x

= 0, v
y

= �3(1�y)2. We have u
y

= �v
x

trivially,
and u

x

= v
y

if and only x2+(1� y)2 = 0. This is only satisfied at the point (x
0

, y
0

) = (0, 1),
corresponding with z

0

= i. The derivative here is f 0(0 + i · 1) = 3 · 02 + 0 = 0.

There is a polar version of the Cauchy–Riemann equations. Write 0 6= z = x+ iy = rei✓.
Since ei✓ = cos ✓ + i sin ✓, we equate real and imaginary parts to obtain x = r cos ✓ and
y = r sin ✓. We also write

f(rei✓) = u(r, ✓) + iv(r, ✓).

Assuming that u, v are continuously di↵erentiable at some point z
0

= x
0

+ iy
0

= r
0

ei✓0 , we
compute via the multivariable chain rule that

u
r

= u
x

x
r

+ u
y

y
r

= u
x

cos ✓ + u
y

sin ✓, u
✓

= u
x

x
✓

+ u
y

y
✓

= �u
x

r sin ✓ + u
y

r cos ✓

v
r

= v
x

x
r

+ v
y

y
r

= v
x

cos ✓ + v
y

sin ✓, v
✓

= v
x

x
✓

+ v
y

y
✓

= �v
x

r sin ✓ + v
y

r cos ✓

The Cauchy–Riemann equations then become

u
x

= v
y

, u
y

= �v
x

() ru
r

= v
✓

, u
✓

= �rv
r

.
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12. January 31

Theorem 12.1. Let f(z) = u(r, ✓)+iv(r, ✓) be defined in some neighborhood of z
0

= r
0

ei✓0 6=
0. Suppose that

(1) u
r

, u
✓

, v
r

, v
✓

exist and are continuous everywhere in the NBHD, and
(2) these partial derivatives satisfy the Cauchy–Riemann equations at (r

0

, ✓
0

).

Then f 0(z
0

) exists and equals e�i✓0(u
r

(r
0

, ✓
0

) + iv
r

(r
0

, ✓
0

).

Definition 12.2. A function f(z) is holomorphic in an open set S if f 0(z) exists for
each z 2 S, and f(z) is holomorphic at a point z

0

if it is holomorphic in some NBHD of
z
0

. Finally, f(z) is entire if f is holomorphic at each point in C.

Sums, products, quotients, and compositions of analytic functions are holomorphic.

Theorem 12.3. If f : U ! C is holom. on U and f 0 = 0 for all z 2 U , then f = const.

Proof sketch. Cauchy–Riemann equations and multivariable mean value theorem ⇤
If f is not analytic at z

0

but analytic in a deleted NBHD of z
0

, then z
0

is called a singular
point, or singularity, of f . Singularities of functions will play an important role later on.

Let U ✓ R2. A function H : U ! R is harmonic on U if it has continuous partial
derivatives of the first and second order and satisfies Laplace’s equation

H
xx

(x, y) +H
yy

(x, y) = 0.

Example 12.4. Let H(x, y) = x/(x2 + y2). Clearly, the first and second order partial
derivatives will be continuous when x2 + y2 6= 0. We have H

xx

+H
yy

= 2x(x2 � 3y2)/(x2 +
y2)3 + (�2x(x2 � 3y2)/(x2 + y2)3) = 0

Theorem 12.5. If f(z) = u+ iv is holom. on D ✓ C, then u, v are harmonic on D.

We will assume a result to be proven later on (Sec. 57) that if f : D ! C is holomorphic
on D, then the partial derivatives of first and second orders for u and v are continuous.

Proof. If f is analytic on D, then u and v satisfy the Cauchy–Riemann equations

u
x

= v
y

, u
y

= �v
x

.

Di↵erentiating both equations with respect to x and y, we arrive at

u
xx

= v
yx

, u
yx

= �v
xx

, u
xy

= v
yy

, u
yy

= �v
xy

.

Since the partial derivatives are assumed to be continuous, we have that u
yx

= u
xy

and
v
yx

= v
xy

. Hence u
xx

+ u
yy

= v
xx

+ v
yy

= 0 on D. ⇤
We will later show that every harmonic function is the real part of a holomorphic function.

Definition 12.6. We define ex+iy := exeiy = ex(cos y + i sin y). (justified later)

In polar form, we have ez = ⇢ei�, where ⇢ = ex and � = y. Thus it is clear that |ez| = eRe(z)

and arg(ez) = {y + 2n⇡ : n 2 Z}. Since ex 6= 0, we have

ez 6= 0, z 2 C.
It is now clear, since ex+y = exey and we already proved that ei✓ei� = ei(✓+�), we have that

ez1+z2 = ez1ez2 .
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Since ez1�z2ez2 = ez1 , we find that

ez1�z2 = ez1/ez2 , 1/ez = e�z, e0 = 1.

Hence if z
1

= r
1

ei✓1 and z
2

= r
2

ei✓2 with r
1

= r
2

and there exists an integer n such that
✓
1

� ✓
2

= 2⇡n, then ez1 = ez2 .
We computed (earlier example) that d

dz

ez = ez. Since this holds on all of C, ez is entire.
Note that if n 2 Z, then

ez+2⇡in = eze2⇡in = ez,

so ez is 2⇡i-periodic, unlike ex for x 2 R. Moreover, ei⇡ = �1, whereas ex � 0 for all x 2 R.
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13. February 3

If 0 6= w = rei✓, where ✓ = ⇥+2⇡n for some n 2 Z, then we can always solve the equation

ez = w, z = ln r + i(⇥+ 2⇡n), n 2 Z.

Definition 13.1. If 0 6= z = rei✓, then we define the multivalued function log z = ln r +
i(✓ + 2⇡n), n 2 Z. We abbreviate this as log z = ln |z|+ i arg(z).

Hence if 0 6= z = rei✓ with ✓ 2 arg(z), then

elog z = eln rei(✓+2⇡n) = rei✓ = z.

Note that if z
1

= r
1

ei✓1 and z
2

= r
2

ei✓2 , then

log(z
1

z
2

) = log(r
1

r
2

ei(✓1+✓2)) = ln(r
1

r
2

) + i(✓
1

+ ✓
2

+ 2⇡n), n 2 Z,
which di↵ers from log z

1

+ log z
2

by an integer multiple of 2⇡i.
On the other hand, if z = x+ iy, then for any n 2 Z.

log ez = log(ex+iy) = ln ex + i(y + 2⇡n) = z + 2⇡in

If we let ↵ 2 R, then for ✓ 2 (↵,↵ + 2⇡), the function

log : {z 2 C : z = |z|ei✓, |z| > 0, ✓ 2 (↵,↵ + 2⇡)} ! C : log z = ln |z|+ i✓

is single-valued and continuous, even holomorphic (since it satisfies the Cauchy–Riemann
equations ru

r

= v
✓

and u
✓

= �rv
r

). It would be single-valued but not continuous if we
included the ray ✓ = ↵. The polar form of the derivative is

d

dz
log z = e�i✓(u

r

+ iv
r

) = e�i✓(r�1 + i0) =
1

rei✓
=

1

z
.

Taking ↵ = 0, we have

d

dz
Log z =

1

z
, |z| > 0, �⇡ < Arg z < ⇡.

We obtain di↵erent functions for each choice of ↵. We need to distinguish these functions.

Definition 13.2. A branch of a multivalued function f is a single-valued function F that
is holomorphic in some domain at each z, of which the value F (z) is one of the values of f .

For any given ↵ 2 R, we obtain a di↵erent branch of the log function. But the one that
matters to us the most corresponds with our definition of Arg(z), which is the argument ✓
lying in the interval �⇡ < ✓  ⇡. So the principal branch of the log function is

Log z = ln |z|+ iArg(z), |z| > 0.

A branch cut is a portion of a line or curve that is introduced in order to define a branch
F of a multivalued function. The principal branch cut for log consists of the origin and the
ray ⇥ = ⇡.

Example 13.3. The branch cut corresponding with ↵ = �⇡ gives the principal value of
log, namely

Log z = ln |z|+ iArg(z).

of the log function is the ray ✓ = ⇡.
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Since arg(z
1

z
2

) = arg(z
1

) + arg(z
2

), we have log z
1

z
2

= log z
1

+ log z
2

. (EMPHASIZE: If
you specify any two of the three arguments, then the third argument is uniquely determined!)

But since Arg(z
1

z
2

) does not generally equal Arg(z
1

)+Arg(z
2

), Log z
1

z
2

does not generally
equal Log z

1

+ Log z
1

.

Example 13.4. log(�1) = i⇡ + 2⇡in, n 2 Z. Log(�1) = ⇡i.

Example 13.5. The two square roots of i are e⇡i/4 and e5⇡i/4. We have

log(e⇡i/4) = i(⇡/4 + 2⇡n), n 2 Z
and

log(e5⇡i/4) = i(⇡/4 + (2n+ 1)⇡), n 2 Z.
Hence

log(i1/2) = i(⇡/4 + ⇡n).

Also,
1

2
log i =

1

2
(i⇡/2 + 2⇡n) = (i⇡/4 + n⇡), n 2 Z.

Hence log(i1/2) = 1

2

log i.

Example 13.6. Note that log(i2) = log(�1) = i⇡+2⇡in, n 2 Z. But 2 log i = 2(⇡
2

+2⇡in) =
i⇡ + 4⇡in, n 2 Z. So log(i2) 6= 2 log i, unless one specifies a suitable branch. On the
other hand, if we write 2 log i = i(⇡/2 + 2⇡m) + i(⇡/2 + 2⇡n), then we are consistent with
log z

1

z
2

= log z
1

+ log z
2

(in the same sense that arg(z
1

z
2

) = arg(z
1

) + arg(z
2

)).

Example 13.7. If Re(z
1

),Re(z
2

) > 0, then z
1

= |z
1

| exp(i⇥
1

) and z
2

= |z
2

| exp(i⇥
2

) with
⇥

1

,⇥
2

2 (�⇡/2, ⇡/2). Since �⇡ < ⇥
1

+⇥
2

< ⇡, we have that

Arg(z
1

z
2

) = ⇥
1

+⇥
2

,

so

Log(z
1

z
2

) = ln |z
1

z
2

|+ iArg(z
1

z
2

) = ln |z
1

|+ ln |z
2

|+ i(Arg(z
1

)+Arg(z
2

)) = Log z
1

+Log z
2

.

Let z 6= 0. Since elog z = z, one can prove inductively that for any integer n, we have
en log z = zn. Similarly, one can show (taking n-th roots as we described a while back) that
for each integer n � 1, we have

e
1
n log z = e

1
n log |z|+ i(⇥+2⇡k)

n = |z|1/n exp
⇣i(⇥+ 2⇡k)

n

⌘
, k 2 Z,

which equals z1/n.

Definition 13.8. For c 2 C, we define zc = ec log z for z 6= 0.

