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Definition 1. A dynamical ideal consists of a group Γ, its action on a set X, and an
ideal I on X invariant under the group action. Dynamical ideals will be denoted by
(Γ ↷ X, I).

Definition 2. Given a dynamical ideal (Γ ↷ X, I), one can construct a permutation
model of set theory as follows: let V [[X]] be a model of set theory with atoms using
X as the atoms, and define the permutation model W [[X]] to be the transitive part of
{A ∈ V [[X]] : there exists b ∈ I such that pstab(b) ⊆ stab(A)}.

Certain dynamical properties of the dynamical ideal correspond to fragments of choice
in the permutation model.

Definition 3. A dynamical ideal (Γ ↷ X, I) is σ-complete if for all a ∈ I and sequences
(bn : n ∈ ω) ⊆ I, there exists group elements γn ∈ pstab(a) such that

⋃
γn · bn ∈ I.

Theorem 1. If a dynamical ideal is σ-complete, then the associated permutation model
satisfies the axiom of countable choice.

Definition 4. A dynamical ideal (Γ ↷ X, I) has cofinal orbits if for all a ∈ I there
exists b ∈ I which is a-large: for all c ∈ I there exists γ ∈ pstab(a) such that c ⊆ γ · b.

Theorem 2. If a dynamical ideal has cofinal orbits, then the corresponding permutation
model satisfies the axiom of well-ordered choice.

We look at some examples of dynamical ideals from topological spaces with these
dynamical properties.

1 Ideal of countable compact sets

Definition 5. Let (X, τ) be a topological space. We say a compact set A ⊆ X is dis-
jointable with respect to basis B if for any cover C of A there exists a refinement into
pairwise disjoint elements of B. Note that A is disjointable with respect to τ if and only
if A has dimension 0.

Definition 6. Let X be a topological space with basis B, and I an ideal on X. We call I
disjointable if for any a ∈ I and any cover C of a by open sets, there exists a refinement
by pairwise disjoint basic open sets.

Proposition 3. Let X be Polish, A ⊆ X be compact, let B ⊆ X be countable, and let
U ⊆ X be a basic open ball containing A. Then there is a basic open ball A ⊆ V ⊆ V ⊆ U
with the same center as U . In particular, V can be chosen such that bd (V ) ∩B = ∅.
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Proof. Write U = Ball(x, r) as a ball centered at x with radius r. Let δ = inf{ε : A ⊆
Ball(x, ε)}. Since A is closed, we note A ̸⊆ Ball(x, δ), and so δ ̸= r. Hence for any
ε ∈ (δ, r), we can let V = Ball(x, ε) and have V ⊆ V̄ ⊆ U . We observe that if two
balls are constructed from the same center with different radii, then the boundaries are
disjoint. Hence if the boundaries are equal, they must be empty. If such a ε exists such
that the boundary is empty, then the boundary is trivially disjoint from b. Otherwise,
we conclude that the continuum many possible values for ε allow for continuum many
possible distinct pairwise disjoint boundaries, and by the pigeonhole principle at least
one of these boundaries is disjoint from b.

The following is similar to Proposition 1, but in particular is useful to argue that
Polish spaces with a basis of rational balls is disjointable.

Proposition 4. Let X be Polish, A,B ⊆ X countable compact, and let U ⊆ X be a
metric open ball containing A. Then there is a metric open ball with rational radius V
with the same center as U such that A ⊆ V ⊆ V ⊆ U , and bd(V ) ∩B = ∅.

Proof. Let U = Ball(x, r) and define a continuous function f : B → R by f(y) = d(x, y).
Note that since B is countable compact, so is f(B), and hence f(B) is nowhere dense.
Let δ = inf{ε : A ⊆ Ball(x, ε)}, and note that {s ∈ Q : δ < s < r and s ̸∈ f(B)} is
nonempty. Fix some s from this set, and note V = Ball(x, s) works.

Proposition 5. Let X be Polish, A ⊆ X be countable compact, and let ε > 0. There is
a finite cover C of A such that the C ∈ C are pairwise disjoint basic open balls of radius
at most ε. In particular,

⋃
C ⊆ Ball(A, ε).

Proof. We proceed by induction on the Cantor-Bendixson rank of A. Let α be the least
ordinal such that A(α) ̸= ∅ and A(α+) = ∅. Then A(α) contains no limit points; we write
A(α) = {xi : i ∈ ω}, and we recursively construct balls Bi = Ball(xi, εi) with εi ≤ ε such
that (a) for j < i,Bi ∩Bj = ∅, (b) for j > i, xj ̸∈ Bi, and (c) for all x ∈ A and all i ∈ ω,
x ̸∈ bd(Bi). We note that property (c) can be obtained by Proposition 3 above, and (a)
and (b) can be done since A(α) contains no limit points. In the end, we let A∗ = A\

⋃
Bi,

and we note A∗ is closed of rank ≤ α. We let δ = min{d(a, b) : a ∈ A∗, b ∈
⋃
Bi}. By

compactness, this minimum exists, and it is not 0 since the Bi were chosen to not intersect
A in its boundary. Hence by induction, we can cover A∗ with disjoint open balls of radius
smaller than δ, and these balls will also be disjoint from the Bi hence we get a cover of
all of A as desired.