Note that since e�z = 1/ez, we have 1/zc = 1/ec log z = e�c log z = z�c. Since elog z = z
always, on a branch of log z, we can compute via the chain rule

d

dz
zc =

d

dz
ec log z = ec log z

c

z
= c

ec log z

elog z
= ce(c�1) log z = czc�1.

The principal value of zc is given by the branch of log corresponding with Log:

zc = ecLog z.

This corresponds to the principal branch of zc on the domain |z| > 0, �⇡ < Arg z < ⇡.
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14. February 5

We can also define, for c 6= 0,
cz = ez log c,

and when a value of log c is specified, then cz is an entire function of z with

d

dz
ez log c = ez log c log c = zc log c.

Example 14.1.
ii = ei log i = ei(i(⇡/2+2⇡n)) = e�⇡/2+2⇡n, n 2 Z.

Principal value (n = 0): ii = e�⇡/2.

Trig functions

Recall that ei✓ = cos ✓ + i sin ✓, and

Re(ei✓) =
ei✓ + ei✓

2
=

ei✓ + e�i✓

2
= cos ✓

and

Im(ei✓) =
ei✓ � ei✓

2i
=

ei✓ � e�i✓

2
= sin ✓

Definition 14.2.

cos z =
eiz + e�iz

2
, sin z =

eiz � e�iz

2i
, tan z =

sin z

cos z
,

sec z =
1

cos z
, csc z =

1

sin z
, cot z =

cos z

sin z
.

It is straightforward to verify from our definitions that

cos(�z) = cos(z), sin(�z) = � sin(z), eiz = cos z + i sin z,

From
d

dz
ecz = cecz, c = ±i,

we find that
d

dz
sin z = cos z,

d

dz
cos z = � sin z.

All of the usual trigonometric identities from real variables carry over:

sin2 z + cos2 z = 1, sin 2z = 2 sin z cos z, cos 2z = cos2 z � sin2 z, . . . .
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15. February 7

Definition 15.1.

sinh(z) =
ez � e�z

2
, cosh(z) =

ez + e�z

2
, tanh(z) =

sinh(z)

cosh(z)

csch(z) =
1

sinh(z)
, sech(z) =

1

cosh(z)
, coth(z) =

1

tanh(z)
.

Since

sin(z
1

z
2

) = sin z
1

cos z
2

+ sin z
2

cos z
1

, cos(z
1

z
2

) = cos z
1

cos z
2

� sin z
1

sin z
2

,

we have

sin(x+ iy) = sin(x) cos(iy) + sin(iy) cos(x), cos(x+ iy) = cos(x) cos(iy)� sin(x) sin(iy).

Now,

sin(iy) =
ei(iy) � e�i(iy)

2i
= i sinh(y), cos(iy) =

ei(iy) + e�i(iy)

2
= cosh(y).

Thus

sin(x+iy) = sin(x) cosh(y)+i cos(x) sinh(y), cos(x+iy) = cos(x) cosh(y)�i sin(x) sinh(y).

Since cos2 t+ sin2 t = 1, we find that

| sin(x+ iy)|2 = sin2 x+ sinh2 y, | cos(x+ iy)|2 = cos2 x+ sinh2 y.

Hence cos z and sin z are UNBOUNDED on C, unlike cos x and sin x on R.

Theorem 15.2. We have sin z = 0 if and only if z = n⇡, where n 2 Z. We have cos z = 0
if and only if z = ⇡

2

+ n⇡, where n 2 Z.

Proof. For sin(z), set the absolute values equal to zero and solve for x, y. You could do the
same for cos(z), or note that cos(z) = � sin(z � ⇡

2

). ⇤
This tells us the zeros and singularities of tan(z), cot(z), csc(z), sec(z). Also, using the

quotient rule and the above trig identities,

(tan z)0 = sec2 z, (cot z)0 = � csc2 z, (sec z)0 = sec z tan z, (csc z)0 = � csc z cot z.

Hyperbolic trig functions will also come up. Since (ez)0 = ez, we have by the chain rule

(sinh z)0 = cosh z, (cosh z)0 = sinh z.

From our definition, we have

�i sinh(iz) = sin z, �i sin(iz) = sinh(z), cosh(iz) = cos z, cos(iz) = cosh(z).

Since cos(z) and sin(z) are 2⇡-periodic, it follows that cosh(z) and sinh(z) are 2⇡i-perodic.
The book has a list of frequently used hyperbolic trig identities which look similar to (but

are di↵erent from!) the usual trig identities. For example:

cos2(z)� sin2(z) =
⇣ez + e�z

2

⌘
2

�
⇣ez � e�z

2

⌘
2

=
e2z + 2 + e�2z � (e2z � 2 + e�2z)

4
= 1.

Theorem 15.3. We have sinh(z) = 0 precisely when z = n⇡i, n 2 Z. We have cosh z = 0
if and only if z = (⇡

2

+ n⇡)i, n 2 Z.
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Theorem 15.4. I leave it as an exercise to verify that | sinh(z)|2 = sinh2 x + sin2 y and
| cosh z|2 = sinh2 x+ cos2 y. Set the moduli equal to zero and solve for x, y.

I also leave it as an exercise to compute

(tanh z)0 = sech2z, (sec z)0 = �sechz tanh z, (cothz)0 = �csch2z, (cschz)0 = �cschzcothz.

Now, let us solve the equation

z = sinw, (w = arcsin z).

for w. Recall that

z =
eiw � e�iw

2i
=

e2iw � 1

2ieiw
=) e2iw � 2ieiwz � 1 = 0.

This is solved via the quadratic formula:

eiw = iz +
p
1� z2,

where we think of the square root function as multivalued. Taking logs, we conclude that

arcsin z = �i log(iz +
p
1� z2).

Similarly, we compute

arccos z = �i log(z + i
p
1� z2), arctan z =

i

2
log

i+ z

i� z
.

These are all multivalued. On specific branches, these become single-valued holomorphic.
We can compute

(arctan z)0 =
1

z2 + 1
.

This is single-valued. But the derivatives

(arcsin z)0 =
1p

1� z2
, (arccos z)0 = � 1p

1� z2

are multivalued.
We also can solve

z = coshw (w = arccoshz)

Then

z =
ew + e�w

2
=

e2w + 1

2ew
=) e2w � 2ewz + 1 = 0.

Again, by the quadratic formula and taking logs,

arccoshz = log(z +
p
z2 � 1).

Similarly,

arcsinhz = log(z +
p
z2 + 1), arctanhz =

1

2
log

1 + z

1� z
.
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16. February 10

We begin to set up integration for a function of a complex variable.

16.1. Complex functions on a real interval. If f(t) = u(t)+iv(t) is continuous on (a, b),
we define Z

b

a

f(t)dt =

Z
b

a

u(t)dt+ i

Z
b

a

v(t)dt.

This very closely mimics the real integral. If c = ↵ + i� 2 C, then
Z

b

a

cfdt =

Z
b

a

(↵u� �v + i(↵v + �u)dt =

Z
b

a

(↵u� �v)dt+ i

Z
b

a

(↵v + �u)dt = c

Z
b

a

fdt,

and, with ✓ = arg
R

b

a

f(t)dt, we find that
���
Z

b

a

f(t)dt
��� = Re

⇣
e�i✓

Z
b

a

f(t)dt
⌘
=

Z
b

a

Re(e�i✓f(t))dt 
Z

b

a

|f(t)|dt.

16.2. Complex functions on an arc. Let � be a piecewise di↵erentiable arc with equation
z(t), a  t  b. If f is defined and continuous on �, then f(z(t)) is also continuous and we
can define

(⇤ ⇤ ⇤)
Z

�

f(z)dz =

Z
b

a

f(z(t))z0(t)dt.

This is our definition of the complex line integral of f(z) extended over the arc �. On
the RHS of (⇤ ⇤ ⇤), if z0(t) is not continuous throughout, then the interval of integration is
subdivided into subintervals along which z0 is continuous. We will tacitly assume that � is
piecewise di↵erentiable.

The most important property of (⇤ ⇤ ⇤) is its invariance under a change of parameter: If
t = t(⌧) is increasing and maps ↵  ⌧  � onto a  t  b and ⌧ is piecewise di↵erentiable,
then

Z
b

a

f(z(t))z0(t)dt =

Z
�

↵

f(z(t(⌧)))z0(t(⌧))t0(⌧)d⌧ =

Z
�

↵

f(z(t(⌧)))
d

d⌧
z(t(⌧))d⌧.

If �� is defined by z = z(�t), �b  t  �a, then
Z

��

f(z)dz =

Z �b

�a

f(z(�t))(�z0(�t))dt =

Z
a

b

f(z(t))z0(t)dt = �
Z

�

f(z)dz.

If � = �
1

+ · · · [ �
n

is a subdivision of � into disjoint subarcs, then
Z

�

=
nX

j=1

Z

�j

Definition 16.1. An arc � (or C in the book) is a simple (Jordan) arc if it does not
cross itself (z(t

1

) 6= z(t
2

) for t
1

6= t
2

). When C is simple except for z(a) = z(b), then C is
a simple closed (Jordan) curve. Such a curve is positively oriented when it is in the
counterclockwise direction.

The integral over a closed curve is also invariant under a shift of parameter: The old and
new initial points determine two subarcs �

1

, �
2

, and the invariance follows from the fact thatR
�1[�2 =

R
�1
+
R
�2
.
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One of the most commonly used arcs in the integrals we compute will be the closed arc

z(t) = e2⇡it, 0  t  1.

This is an example of a positively oriented Jordan curve. It is di↵erent from

z(t) = e�2⇡it, 0  t  1

because this is not positively oriented. It is also di↵erent from

z(t) = e2⇡it, 0  t  2

since this traverses the same path twice.
We can also consider the line integral with respect to z:

Z

�

f(z)dz =

Z

�

f(z)dz.

Using this notation, we can introduce line integrals with respect to x = Re(z) or y = Im(z):
Z

�

f(z)dx =
1

2

⇣Z

�

f(z)dz +

Z

�

f(z)dz
⌘
,

Z

�

f(z)dy =
1

2i

⇣Z

�

f(z)dz �
Z

�

f(z)dz
⌘
.

Hence if f = u+ iv, then
Z

�

fdz =

Z

�

(udx� vdy) + i

Z

�

(udy + vdx).
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17. February 12

Midterm Exam 1
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18. February 14

An essentially di↵erent line integral is obtained by integration with respect to arclength:
Z

�

fds =

Z

�

f |dz| =
Z

�

f(z(t))|z0(t)|dt.

By proceeding as earlier, the integral is again independent of the choice of parameter. But,
unlike before, Z

��

f(z)|dz| =
Z

�

f(z)|dz|.

Also,
���
Z

b

a

f(t)dt
��� 

Z
b

a

|f(t)|dt =)
���
Z

�

f(z)dz
��� 

Z

�

|f(z)| · |dz|.

If f ⌘ 1, then Z

�

f(z)|dz| =
Z

�

|dz| = length of �

Example 18.1. Let z(t) = a+ ⇢eit, 0  t  2⇡. This traces the circle of radius ⇢ centered
at z = a. Then z0(t) = i⇢eit, and

Z

�

|dz| =
Z

2⇡

0

|z0(t)|dt =
Z

2⇡

0

⇢dt = 2⇡⇢.

Example 18.2. Let z(t) = e2⇡it, 0  t  1. Then
Z

�

dz

z
=

Z
1

0

2⇡ieit

e2⇡it
dt = 2⇡i

Z
1

0

dt = 2⇡i.

Let n � 1 be an integer. We could also consider z(t) = e2⇡it, 0  t  n (corresponding to n
rotations around the circle). Then the above integral becomes 2⇡in.

Example 18.3. Let � be a piecewise di↵erentiable curve from z
1

to z
2

traced out by z(t),
a  t  b. Then

Z

�

zdz =

Z
b

a

z(t)z0(t)dt =
z(t)2

2

�����

b

a

=
z(b)2 � z(a)2

2
=

z2
2

� z2
1

2
.

Thus the integral depends only on the endpoints of �.

Example 18.4. Let � be given by z = 3eit, 0  t  ⇡. This traces a semicircular parth
from z = 3 to z = �3. Choose the branch

f(z) =
p
z = e

1
2 log z, |z| > 0, 0 < arg z < 2⇡.

ThenZ

�

p
zdz =

Z
⇡

0

p
3eit/2 · 3ieitdt = 33/2i

Z
⇡

0

e3it/2dt = 33/2i ·� 2

3i
e3it/2

���
⇡

0

= �2
p
3(1 + i).

Example 18.5. Let � be the curve traced by z(t) = eit, �⇡  t  ⇡. Using the principal
branch

f(z) = zi�1 = exp[(i� 1)Logz], |z| > 0,�⇡ < Argz < ⇡,
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we compute
Z

�

zi�1dz =

Z
⇡

�⇡

e(i�1)itieitdt = i

Z
⇡

�⇡

e�tdt = �ie�t

���
⇡

�⇡

= �i(e�⇡�e⇡) = 2i·e
⇡ � e�⇡

2
= 2i sinh(⇡).

Example 18.6. Let C be parametrized by z(t) = 2eit, 0  t  ⇡/2. Then for z on C, we
have |z � 2|  |z|+ 2 = 4 and |z4 + 1| � ||z4|� 1| = 15 by the triangle inequality. Thus
���
Z

C

z � 2

z4 + 1
dz

��� 
Z

C

���
z � 2

z4 + 1

��� · |dz| 
4

15

Z

C

|dz| = 4

15

Z
⇡/2

0

|z0(t)|dt = 4

15

Z
⇡/2

0

2dt =
4⇡

15
.

We could be more precise: |z � 2| = 2|eit � 1|, which is maximized as a function of t when
t = ⇡/2, in which case |z � 2| 

p
2 < 4.

More generally, if ` is the arclength of C and |f(z)|  M for all z 2 C, then
���
Z

C

fdz
��� 

Z

C

|f | · |dz|  M`.
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19. February 17

In our example with
R
�

zdz, we saw that the integral only depended on the endpoints of
the arc �. When else might this be true?

Theorem 19.1. The line integral
R
�

(pdx + qdy), defined on a region D, depends only on
the endpoints of � if and only if there exists a function F (x, y) on D with partial derivatives
F
x

= p, F
y

= q.

Proof. If F
x

= p, F
y

= q, then
Z

�

(pdx+qdy) =

Z
b

a

⇣
F
x

x0(t)+F
y

y0(t)
⌘
dt =

Z
b

a

d

dt
F (x(t), y(t))dt = F (x(b), y(b))�F (x(a), y(a)).

On the other hand, if the integral depends only on the endpoints z
0

= (x
0

, y
0

) and z
1

= (x, y),
we can define

F (x, y) =

Z

�

(pdx0 + qdy0).

then we can take � to be piecewise di↵erentiable with the pieces running parallel to the
coordinate axes. Along the vertical component, dy0 = 0. Thus

F (x, y) =

Z
x

x0

p(x0, y0)dx0 + const.

Then by the fundamental theorem of calculus, F
x

= p. Along the vertical component,
dy0 = 0. Thus

F (x, y) =

Z
y

y0

q(x0, y0)dy0 + const.

Then by the fundamental theorem of calculus, F
y

= q. ⇤
If the expression pdx+ qdy can be written in the form

dU = U
x

dx+ U
y

dy,

then f(z) = U
x

+ iU
y

is the derivative of a function U(z). Thus an integral depends only on
the endpoints if and only if the integral is an exact di↵erential. Observe that p, q, U can be
either real or complex. The function U , if it exists, is unique up to an additive constant (if
two functions have the same partial derivatives, then their di↵erence must be constant).

Let f be continuous. When is f(z)dz = f(z)dx+ if(z)dy an exact di↵erential? According
to the definition, there must be a function F (z) = u(x, y) + iv(x, y) in D with partial
derivatives

F
x

(z) = f(z), F
y

(z) = if(z).

Then
u
x

+ iv
x

= f, u
y

+ iv
y

= if =) u
x

+ iv
x

= f = v
y

� iu
y

.

Thus
u
x

= v
y

, u
y

= �v
x

,

which are the Cauchy–Riemann equations. This leads us to:

Theorem 19.2. Let f be continuous. The integral
R
C

fdz depends on the endpoints of � if
and only if f is the derivative of a holomorphic function on D.
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Example 19.3. Let k � 2 be an integer. The function f(z) = z�k is continuous everywhere
except z = 0, and outside of that point, f is the derivative of 1

1�k

z1�k. Thus if C is
parametrized by z(t) = eit, �⇡  t  ⇡, then

Z

C

dz

z2
= 0.

This fails when k = 1 because the antiderivative of any branch F (z) of log z (the antideriva-
tive of 1/z) is not defined along its branch cut. So C does not lie in any domain throughout
which F 0(z) = 1/z, and so one cannot make use of an antiderivative. Fortunately, we could
evaluate the k = 1 case directly by parametrization.
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20. February 19

Recall Green’s theorem from multivariable calculus: If D is a region bounded by a closed
curve C and L,M are functions defined on an open region containing D and having contin-
uous partial derivatives there, then

Z

C

(Ldx+Mdy) =

Z Z

D

(M
x

� L
y

)dxdy,

where C is positively oriented. Now, suppose that f(z) = u(x, y) + iv(x, y). Then
Z

C

f(z)dz =

Z

C

(udx� vdy) + i

Z

C

(vdx+ udy).

By Green’s theorem, if the first order partial derivatives are continuous, then f being holo-
morphic implies, via the Cauchy–Riemann equations, that

Z

C

f(z)dz =

Z Z

D

(�v
x

� u
y

)dxdy + i

Z

C

(u
x

� v
y

)dxdy = 0.

We have thus concluded a preliminary version of Cauchy’s theorem.

Theorem 20.1. If f is analytic on a region R with piecewise di↵erentiable boundary @R,
and f 0 is continuous there, then Z

@R

fdz = 0.

We are now on track to prove the Cauchy–Goursat Theorem:

Theorem 20.2. If f is analytic at all points interior to and on a simple closed curve C,
then

R
C

f(z)dz = 0.

This removes the condition that f 0 is continuous that we needed when we appealed only
to Green’s theorem. We begin with an auxiliary result of Goursat.

Theorem 20.3 (Goursat). Let T be a triangular region, and let f be holomorphic on T
(means f is complex-di↵erentiable on an open set containing T ), then

Z

@T

f(z)dz = 0.

Proof. Let

M =
���
Z

@T

f(z)dz
���, ` = perimeter of @T .

Our goal is to show that M = 0.
Step 1: Divide and conquer. Bisect the sides of T , dividing T into 4 triangles T

1

, . . . , T
4

.
Orient each sub-triangle the same way as T . After cancelling segments, we have

4X

j=1

Z

@Tj

f(z)dz =

Z

@T

f(z)dz.

Choose a rectangle T
j

, say T 1, such that |
R
@Tj

fdz| is maximized. Then by the triangle
inequality for integrals,

M 
4X

j=1

���
Z

@Tj

f(z)dz
���  4

���
Z

@T

1

f(z)dz
���.
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Then ���
Z

@T

1

f(z)dz
��� �

M

4
.

Step 2: Get to the limit point z⇤. The argument above for T can be repeated for T 1,
which produces a rectangle T 1 ) T 2 such that

���
Z

@T

2

f(z)dz
��� �

M

42
.

Proceeding inductively, we obtain a sequence of triangles (T n) such that

T 1 ) T 2 ) · · · ) T n ) · · · ,
���
Z

@T

n

fdz
��� �

M

4n
, perimeter(T n) =

`

2n
.

Since each rectangle is contained in the former and their diameters are tending to zero as
n ! 1 (diam/2n), we can conclude that there exists a unique point z⇤ contained in every
T n.
Step 3: Use di↵erentiability and squeeze. Let " > 0 be arbitrary. Since f is holomor-
phic at z⇤ 2 T , there exists � > 0 such that if 0 < |z � z⇤| < �, then

���
f(z)� f(z⇤)

z � z⇤
� f 0(z⇤)

��� < ", hence |f(z)� f(z⇤)� f 0(z⇤)(z � z⇤)| < "|z � z⇤|.

We have already proved that
Z

@T

n

1dz =

Z

@T

n

zdz = 0,

so, upon expanding,
Z

@T

n

(f(z)� f(z⇤)� f 0(z⇤)(z � z⇤))dz

=

Z

@T

n

fdz � (f(z⇤) + f 0(z⇤))

Z

@T

n

1dz � f 0(z⇤)

Z

@T

n

zdz =

Z

@T

n

fdz.

Now, if we choose n > log
2

(`/�), then perimeter(T n) < �. Hence if z 2 T n, then

|z � z⇤| < perimeter(T n) =
`

2n
< �.

Hence

0  M

4n


���
Z

@T

n

fdz
��� =

���
Z

@T

n

(f(z)� f(z⇤)� f 0(z⇤)(z � z⇤))dz
���


Z

@T

n

|(f(z)� f(z⇤)� f 0(z⇤)(z � z⇤))| · |dz|


Z

@T

n

"|z � z⇤| · |dz| 
Z

@T

n

"
`

2n
|dz|

= "
`

2n
`

2n
=

"`2

4n
.

Thus 0  M  "`2. But since " > 0 was arbitrary, we can squeeze by letting " ! 0 and
conclude that M = 0. ⇤
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21. February 21

We will apply Goursat’s theorem to prove the following.

Theorem 21.1. If f is a holomorphic function on an open disc D, then there exists a
holomorphic function F on D such that F 0 = f on D.

Proof. Translate D so that it is centered at z = 0. For z 2 D, let `
z

be the straight line path
from 0 to z. Clearly, `

z

⇢ D (this is why D is a disc!). Define

F (z) =

Z

`z

f(w)dw =

Z
z

0

f(w)dw.