Corollary 5.1. Fix a Polish space X and a complete compatible metric d. This space with
the basis of rational metric balls and the ideal of countable compact sets is disjointable.

Proof. Let A ⊆ X be countable compact and let C be a cover of A. Use Proposition
4 to replace C with a refinement such that for each C ∈ C, bd(C) ∩ A = ∅. Let ε =
min{d(a, b) : a ∈ A, b ∈ bd(C) for C ∈ C}. Now use Proposition 5 to construct a cover
of A by balls of radius smaller than ε. We note that by the choice of ε, this cover is
guaranteed to be a refinement of C.
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Question 6. Is there an example of a space that is disjointable for one basis yet not
disjointable for another basis?

Answer 6.1. Euclidean space Rn with the ideal of compact 0-dimensional sets is dis-
jointable if the basis is the collection of all path-connected open sets, yet not if the basis
is the collection of all metric balls.

Question 7. What topologies and ideals are disjointable for all bases?

Answer 7.1. Trivially, the discrete topology is disjointable for any ideal and basis.

Definition 7. Let (Γ, X, I, d) be a dynamical ideal with a metric. We say the dynamical
ideal is tight if for all a, b ∈ I, ε > 0, there is γ ∈ pstab(a) such that γ · b ⊆ Ball(a, ε).

Proposition 8. Let X be a metric space, Γ the group of homeomorphisms on X, and I
the ideal of countable compact sets. If (Γ, X, I) is tight, then it is σ-complete.

Proof. Let a ∈ I, bn ∈ I for n ∈ ω. Since (Γ, X, I) is tight, find γn ∈ pstab(a) such that
γn(bn) ⊆ Ball(a, 1/n). We claim that A = a∪

⋃
γn(bn) ∈ I. Clearly A is countable. Now

let (xk) be a sequence in A such that xk → x ∈ X. There are two cases. If ∀n∃N∀M ≥
NxM ∈ Ball(a, 1/n). Then x ∈ a ⊆ A. On the other hand, if ∃n∀N∃M ≥ NxM ̸∈
Ball(a, 1/n), then pass to a subsequence xMk

such that for all k, xMk
̸∈ Ball(a, 1/n).

Then for all k, xMk
∈
⋃

i<n γi(bi) which is closed.

Question 9. There is a possible generalization of the above notion of tightness beyond
metric spaces as follows: Γ, X, I is tight if for all a ∈ I there exists a family of open sets
On such that

⋂
On = a and for all a, b ∈ I and open set O ⊇ a there exists γ ∈ pstab(a)

such that γ · b ⊆ O. However, to get a generalization of the proposition, we’d need to find
a proof that addresses closure, not just sequential closure.

Proposition 10. Let {C1, . . . , Cm} be a collection of pairwise disjoint closed balls in Rn.
Then there is a set K such that C1, C2 ⊆ K and for 3 ≤ i ≤ m, Ci ∩K = ∅. Further, we
can find K such that K = h(B) is the image of the unit ball under some homeomorphism
of Rn.

Proof. Let L be a straight line path from the center of C1 to the center of C2. Since the
balls are all closed pairwise disjoint, we can find larger balls D3 ⊇ C3, D4 ⊇ C4, . . . , Dm ⊇
Cm such that C1, C2, D3, . . . , Dm are all pairwise disjoint. If L passes through Di, then
replace L such that it traces the geodesic along the boundary of Di. We note that by this
construction, L does not have a knot, so there is a homeomorphism ψ of Rn that sends L
to the first axis. That is, ψ(L) ⊆ {(x, 0, . . . , 0) : x ∈ R}. We construct a cylinder about
L as follows: cylρL := ψ−1({(x, r2, . . . , rn) :

√
r22 + · · ·+ r2n ≤ ρ, (x, 0, . . . , 0) ∈ ψ(L)}).

In particular, we can choose ρ small enough such that cylρL doesn’t meet any of the
C3, . . . , Cm. Then let K = C1 ∪ cylρL ∪ C2.
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Proposition 11. Let A,B be open balls whose closure is contained in the interior of the
annulus Sn× [0, 1]. There exists a homeomorphsim of the annulus h such that h(A) ⊆ B
and h ↾ Sn × {0, 1} =id.