Goal: Show that F is holomorphic on D with F 0 = f .

Let h 2 D be such that z + h 2 D. Note that
Z

z+h

0

f(w)dw +

Z
z

z+h

f(w)dw +

Z
0

z

f(w)dw = 0

by Goursat’s theorem. Hence
Z

z+h

z

f(w)dw =

Z
z+h

0

f(w)dw �
Z

z

0

f(w)dw = F (z + h)� F (z).

Now,
Z

z+h

z

f(w)dw =

Z
z+h

z

f(z)dw +

Z
z+h

z

(f(w)� f(z))dw = f(z)h+

Z
z+h

z

(f(w)� f(z))dw.

By the triangle inequality and our “triangle inequality for integrals”,
���
F (z + h)� F (z)

h
� f(z)

��� =
���
1

h

Z
z+h

z

(f(w)� f(z))dw
���

 1

|h|

Z
z+h

z

|f(w)� f(z)| · |dw|

 h

h
max

|z�w||h|
|f(w)� f(z)| = max

|z�w||h|
|f(w)� f(z)|.

By the continuity of f (since f is holomorphic), for any " > 0, there exists a � > 0 such that
if |h| < �, then for each w such that |z � w|  |h| ,

|f(w)� f(z)| < ".

Thus

|h| < � =)
���
F (z + h)� F (z)

h
� f(z)

��� < ".

In other words, F 0(z) = f(z). ⇤
Recall that we proved:

Theorem 21.2. Let f be continuous on D, and let C ⇢ D. The integral
R
C

fdz depends on
the endpoints of C if and only if f is the derivative of a holomorphic function on D.

This allows us to conclude the Cauchy–Goursat theorem.
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Theorem 21.3 (Cauchy–Goursat). If f is holomorphic on a disc D containing a closed
curve �, then

R
�

fdz = 0.

In the Miscellany, I will describe how one moves from D a disc to any open set.
A simply-connected domain D is a domain such that every simple closed contour within

it contains only points of D.

Theorem 21.4. If f is holomorphic and throughout a simply connected D and C is a closed
contour in D, then Z

C

f(z)dz = 0.

Proof. If C intersects itself at most finitely many times, then the proof follows easily from
Cauchy–Goursat. See Ex. 5, Sec. 53 for one strategy when C intersects itself infinitely many
times. ⇤
Corollary 21.5. If f is holomorphic throughout a simply connected domain D, then it must
have an antiderivative everywhere in D.

Proof. The antiderivative is constructed as in our proof of Cauchy–Goursat. ⇤
Corollary 21.6. Entire functions always possess antiderivatives.

Proof. Since C is simply connected, this follows from the previous corollary. ⇤
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22. February 24

A domain that is not simply connected is multiply connected.

Theorem 22.1. Suppose that

(1) C is a simple closed contour, positive orientation.
(2) C

k

, 1  k  n, are simple closed contours interior to C, each with negative orien-
tation, that are disjoint and whose interiors have no points in common.

If f is holomorphic on all of these contours and throughout the multiply connected domain
of int(C)� [

k

int(C
k

), then Z

C

fdz +
nX

k=1

Z

Ck

fdz = 0.

Proof. Draw the picture. ⇤
Corollary 22.2 (Principle of deformation of paths). Let C

1

, C
2

be positively oriented simple
closed contours with C

1

interior to C
2

. (Draw picture.) If f is holomorphic in the closed
region consisting of those contours and all points between them, then

Z

C1

fdz =

Z

C2

fdz.

Proof. Follows from previous theorem:
Z

C2

+

Z

�C1

= 0.

⇤
Example 22.3. We proved earlier that

Z

|z|=1

dz

z
= 2⇡i.

Now, we find that if � is any simple closed curve containing the origin, then
Z

�

dz

z
= 2⇡i.

By a similar parametrization, we have
Z

|z�a|=1

dz

z � a
= 2⇡i,

and any simple closed curve � containing a satisfies
Z

�

dz

z � a
= 2⇡i.

We now come to the Cauchy Integral Formula, another landmark result in complex anal-
ysis.

Theorem 22.4. Let f be holomorphic inside and on a simple closed contour C, positively
oriented. If z

0

is in the interior of C, then

f(z
0

) =
1

2⇡i

Z

C

f(z)

z � z
0

dz.
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This is pretty amazing: The values of f on the boundary of C completely determine f
on the interior of C! This is probably unlike anything you have seen for functions of a real
variable.

We will require a mild extension of Cauchy’s theorem first.

Lemma 22.5. Suppose that D is a simply connected region, and let z
0

2 A. Suppose g is
holomorphic on A� {z

0

} and continuous on A. Then for all closed curves C ⇢ A, we have
Z

C

gdz = 0.

Proof. We can deform C to a circle of su�ciently small radius r centered at z
0

:
���
Z

C

gdz
��� =

���
Z

|z�z0|=r

gdz
���  2⇡r max

|z�z0|=r

|g(z)|.

The theorem follows from taking r ! 0. ⇤
Proof of Cauchy Integral Formula. Let A be the interior of C. Define

g(z) =

(
f(z)�f(z0)

z�z0
if z 6= z

0

,

f 0(z
0

) if z = z
0

.

Since g is continuous on A and di↵erentiable on A� {z
0

}, we have

0 =

Z

C

gdz =

Z

C

f(z)� f(z
0

)

z � z
0

dz =

Z

C

f(z)

z � z
0

dz �
Z

C

f(z
0

)

z � z
0

dz =

Z

C

f(z)

z � z
0

dz � f(z
0

)2⇡i.

⇤
Theorem 22.6 (Cauchy Integral Formula for derivatives). Let n � 0 be an integer. Under
the same hypotheses as before,

f (n)(z
0

) =
n!

2⇡i

Z

C

f(z)

(z � z
0

)n+1

dz, 0! = 1, f (0) = f.

Proof. Note that

f(z
0

+ h) =
1

2⇡i

Z

C

f(z)

z � z
0

� h
dz, f(z

0

) =
1

2⇡i

Z

C

f(z)

z � z
0

dz.

With a little algebraic manipulation, we have
���
f(z + h)� f(z)

h
�
Z

C

f(z)

(z � z
0

)2
dz

��� =
���
1

2⇡i

Z

C

f(z)h

(z � z
0

� h)(z � z
0

)
dz

���

= c
C,f

|h|
for some constant c

C,f

> 0 independent of h. Now take |h| ! 0 to handle n = 1. We can
proceed inductively for n � 2. ⇤
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23. February 26

Example 23.1. The function

g(x) =

(
(4� x2)/2 if �2  x  0,

(4 + x2)/2 if 0 < x  2

as a function of a real variable is di↵erentiable at x = 0, but it is not twice di↵erentiable
(the derivative is |x|).

Theorem 23.2. If f is holomorphic at z
0

2 C, then its derivatives of all orders are holo-
morphic at z

0

.

Proof. Suppose that f is holomorphic at z
0

. Then there must exist some " > 0 such that f
is also holomorphic on the disc D = {z 2 C : |z � z

0

| < "}. We then have

f 00(z) =
2!

2⇡i

Z

|z�w|="/2

f(w)

(w � z)3
dz

at all points in the disc {z : |z � z
0

| < "/2}. Thus f 0(z) is holomorphic at z
0

(since f 00

exists in a neighborhood of z
0

). Similarly, one can use the holomorphy of f 0 to ensure the
holomorphy of f 000, and then proceed inductively. ⇤
Corollary 23.3. If f = u+ iv is holomorphic at z

0

= (x, y), then u and v have continuous
partial derivatives of all orders at (x, y).

Corollary 23.4 (Morera). Let f be continuous on D. If
R
�

fdz = 0 for every closed contour
� in D, then f is holomorphic on D. (partial converse to Cauchy–Goursat)

Proof. We showed earlier under these hypotheses that f has a holomorphic anti-derivative
F on D. Thus f = F 0. Since F is holomorphic, so is f by the previous theorem. ⇤
Theorem 23.5. Suppose that f is holomorphic inside an on a positively oriented circle C

R

of radius R centered at z
0

. Let M
R

be the maximum value of |f(z)| on C
R

. then

|f (n)(z
0

)|  n!M
R

/Rn, n = 1, 2, 3, . . .

Proof. Use the triangle inequality for integrals on the Cauchy integral formula. ⇤
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24. February 28

Recall that a function is entire if it is holomorphic on all of C.

Theorem 24.1 (Liouville). A bounded entire function must be constant.

Proof. If f is a bounded entire function, then there exists a constant M > 0 such that for
any z

0

2 C and on any circle C
R

centered at z
0

, we have |f(z)|  M for all z on C
R

. Thus

|f 0(z
0

)|  M/R.

But R can be made arbitrarily large, and z
0

was arbitrary. Thus |f 0(z
0

)| = 0 for all z
0

2 C.
Hence f 0(z

0

) = 0 for all z
0

2 C, and f is constant. ⇤
Corollary 24.2 (The fundamental theorem of algebra). Let n � 1, and let a

0

, a
1

, . . . , a
n

2 C
with a

n

6= 0. There exists z
0

2 C such that the polynomial

P (z) =
nX

j=0

a
j

zj

satisfies P (z
0

) = 0.

Proof. We proceed by contradiction. Suppose to the contrary that P (z) 6= 0 for all z 2 C.
Then 1/P (z) is entire. Note that

1

P (z)
=

1

zn
· 1

a0
z

n + a1
z

n�1 + · · ·+ a
n

.

As |z| ! 1, the sum in the denominator tends to a
n

6= 0, and 1/zn ! 0. Thus

lim
|z|!1

1

P (z)
= 0.

Hence there exists R > 0 such that |1/P |  1 outside of the circle |z| = R. Inside the
circle |z| = R, 1/P is continuous, hence bounded. Thus 1/P is bounded everywhere. By
Liouville’s theorem, 1/P is constant. Hence P is constant. But the only constant polynomial
has degree n = 0, and we assumed that n � 1, a contradiction. Thus P must have a zero
somewhere on C. ⇤
Corollary 24.3. If P is a polynomial of degree n with coe�cients in C (leading coe�cient
nonzero), then P

n

has n complex zeros (not necessarily distinct).

Proof. We proceed inductively. For n = 1, this is clear. Suppose that degree n polynomials
have n complex roots. Then a degree n+1 polynomial has a least one root by the fundamental
theorem, say z

0

and factors into (z� z
0

)Q(z), where Q has degree n. Thus the result follows
by mathematical induction. ⇤

The Cauchy Integral Formula tells us that information about a holomorphic f on the
boundary of a region informs us about f on the entire region. We now present an important
consequence of this fact. We first require a lemma from calculus, whose proof is easy and
we omit.

Theorem 24.4 (Maximum modulus principle). If f is holomorphic and non-constant on a
region U , then |f(z)| achieves its maximum on @U .
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Proof. We will prove the result when U is a disc. The general result builds on this case, but
the general result is tedious. See the book for the whole proof.

Let z
0

2 U � @U . Suppose that |f(z)|  |f(z
0

)| in some NBHD {z : |z � z
0

| < "}. Pick a
circle � of radius 0 < r  " centered at z

0

. By Cauchy’s integral formula,

f(z
0

) =
1

2⇡i

Z

�

f(z)

z � z
0

dz =
1

2⇡

Z
2⇡

0

f(z
0

+ rei✓)d✓.

Note that

|f(z
0

)|  1

2⇡

Z
2⇡

0

|f(z
0

+ rei✓)|d✓  1

2⇡

Z
2⇡

0

|f(z
0

)|d✓ = |f(z
0

)|,

so

|f(z
0

)| = 1

2⇡

Z
2⇡

0

|f(z
0

+ rei✓)|d✓.

Hence Z
2⇡

0

(|f(z
0

)|� |f(z
0

+ rei✓)|)d✓ = 0.

Since the integrand is a continuous function of ✓ and the integral is zero, the integrand must
be zero. Thus

|f(z
0

)| = |f(z
0

+ rei✓)|, ✓ 2 [0, 2⇡].

But this holds for all 0 < r  ". So everywhere in the "-NBHD, we have |f(z)| = |f(z
0

)|.
By Midterm Exam Problem 4, it follows that f(z) = f(z

0

) everywhere in the "-NBHD. ⇤
Corollary 24.5. If u is non-constant and harmonic on a region U , then |u| achieves its
maximum on @U .

Proof. There exists a function f , holomorphic on U , such that Ref = u. Then ef is holo-
morphic on U and non-constant on U . Thus |ef | = eu achieves its maximum on @U . ⇤
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25. March 9-11

We will now switch gears and start discussing power series.

Definition 25.1. A sequence of complex numbers (z
n

)
n�1

has a limit z if, for each " > 0,
there exists an integer N > 0 such that |z

n

� z| < " whenever n > N . When the limit exists,
we say that (z

n

) converges to z, and we write

lim
n!1

z
n

= z, z
n

! z.

Otherwise, (z
n

) diverges.

Theorem 25.2. We have z
n

! z if and only if Re(z
n

) ! Re(z) and Im(z
n

) ! Im(z).

Definition 25.3. Given a sequence (z
n

), we define the sequence of partial sums (S
n

) by

S
n

=
nX

k=1

a
n

.

If (S
n

) converges to a limit S, then the infinite series
P1

k=1

z
k

converges to S. Otherwise,
the infinite series diverges.

Theorem 25.4. We have
P1

n=1

z
n

= L if and only if
1X

n=1

Re(z
n

) = Re(L),
1X

n=1

Im(z
n

) = Im(L).

Corollary 25.5. If
P

z
n

converges, then z
n

! 0.

Exercise: Convergent sequences are bounded (i.e. there exists a constant M � 0 such
that |z

n

|  M for all n).

Definition 25.6. A series
P

z
n

converges absolutely if
P

|z
n

| converges.
Corollary 25.7. Absolute convergence of an infinite series implies convergence of that infi-
nite series.

Given a sequence (z
n

) and the sequence of partial sums (S
n

), if S
n

! S, we define the
remainder

⇢
n

= S � S
n

.

We have that S
n

! S if and only if ⇢
n

! 0. This will be important in our study of power
series

1X

n=0

a
n

(z � z
0

)n,

where z
0

and a
n

are complex constants, and z lies in a given region containing z
0

. In such se-
ries, involving a variable z, we denote sums, partial sums, and remainders by S(z), S

n

(z), ⇢
n

(z).

Definition 25.8. A function f on an open set D ⇢ C is analytic at z
0

2 D if f is infinitely
di↵erentiable at z

0

with Taylor series

T (x) =
1X

n=0

f (n)(z
0

)

n!
(z � z

0

)n

converging pointwise to f(z) for all z in a neighborhood of z
0

. Moreover, f is analytic on
D if it is analytic at each z

0

2 D.
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There is a version of this definition for real-valued functions too. For instance,

ex =
1X

n=0

xn

n!
, cos x =

1X

n=0

(�1)nx2n

(2n)!

are real-analytic on all of C.
Theorem 25.9. A function f is holomorphic on D if and only if it is analytic on D.

Example 25.10. Let

f(x) =

(
e�1/x if x > 0,

0 if x  0.

All derivatives of f exist at x = 0 (an exercise in l’Hospital’s rule). In fact, f (n)(0) = 0 for
all n � 0. But f is not identically zero in a neighborhood of zero, so f is not analytic at
zero, even though all of its derivatives exist there (and everywhere else).

Proof. We will prove that holomorphy implies analyticity. The converse direction is immedi-
ate once we justify out ability to di↵erentiate power series term by term when in the region
of absolute convergence, which we will discuss later.

Since holomorphy is defined in terms of discs, it su�ces to check this on discs centered
at z

0

2 D. By a change of variables, it su�ces for us to consider f on and inside a circle
C centered at z = 0 of radius R

0

> 0. Let 0 < r < r
0

< R
0

. Let C be the boundary of
{|z|  R

0

}, and let |z| = r. If f is holomorphic on C
0

, then

f(z) =
1

2⇡i

Z

C0

f(w)

w � z
dw =

1

2⇡i

Z

C

1

w
· 1

1� z

w

f(w)dw

=
1

2⇡i

Z

C

f(w)

w

⇣ 1X

n=0

⇣ z

w

⌘
n

⌘
dw.

Since 0 < r < r
0

< R
0

, we have |z/w| < 1. Thus by properties of geometric series, the above
equals, for any N � 2,

1

2⇡i

Z

C

f(w)

w

⇣⇣ NX

n=0

z

w

⌘
n

+
(z/w)N

1� z/w

⌘
dw =

N�1X

n=0

zn

n!

⇣ n!

2⇡i

Z

C

f(w)

wn+1

dw
⌘
+ zN

Z

C

f(w)

(w � z)wN

dw.

Since |z| = r < r
0

< R
0

= |w|, we have by the triangle inequality for integrals that
���zN

Z

C

f(w)

(w � z)wN

dw
��� 

⇣ r

R
0

⌘
N M

R0

1� r

R0

· 2⇡R
0

.

Thus by the Cauchy Integral Formula,

0  lim
N!1

���f(z)�
N�1X

n=0

f (n)(0)

n!
zn
��� = lim

N!1

���zN
Z

C

f(w)

(w � z)wN

dw
��� 

2⇡M
R0

R
0

� r
lim

N!1

⇣ r

R
0

⌘
N

= 0.

⇤
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26. March 13

We are now in a position to justify our identity ei✓ = cos ✓ + i sin ✓. One of several
equivalent definitions of ex (as a function of a real variable) is the solution to the di↵erential
equation

f 0(x) = f(x), f(0) = 1.

We now consider the same di↵erential equation

f 0(z) = f(z), f(0) = 1.

Any solution to this must be infinitely di↵erentiable (f(z) = f 0(z) = f 0(z) = f 00(z) = · · · )
at z = 0, so let us assume a Taylor series of the shape (note a(0) = 1 by hypothesis)

f(z) =
1X

n=0

a(n)

n!
zn = 1 +

1X

n=1

a(n)

n!
zn = 1 +

a(1)

1!
z +

a(2)

2!
z2 +

a(3)

3!
z3 + · · ·

We now observe that

f 0(z) =
1X

n=1

a(n)

(n� 1)!
zn�1 = a(1) +

a(2)

1!
z +

a(3)

2!
z2 +

a(4)

3!
z3 + · · · .

By comparing coe�cients, we have 1 = a(1) and a(n) = a(n+ 1) for all n � 1. Thus

f(z) =
1X

n=0

zn

n!

is the solution. Since this is precisely the Taylor series of ex with x replaced by z, we are
then justified in defining

ez =
1X

n=1

zn

n!
.

Thus ei✓ is now defined in terms of an absolutely convergent power series. Similarly, we
define

cos z =
1X

n=0

(�1)nz2n

(2n)!
, sin z =

1X

n=0

(�1)nz2n+1

(2n+ 1)!
,

and we recover the more general identity

eiz = cos z + i sin z.

Section 64 contains several other examples of power series expansions for various functions,
and shows how to use construct power series for new functions building o↵ of power series
known for old functions.

But what if f is not analytic at a point z
0

? Is it still possible to talk about a power series
expansion at z = z

0

?

Example 26.1. The function ez/z is not holomorphic (or even defined) at z = 0. However,
if |z| > 0, then we may freely write

ez

z
=

1

z

1X

n=0

zn

n!
=

1

z
+

1X

n=1

zn�1

n!
.
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This equals 1

z

plus the Taylor series centered at zero for

g(z) =

(
(ez � 1)/z if z 6= 0,

1 if z = 0.

(Check that g is holomorphic.) More generally, for an integer m � 1,

ez

zm
=

1

zm

1X

n=0

zn

n!
=

1

zm

m�1X

n=0

zn

n!
+

1

zm

1X

n=m

zn

n!
=

m�1X

n=0

1

zm�nn!
+

1X

n=m

zn�m

n!
.

(The infinite sum is the Taylor series of which function?)

Example 26.2. We have

cos z =
1X

n=0

(�1)nz2n

(2n)!
, z 2 C.

Hence if z 6= 0, then

cos(1/z) =
1X

n=0

(�1)n

(2n)!z2n

Example 26.3. Let
1 + z2

1� z2
, z 6= ±1.

Note that |z| < 1 if and only if |z|2 < 1. Hence we can use

1

1� z
=

1X

n=0

zn, |z| < 1

to deduce
1

1� z2
=

1X

n=0

z2n, |z| < 1.

Moreover,

z2
1X

n=0

z2n =
1X

n=0

z2n+2, |z| < 1.

Hence
1 + z2

1� z2
=

1X

n=0

z2n +
1X

n=0

z2n+2 = 1 + 2
1X

n=1

z2n, |z| < 1.

NOTE: We can only perform this sort of addition in the region of absolute convergence.
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27. March 16

If f is analytic at z = z
0

, then f has a Taylor expansion in some disc centered at z
0

:

f(z) =
1X

n=0

a
n

(z � z
0

)n, |z � z
0

| < R.

There is a more general notion of a power series, one that incorporates negative powers of
z � z

0

. The function f(z) has a Laurent series centered at z
0

if

f(z) =
X

n2Z

a
n

(z � z
0

)n, R
1

< |z � z
0

| < R
2

.

Note that the region
{z : R

1

< |z � z
0

| < R
2

}
is an annulus (like a donut or a washer).

We need R
1

to give us a healthy separation from z
0

because we could be summing infinitely
many negative powers of z � z

0

, depending on the coe�cients.