Proof. Note: for the 2 dimensional annulus, we can turn this into a corresponding prob-
lem with a square by finding a path from the inner circle to the outer circle that avoids A
and B. Unfortunately, this approach generalizes to the cylinder S1 × [0, 1]n, as opposed
to the annulus Sn × [0, 1]. An alternate approach is as follows:

We let A = Ball(x, r) be the ball of radius r centered at x and B = Ball(y, s) be
the ball of radius s centered at y. We construct the homeomorphism of the annulus in
three steps: h1 will be such that h1(A) has radius at most s, h2 will be such that h2h1(x)
has last coordinate equal to the last coordinate of y, and finally h3 will be such that
h3h2h1(x) = y. If r ≤ s already, let h1 be the identity. Otherwise, let t > r be such that
cl(Ball(x, t)) is contained in the interior of the annulus. Now let h1 be a contraction
of this ball fixing the boundary such that h1(A) is a ball of radius s. To get h2, let
x = (x1, . . . , xn, k) and y = (y1, . . . , yn, ℓ). Note that there is a homeomorphism f of
[0, 1] such that f(k) = ℓ. Let h2 be the homeomorphism of the annulus that fixes the
first n coordinates and maps the last coordinate according to f . To get h3, rotate the
interior of the annulus accordingly.

Proposition 12. The dynamical ideal (Homeo(Rn),Rn, I, where I is the ideal of count-
able compact sets, is tight.

Proof. For n = 1, a different argument is necessary. For n ≥ 2, the following works.
Let C = {C1, . . . , Cm} be a countable cover of a by pairwise disjoint basic open balls

of radius at most ε such that bd (Ci)∩b = ∅. Note that we can replace b with b\
⋃
C and

replace a with a∪ (b∩
⋃

C). The new b is still compact, and by the choice of C, the new a
is also compact, and still covered by C. Now choose a δ small enough such that Ball(b, δ)
is disjoint from

⋃
C, and find a cover D = {D1, . . . , Dℓ} of b by pairwise disjoint balls

of radius at most δ. We use induction on ℓ to construct γ such that γ(b) ⊆
⋃
C and

γ ↾ a = id. The base case ℓ = 0 is trivial. Now for general ℓ, we start by finding γ1 such
that γ1(b ∩ D1) ⊆

⋃
C and γ1 fixes all other points of a and b. Use Proposition 10 to

find a set K containing C1, D1 that is the image of the unit ball by a homeomorphism
h1 of Rn. Use Proposition 3 to find a ball C ′ ⊊ C1 containing a ∩ C1, and note that C̄ ′

is also the image of the unit ball by a homeomorphism h2 of Rn. Note that h = h2 ◦ h1
is a homeomorphism of Rn that maps K into C̄ ′, which is contained in the interior of
K. Hence by the annulus theorem, the difference K \ h(int(K)) is homeomorphic to an
annulus. From here, we use Proposition 3 to find a D′ ⊊ D1 that contains b ∩ D1 and
find some open ball U ⊂ C1 \ C ′. By Proposition 11, there is a homeomorphism of the
annulus that takes D′ to U while fixing the boundary. Hence we can define γ1 to be this
map inside the annulus and the identity outside the annulus to get a homeomorphism of
Rn that fixes a and moves b ∩D1 within ε of a. Now replace a with a ∪ γ1(b ∩D1), and
replace b with b \D1. Note that a is still compact and covered by C. Use the induction
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hypothesis to get γ2 that maps b into
⋃

C. Taking the composition, γ2 ◦ γ1 is the desired
homeomorphism.

Corollary 12.1. The dynamical ideal (Homeo(Rn),Rn, I, where I is the ideal of count-
able compact sets, is σ-complete.

Proposition 13. The dynamical ideal (Homeo(2ω), 2ω, I), where I is the ideal of count-
able compact sets, is tight.

Proof. Let a, b ⊆ 2ω and ε be given. Let C = {C1, . . . , Cn} be a cover of a by balls of
radius smaller than ε. Now choose a δ small enough such that Ball(b, δ) is disjoint from⋃
C, and let D = {D1, . . . , Dm} be a cover of b by disjoint balls of radius smaller than

δ. We argue by induction on m: find a basic open set U ⊆ C1 such that Ū ∩ a = ∅,
and let γ1 be a homeomorphism that swaps D1 and U while fixing all other points. By
induction, find a γ2 that maps b \ D1 into

⋃
C and fixes a ∪ γ1(b ∩ D1). Then we see

γ2 ◦ γ1 is a homeomorphism of 2ω that fixes a and maps b within ε of a.

Corollary 13.1. The dynamical ideal (Homeo(2ω), 2ω, I) is σ-complete.

Question 14. If X is a metric space and I is a σ-ideal of closed sets, then must the
dynamical ideal (Γ, X, I) be tight?

2 Ideal of closed nowhere dense sets

Definition 8. Let (Γ, X, I) be a dynamical ideal. The ideal has cofinal orbits if for every
a ∈ I there is b ∈ I which is a-large: for every c ∈ I there is γ ∈ pstab(a) such that
c ⊆ γ · b.

Proposition 15. Let X = Rn, Γ be the group of homeomorphisms of Rn, and I the ideal
generated by closed nowhere dense sets. Then (Γ, X, I) has cofinal orbits.

We first define the Sierpiński carpet and note a couple theorems about it because the
carpet will be instrumental in finding an a-large set.

Definition 9. Let X be a compact connected metric space. We say X is an n-dimensional
Sierpiński carpet (S-carpet) if it can be embedded in the sphere Sn+1 in such a manner
that

1. the set {Ui : i ∈ ω} of components of