Theorem 27.1 (Laurent’s theorem). Suppose that f is analytic throughout an annular do-
main R

1

< |z � z
0

| < R
2

, centered at z
0

, and let C be a positively oriented simple closed
curve around z

0

lying in the annulus. Then at each point in the domain,

f(z) =
1X

n2Z

a
n

(z � z
0

)n, R
1

< |z � z
0

| < R
2

,

where for each n 2 Z, we have

a
n

=
1

2⇡i

Z

C

f(z)

(z � z
0

)n+1

dz.

Note that if f is actually analytic in the disc |z � z
0

| < R
2

, then for n � 1,

a�n

=
1

2⇡i

Z

C

f(z)

(z � z
0

)�n+1

dz =
1

2⇡i

Z

C

f(z)(z � z
0

)n�1dz = 0

and for n � 0 by Cauchy–Goursat. Thus

a
n

=

(
f (n)(z

0

)/n! if n � 0,

0 if n < 0.

Thus we recover Taylor’s theorem.

Proof. This proof is a bit di↵erent from the book’s proof. It relies on the fact that we have
already proved Taylor’s theorem.

It su�ces to show that f can be written as f
1

+ f
2

, where f
1

is analytic for |z � a| < R
2

and f
2

is analytic for |z � a| > R
1

, where lim
z!1 f(z) is removable (more on this later).

Under these circumstances, f
1

can be written as a power series in z � z
0

, and f
2

a power
series in (z � z

0

)�1.
To find the representation f = f

1

+ f
2

, we define

f
1

(z) =
1

2⇡i

Z

|w�z0|=r1

f(w)

w � z
dw, |z � z

0

| < r
1

< R
2

,
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and

f
2

(z) = � 1

2⇡i

Z

|w�z0|=r2

f(w)

w � z
dw, R

1

< r
2

< |z � z
0

|.

By the principle of deformation, the values of r
1

, r
2

are irrelevant as long as

R
1

< r
2

< |z � z
0

| < r
1

< R
2

.

For this reason, f
1

and f
2

are uniquely defined and represent analytic functions in |z�z
0

| < R
2

and |z � a| > R
1

, respectively. Moreover, by the Cauchy Integral Formula, f = f
1

+ f
2

.
The Taylor series for f

1

is
1X

n=0

a
n

(z � z
0

)n, a
n

=
1

2⇡i

Z

|w�z0|=r1

f(w)

(w � z
0

)n+1

dw.

To find the series for f
2

, we perform the change of variables

w = a+ 1/w0, z = z
0

+ 1/z0.

This transforms the circle |w � z
0

| = r
2

(with positive orientation) to |w0| = 1/r
2

(with
negative orientation), and we find that

f
2

⇣
z
0

+
1

z0

⌘
=

1

2⇡i

Z

|w0|= 1
r2

z0

w0
f(z

0

+ 1

w

0 )

w0 � z0
dw0.

We now proceed as in our proof of Taylor’s theorem and deduce that

f
2

⇣
z
0

+
1

z0

⌘
=

1X

n=1

b
n

(z0)n,

where

b
n

=
1

2⇡i

Z

|w0|= 1
r2

f(z
0

+ 1

w

0 )

(w0)n+1

dw0 =
1

2⇡i

Z

|w�a|=r2

f(w)(w � z
0

)n�1dw.

The desired result now follows from unraveling our changes of variables. ⇤
Example 27.2. Let

f(z) =
1

z(1 + z2)
=

1

z
· 1

1 + z2
.

This has singularities at z = 0 and z = ±i. We will find the Laurent expansion of f in the
region 0 < |z| < 1. In this region, we have

1

1 + z2
=

1

1� (�z2)
=

1X

n=0

(�z2)n =
1X

n=0

(�1)nz2n, |z| < 1.

Thus

1

z(z2 + 1)
=

1X

n=0

(�1)nz2n�1 =
1X

n=�1

(�1)n+1z2n+1 =
1

z
+

1X

n=0

(�1)n+1z2n+1, 0 < |z| < 1.
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28. March 18

We want to be able to perform limit operations (integrals, derivatives, usual limits, etc.)
to power series by performing the limit operations (integrals, derivatives, usual limits, etc.)
on the individual terms. We now build up toward justifying when we can do this.

Recall that a series
P

a
n

converges absolutely if
P

|a
n

| converges.

Theorem 28.1. If a power series
1X

n=0

a
n

(z � z
0

)n

converges when z = z
1

6= z
0

, then it converges absolutely for each z in the open disc |z�z
0

| <
R

1

:= |z
1

� z
0

|.

Proof. If z
1

6= z
0

and
1X

n=0

a
n

(z
1

� z
0

)n

converges, then the sequence a
n

(z
1

� z
0

)n is bounded; that is, there exists a constant M > 0
such that

|a
n

(z
1

� z
0

)n|  M, n � 0.

If |z � z
0

| < R
1

= |z
1

� z
0

| and we write

⇢ =
|z � z

0

|
|z

1

� z
0

| ,

then

|a
n

(z � z
0

)n| = |a
n

(z
1

� z
0

)n|
⇣ |z � z

0

|
|z

1

� z
0

|

⌘
n

 M⇢n, n � 0,

and X
M⇢n

is a convergent geometric sum. Thus the power series converges absolutely by the comparison
test. ⇤

The greatest circle centered at z
0

such that the power series converges at each point inside
is called the circle of convergence. The power series cannot converge outside of the circle,
but it might converge (perhaps conditionally) on the boundary of the circle.

Our next definition involves some new terminology. Suppose our power series has circle of
convergence |z � z

0

| = R, and let

S(z) =
1X

n=0

a
n

(z � z
0

)n, S
N

(z) =
N�1X

n=0

a
n

(z � z
0

)n |z � z
0

| < R.

Define
⇢
N

(z) = S(z)� S
N

(z), |z � z
0

| < R.

Inside of the circle of convergence, we know that lim
N!1 ⇢

N

(z) = 0. In other words, for all
" > 0, there exists N > 0 such that

|⇢
N

(z)| < " whenever n � N.
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Definition 28.2. When the choice of N depends only on " and is independent of the point
z taken in the specified region within the circle of convergence, the convergence of S

N

(z) to
S(z) is said to be uniform.

Theorem 28.3. If z
1

is a point in the interior the circle of convergence |z � z
0

| = R
of a power series

P
a
n

(z � z
0

)n, then the series converges uniformly in the closed disc
|z � z

0

|  R
1

:= |z
1

� z
0

|.
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29. March 20

Theorem 29.1. If z
1

is a point in the interior the circle of convergence |z � z
0

| = R
of a power series

P1
n=0

a
n

(z � z
0

)n, then the series converges uniformly in the closed disc
|z � z

0

|  R
1

:= |z
1

� z
0

|.

A similar proof holds for Laurent series
P1

n=�1 a
n

(z � z
0

)n in a suitable annular domain
R

1

< |z� z
0

| < R
2

, but it is very similar to what we just did for Taylor series. So I will just
work the proof for Taylor series.

Proof. At our point z
1

, we are in the circle of absolute convergence. Thus
1X

n=0

|a
n

(z
1

� z
0

)n|

converges. We then have

⇢
N

(z) = S(z)� S
N

(z) = lim
m!1

mX

n=N

a
n

(z � z
0

)n.

Define

�
N

= lim
m!1

mX

n=N

|a
n

(z
1

� z
0

)n|.

If |z� z
0

|  R
1

= |z
1

� z
0

|, then it follows from Ex.3, Sec.61 and the triangle inequality that

|⇢
N

|  �
N

, |z � z
0

|  R
1

.

Since lim
N!1 �

N

= 0 (we are in the region of absolute convergence), it follows that for all
" > 0, there exists an integer N

"

> 0 such that �
N

< " when N > N
"

. Since this holds for all
points |z� z

0

|  R
1

, the value of N
"

is independent of z. So the convergence is uniform. ⇤
Theorem 29.2. A power series S(z) =

P1
n=0

a
n

(z � z
0

)n represents a continuous function
at each point in its circle of convergence |z � z

0

| = R.

A similar proof holds for Laurent series
P1

n=�1 a
n

(z � z
0

)n in a suitable annular domain
R

1

< |z� z
0

| < R
2

, but it is very similar to what we just did for Taylor series. So I will just
work the proof for Taylor series.

Proof. Let z, z
1

be in the circle of convergence. Our goal is to prove that for all " > 0, there
exists � > 0 such that

|S(z)� S(z
1

)| < ", |z � z
1

| < �.

So, we let " > 0. For |z � z
0

| < R, we have S(z) = S
N

(z) + ⇢
N

(z). Now, if z
1

lies in the
circle of convergence, then

|S(z)� S(z
1

)| = |S
N

(z) + ⇢
N

(z)� S
N

(z
1

)� ⇢
N

(z
1

)|  |S
N

(z)� S
N

(z
1

)|+ |⇢
N

(z)|+ |⇢
N

(z
1

)|.
By uniform convergence, we know that there exists N

"

> 0 such that

|⇢
N

(z)|, |⇢
N

(z
1

)| < "

3
, N > N

"

.

Since S
N

(z) is continuous (it’s a polynomial), we have that if N = N
"

+ 1, then there exists
a su�ciently small � > 0 such that

|S
N

(z)� S
N

(z
1

)| < "

3
, |z � z

1

| < �.
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Thus |S(z)� S(z
1

)| < ", as desired. ⇤
Theorem 29.3. Let � be a contour interior to the circle of convergence of S(z), and let g(z)
be continuous on �. We have

Z

�

g(z)S(z)dz =
X

a
n

Z

�

g(z)(z � z
0

)ndz.

Proof. One uses uniform continuity much like the proof of continuity of power series, along
with Morera’s theorem. See the book. ⇤

For z in a suitable annulus (away from points of discontinuity), the proof also works for
Laurent series: The idea works for negative integers as well.

Corollary 29.4. S(z) is holomorphic at each point z interior to its circle of convergence.
If S(z) is a Laurent series, then the same holds in the interior of the annulus of definition.

Proof. Take g(z) = 1 everywhere, in which case the theorem yields
R
�

S(z)dz = 0. The result
now follows by Morera’s theorem. ⇤
Corollary 29.5. In its circle of convergence, S(z) satisfies S 0(z) =

P1
n=0

a
n

d

dz

(z � z
0

)n. If
S(z) is a Laurent series, then the same holds in the interior of the annulus of definition.

Proof. Take Theorem 29.3 with

g(z) =
1

2⇡i
· 1

(s� z)2

and apply the Cauchy Integral Formula for derivatives. ⇤
Theorem 29.6. If

P1
n=0

a
n

(z � z
0

)n converges to f(z) at all points interior to some circle
|z � z

0

| = R, then it is Taylor series expansion for f in powers of z � z
0

.
If
P

n2Z an(z� z
0

)n converges to f(z) at all points in some annular domain about z
0

, then
it is the Laurent series expansion for f in powers of z � z

0

in that domain.

Proof. We describe this for Laurent series. We have

f(z) =
X

n2Z

c
n

(z � z
0

)n.

Then by the theorem,
Z

�

g(z)f(z)dz =
X

m2Z

c
m

Z

�

g(z)(z � z
0

)mdz.

We choose

g(z) =
1

2⇡i
· 1

(z � z
0

)n+1

, n 2 Z

and conclude that

c
n

=

Z

�

g(z)f(z)dz =
1

2⇡i

Z

�

f(z)

(z � z
0

)n+1

dz,

which is precisely the coe�cient at n for the Laurent series of f about z
0

. ⇤
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30. March 23

Cauchy–Goursat: If f is analytic at all points interior to and on a simple closed contour
�, then Z

�

f(z)dz = 0.

But what if f is not analytic inside � at, say, finitely many points?

Sec. 25: If f is analytic at z
0

, then f is analytic in a NBHD of z
0

. If f is not analytic
at z

0

, but it is analytic at some point in every NBHD of z
0

, then z
0

is a singular point of f .

We will begin studying isolated singular points, that is, singular points z
0

such that a
function f is analytic at 0 < |z � z

0

| < " but not at z
0

.

Example 30.1. The isolated singularities of z/ cos z are at z = ⇡

2

+ ⇡n for each n 2 Z. If
p, q are polynomials, then the isolated singularities of p(z)/q(z) are the zeros of q(z).

Example 30.2. The principal branch Log(z) has a singular point at z = 0, but it is not
isolated since every NBHD of z = 0 intersects the branch cut (negative real axis).

Example 30.3. The isolated singularities of 1/ sin(⇡/z) are z = 1/n, n = 1, 2, 3, . . .. There
is a singularity at z = 0, but it is not isolated.

When z
0

is an isolated singular point of f , there is a radius R
2

> 0 such that f is analytic
on 0 < |z � z

0

| < R
2

. Thus f has a Laurent series expansion

f(z) =
X

n2Z

a
n

(z � z
0

)n, 0 < |z � z
0

| < R
2

.

Let C be a positively oriented simple closed contour around z
0

that lies in the punctured
disc 0 < |z � z

0

| < R
2

. We have the equality

a
n

=
1

2⇡i

Z

C

f(z)

(z � z
0

)n+1

, n 2 Z.

Note that for n = �1, we have

a�1

=
1

2⇡i

Z

C

f(z)dz.

This number, the coe�cient of (z � z
0

)�1, is called the residue of f at z
0

. We write this as

a�1

= Res
z=z0

f(z) =
1

2⇡i

Z

C

f(z)dz.

Example 30.4. Consider Z

|z|=1

ez � 1

z4
dz.

This is analytic on C apart from z = 0. The Laurent series for the integrand about z = 0 is

1

z4

1X

n=1

zn

n!
=

1

z3
+

1

2z2
+

1

6z
+

1

24
+

z

120
+ · · ·

Since the residue at z = 0 is 1/6, the integral equals 2⇡i · 1/6 = ⇡i/3.
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Example 30.5.

cosh z =
1X

n=0

z2n

(2n)!
.

The residue at z = 0 is zero, so
Z

|z|=1

cosh(1/z)dz = 0.

Example 30.6. Z

|z�2|=1

1

z(z � 2)5
dz

Only singularity inside the contour is at z = 2. So we develop the Laurent series about
z = 2:

1

z(z � 2)5
=

1

(z � 2)5
1/2

1� �(z�2)

2

=
1

2(z � 2)5

1X

n=0

⇣
�z � 2

2

⌘
n

=
1X

n=0

(�1)n

2n+1

(z�2)n�5, 0 < |z�2| < 2.

At n = 4, the coe�cient of (z� 2)�1, is 1/32, which is the residue of our integrand at z = 2.
Hence Z

|z�2|=1

1

z(z � 2)5
dz = 2⇡i(1/32) =

⇡i

16
.

Theorem 30.7 (Cauchy’s residue theorem). Let � be a (positive) simple closed contour. If
f is analytic inside and on � except for a finite number of singular points z

1

, . . . , z
n

interior
to �, then Z

�

f(z)dz = 2⇡i
nX

k=1

Res
z=zk

f(z).

Proof. Choose circles C
k

centered at z
k

(1  k  n) with radius small enough so that each is
contained in � and no two intersect. (The exact value of the radius won’t matter because of
the principle of deformation of curves.) Taking the circles C

k

in the positive direction, we find
that the interior of � intersected with the exterior of the circles C

k

is a multiply connected
region on which f is analytic. Therefore, by Cauchy–Goursat for multiply connected domains
(Theorem 22.1), Z

�

f(z)dz +
nX

k=1

Z

�Ck

f(z)dz = 0.

Since �
R
�Ck

=
R
Ck
, it follows that

Z

�

f(z)dz =
nX

k=1

Z

Ck

f(z)dz.

Since Z

Ck

f(z)dz = 2⇡iRes
z=zk

f(z),

the proof is finished. ⇤
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31. March 25

Example 31.1. Z

|z|=2

4z � 5

z(z � 1)
dz.

The contour contains the two isolated singularities of f at z = 0 and z = 1. Thus
Z

|z|=2

4z � 5

z(z � 1)
dz = 2⇡i

⇣
Res
z=0

4z � 5

z(z � 1)
+ Res

z=1

4z � 5

z(z � 1)

⌘
.

For the singularity at z = 0, we note that

4z � 5

z(z � 1)
= �4z � 5

z

1

1� z
=

⇣5
z
� 4

⌘ 1X

n=0

zn =
5

z

1X

j=0

zj � 4
1X

j=0

zn, |z| < 1.

Thus

Res
z=0

4z � 5

z(z � 1)
= 5.

For the singularity at z = 1, we note that

4z � 5

z(z � 1)
=

4(z � 1)� 1

z � 1

1

1 + (z � 1)
=

⇣
4� 1

z � 1

⌘ 1X

k=0

(�(z � 1))k, 0 < |z � 1| < 1.

A similar calculation shows that

Res
z=1

4z � 5

z(z � 1)
= �1.

Thus the full integral is
2⇡i(5 + (�1)) = 8⇡i.

For both residues, one could alternatively use the partial fraction decomposition

4z � 5

z(z � 1)
=

5

z
� 1

z � 1
,

but such a nice decomposition is never guaranteed.

Suppose f is analytic on C except for finitely many singular points. There exists some
circle C with su�ciently large radius that encompasses all of the the singular points. The
residue theorem tells us how to evaluateZ

C

f(z)dz,

where C is positively oriented. But if C is being negatively oriented (denoted �C), then
the isolated singularities do not lie interior to C any longer. However, the point at infinity
does. (You can think of this as on the Riemann sphere.) In this situation, it is appropriate
to think of infinity as an isolated singularity of f (though it does not lie in C). Now, by our
principle of deformation,

�
Z

C

f(z)dz =

Z

�C

f(z)dz = 2⇡iRes
z=1

f(z).

To find the residue, we consider the Laurent expansion

f(z) =
X

n2Z

c
n

zn, c
n

=
1

2⇡i

Z

C0

f(z)

zn+1

, R
1

< |z| < 1.
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We evaluate f at 1/z and multiply the ensuing sum by 1/z2, obtaining

1

z2
f(1/z) =

X

n2Z

c
n

zn+2

, 0 < |z| < R�1

1

.

Thus Res
z=1 f(z) = Res

z=0

1

z

2f(1/z). Sometimes, but not always, this is easier to compute.
It depends on the function f , the particular singularities, what contour C is, etc.

Let f have an isolated singularity at z = z
0

. Consider the Laurent series

f(z) = T (z) + P (z), 0 < |z � z
0

| < R
2

.

where

T (z) =
1X

n=0

a
n

(z � z
0

)n

is a Taylor series and

P (z) =
1X

n=1

b
n

(z � z
0

)n

is the principal part.
The principal part might have zero terms, in which case we call z

0

a removable singu-
larity of f . The principal part might have m terms (with 1  m < 1), in which case we
call z

0

a pole of order m of f . The principal part might have infinitely many terms, in
which case we call z

0

an essential singularity of f .

Example 31.2. Let

f(z) =
ez � 1

z
, z

0

= 0.

Then in the annular region 0 < |z| < 1, we have

f(z) =
1

z

h
� 1 +

⇣
1 +

z

1!
+

z2

2!
+

z3

3!
+ · · ·

⌘i
=

1

1!
+

z

2!
+

z2

3!
+ · · ·

Thus f has a removable singularity with residue 0 at z = 0. Moreover, lim
z!0

f(z) = 1, and
f can be extended to a function which is holomorphic at z = 0. In particular, the function
ef(z) given by 0 when z = 0 and (ez � 1)/z when z 6= 0 is entire.

Example 31.3. For 0 < |z| < 1, we have

f(z) = e1/z =
1X

n=0

1

n!zn
= 1 +

1

z
+

1

2!z2
+ · · ·

Thus the principal part is infinite, and f has an essential singularity with residue 1 at z = 0.

Theorem 31.4 (Picard). In each NBHD of an essential singularity, a function assumes
every finite value, with one possible exception, an infinite number of times.

Example 31.5. For f(z) = e1/z, we have e1/z = �1 an infinite number of times (z =
1/((2n+ 1)⇡i), n 2 Z). Also, f is not defined at z = 0, but it is holomorphic elsewhere.

Example 31.6. For 0 < |z| < 1, we have

f(z) =
ez

z
=

1

z

1X

n=0

zn

n!
=

1

z
+

1X

n=1

zn�1

n!
=

1

z
+

1X

n=0

zn

(n+ 1)!
.

Thus f has a pole of order 1 with residue 1 at z = 0.
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32. March 27

We now introduce an analytic expression for the residue of f at a pole z = z
0

of finite order
m � 1. For 0 < |z � z

0

| < R
2

, we have

f(z) =
1X

n=0

a
n

(z � z
0

)n +
a�1

z � z
0

+
a�2

(z � z
0

)2
+ · · ·+ a�m

(z � z
0

)m
.

Multiply both sides by (z � z
0

)m:

(z � z
0

)mf(z) =
1X

n=0

a
n

(z � z
0

)n+m + a�1

(z � z
0

)m�1 + a�2

(z � z
0

)m�2 + · · ·+ a�m

.

Take the (m� 1)-th derivative of both sides:

dm�1

dzm�1

(z � z
0

)mf(z) =
1X

n=0

(n+m)(n+m� 1) · · · (n+ 2)a
n

(z � z
0

)n+1 + (m� 1)!a�1

.

Take the limit of both sides as z ! z
0

:

lim
z!z0

dm�1

dzm�1

(z � z
0

)mf(z) = a�1

(m� 1)!.

Now, divide both sides by (m� 1)! to obtain

1

(m� 1)!
lim
z!z0

dm�1

dzm�1

(z � z
0

)mf(z) = a�1

= Res
z=z0

f(z).

This can be extended to m = 0 if we define the d/dz�1 to be identity function.
This calculation also shows:

Theorem 32.1. Let z
0

be an isolated singularity of f . Then z
0

is a pole of order m � 1
of f if and only if there exists a function �(z), holomorphic and nonzero in a NBHD of z

0

,
such that

f(z) = �(z)(z � z
0

)�m, Res
z=z0

f(z) =
�(m�1)(z

0

)

(m� 1)!
.

We now prove a convenient result in the special case:

Lemma 32.2. Suppose that f has an isolated singularity at z
0

, and in a neighborhood of z
0

,
there exist holomorphic functions g and h such that

f(z) =
g(z)

h(z)
,

where h(z
0

) = 0 and h0(z
0

) 6= 0. Then

Res
z=z0

f(z) =
g(z

0

)

h0(z
0

)
.

Proof. By l’Hopital’s rule,

Res
z=z0

f(z) = lim
z!z0

(z � z
0

)f(z) = lim
z!z0

zg(z)� z
0

g(z)

h(z)
= lim

z!z0

g(z) + zg0(z)� z
0

g0(z)

h0(z)
=

g(z
0

)

h0(z
0

)
.

⇤
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Example 32.3. We have already proved that Res
z=0

ez/z = 1. More generally, if m � 1,
then

Res
z=0

ez

zm
=

1

(m� 1)!
lim
z!0

d

dzm�1

ez =
1

(m� 1)!
.

Example 32.4. Let

f(z) =
sin z

z(z � 1)
.

The isolated singularity at z = 0 is removable (we calculated this a while ago), and the
isolated singularity at z = 1 is a pole of order 1 (a simple pole). Thus by our calculation
above,

Res
z=1

sin z

z(z � 1)
=

sin z
d

dz

(z(z � 1))

�����
z=1

= sin 1.

As we have seen, zeros and poles are closely related. Much like the order of a pole, the
order of a zero z = z

0

is the positive integer m such that

f (j)(z
0

) = 0, 0  j  m� 1, f (m)(z
0

) 6= 0.

Theorem 32.5. Let f be analytic at z
0

. Then f has a zero of order m at z
0

if and only if
f(z) = (z � z

0

)mg(z), where g is analytic and nonzero in a NBHD of z
0

.

Proof. Suppose f has a zero of order m at z
0

. The Taylor expansion of f about z
0

is then

f(z) =
1X

n=m

a
n

(z � z
0

)n, a
m

6= 0, a
n

=
f (n)(z

0

)

n!
.

Thus

f(z) = (z � z
0

)m
1X

n=0

a
m+n

(z � z
0

)m+n.

Since a
m

6= 0, we may take

g(z) =
1X

n=0

a
m+n

(z � z
0

)m+n.

Conversely, if f(z) = (z � z
0

)mg(z) with g(z) holomorphic and nonzero in a NBHD of z
0

.
Then

f(z) = (z � z
0

)m
1X

n=0

g(n)(z
0

)

n!
(z � z

0

)n =
1X

n=0

g(n)(z
0

)

n!
(z � z

0

)m+n.

Now,

f (j)(z) =
1X

n=0

g(n)(z
0

)

n!
(m+ n)(m+ n� 1) · · · (m+ n� j + 1)(z � z

0

)m+n�j.

If 0  j  m � 1, this expression equals zero at z = z
0

. Since g(z
0

) 6= 0, this expression is
nonzero at z = z

0

when j = m. ⇤
Example 32.6. f(z) = z4 � 1 = (z � 1)(z + 1)(z � i)(z + i) has four zeros of order 1, at
each 4th root of unity.

Much like isolated singularities, a function f , analytic at z
0

, has an isolated zero at z
0

if there is a deleted NBHD 0 < |z � z
0

| < " in which f is nonzero.
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Theorem 32.7. If f is analytic at z
0

, and f(z
0

) = 0 but f is not identically zero in any
NBHD of z

0

, then f 6= 0 in some deleted NBHD of z
0

.

Proof. See Section 82, theorem 2. ⇤
Theorem 32.8. If f in analytic in a NBHD N

0

of z
0

, and f(z) = 0 at each z of a domain
D or a line segment L containing z

0

, then f ⌘ 0 on N
0

.

Proof. ⇤
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33. March 30

Let us recall a lemma from last time that will be useful for many upcoming examples.

Lemma 33.1. Suppose that f has an isolated singularity at z
0

, and in a deleted neighborhood
of z

0

, there exist holomorphic functions g and h such that

f(z) =
g(z)

h(z)
,

where h(z
0

) = 0 and h0(z
0

) 6= 0. Then

Res
z=z0

f(z) =
g(z

0

)

h0(z
0

)
.

Proof. By l’Hopital’s rule,

Res
z=z0

f(z) = lim
z!z0

(z � z
0

)f(z) = lim
z!z0

zg(z)� z
0

g(z)

h(z)
= lim

z!z0

g(z) + zg0(z)� z
0

g0(z)

h0(z)
=

g(z
0

)

h0(z
0

)
.

⇤
Lemma 33.2. Suppose that f has an isolated singularity at z

0

, and z
0

is a pole of order 1.

33.1. Rational functions of trig functions. Let

R(x, y) =
p(x, y)

q(x, y)

be a ratio of polynomials in two variables without a pole on the circle x2 + y2 = 1. Then by
the change of variables z = eit (note that z = z�1 now), we have

z = x+ iy, x = cos t =
z + z�1

2
, y = sin t =

z � z�1

2i
and
Z

2⇡

0

R(sin t, cos t)dt =

Z

|z|=1

R
⇣z � z�1

2i
,
z + z�1

2

⌘dz
iz

=
2⇡i

i

kX

j=1

Res
z=zk

1

z
R
⇣z � z�1

2i
,
z + z�1

2

⌘
,

where z
k

ranges over the poles of the integrand inside the circle |z| = 1.

Example 33.3. Let a > 1, and consider the integral
Z

2⇡

0

dt

a+ sin t
.

Then Z
2⇡

0

dt

a+ sin t
=

Z

|z|=1

1

a+ z�z

�1

2i

dz

iz
=

1

i

Z

|z|=1

2i

z2 + 2aiz � 1
dz.

The integrand has one pole in the circle, namely

z
0

= �ai+ i
p
a2 � 1.

The pole is of order 1, so we apply Lemma 33.1 to compute the residue:

Res
z=z0

2i

z2 + 2aiz � 1
=

2i

2z + 2ia

�����
z=z0

=
i

z
0

+ ai
=

1p
a2 � 1

,
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so the integral equals
1

i
2⇡iRes

z=z0

1

z2 + 2aiz � 1
=

2⇡p
a2 � 1

.

33.2. Rational functions with no real poles. Let r(x) = p(x)/q(x) be a rational function
with no real poles. Suppose that

lim
|z|!1

zr(z) = 0.

Consider the contour � = [�R,R] [ �
R

, where �
R

is parametrized by Reit, 0 < t < ⇡. Then
Z

R

�R

r(x)dx+

Z

�R

r(z)dz = 2⇡i
X

Im(zk)>0

Res
z=zk

r(z),

where z
k

ranges over the poles of r(z) lying inside �. We now take R ! 1. Note that
���
Z

�R

r(z)dz
���  ⇡R ·max

z2�R
|f(z)|,

which tends to 0 as R ! 1 by hypothesis. Thus
Z 1

�1
r(x)dx = 2⇡i

X

Im(zk)>0

Res
z=zk

r(z),

where z
k

runs over all poles of r(z) with Im(z
k

) > 0. By identical methods, we could also
prove Z 1

�1
r(x)dx = �2⇡i

X

Im(zk)<0

Res
z=zk

r(z).

Example 33.4. Consider Z 1

0

dx

x6 + 1
=

1

2

Z 1

�1

dx

x6 + 1
.

Clearly

lim
|z|!1

z

z6 + 1
= 0.

The integrand has six poles: z
k

= e⇡i/6+⇡ik/3, k = 0, 1, 2, 3, 4, 5. When k = 0, 1, 2, the
imaginary part is positive. Thus

Z 1

0

dx

x6 + 1
= 2⇡i

2X

k=0

Res
z=zk

1

z6 + 1
.

The poles of z6 + 1 are simple, we apply Lemma 33.1 to compute the residues:
Z 1

0

dx

x6 + 1
=

1

2
2⇡i

2X

k=0

1

6z5

�����
z=zk

= ⇡i
2X

k=0

1

6z5
k

.

Since z6
k

= �1 (these are roots of the equation z6 = �1), we have that
Z 1

0

dx

x6 + 1
= ⇡i

2X

k=0

�z
k

6
= �⇡i

6
(e⇡i/6 + e⇡i/2 + e5⇡i/6) = �⇡i

6
· 2i = ⇡

3
.
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34. April 1, April 3

Definition 34.1. Let f(z) be holomorphic in the region Im(s) � 0 apart from finitely many
isolated singularities. The Cauchy principal value of the integral

Z 1

�1
f(x)eixdx

is

lim
R!1

Z
R

�R

f(x)eixdx.

The Cauchy principal value equals the full integral precisely when the integral converges
absolutely, that is, Z 1

�1
|f(x)|dx < 1.

34.1. No real singularities. Suppose that

lim
|z|!1

f(z) = 0.

For R > 0 large, let � = �
R

[ [�R,R], where �
R

is parametrized by z(t) = Reit, 0 < t < ⇡.
Then Z

R

�R

f(x)eixdx+

Z

�R

f(z)eizdz =

Z

�

f(z)eizdz = 2⇡i
X

|zk|R

Im(zk)>0

Res
z=zk

f(z).

Let
M(R) = max

0✓⇡

|f(Rei✓)|.

Since sin ✓ is symmetric about ⇡/2 on [0, ⇡], we have
���
Z

�R

f(z)eizdz
���  M(R)

Z
⇡

0

e�R sin ✓Rd✓ = 2

Z
⇡/2

0

e�R sin ✓Rd✓

Note that
2

⇡
 sin ✓

✓
 1, 0  ✓  ⇡

2
,

as can be proved in a number of ways (geometry, Taylor series, etc.). Thus

2

Z
⇡/2

0

e�R sin ✓Rd✓  2R

Z
⇡/2

0

e�2R✓/⇡d✓ = ⇡.

Thus ���
Z

�R

f(z)eizdz
���  M(R) · ⇡.

Since lim|z|!1 f(z) = 0, we have

0  lim
R!1

���
Z

�R

f(z)eizdz
���  ⇡ lim

R!1
M(R) = 0.

Thus

lim
R!1

Z
R

�R

f(x)eixdx = 2⇡i
X

Im(zk)>0

Res
z=zk

f(z)
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Example 34.2.
Z 1

0

cos x

x2 + 1
dx =

1

2
Re

Z 1

�1

eix

x2 + 1
dx =

1

2
Re

⇣
2⇡iRes

z=i

eiz

z2 + 1

⌘
=

1

2
Re

⇣ 2⇡ieiz

d

dz

(z2 + 1)

���
z=i

⌘
=

⇡

2e
.


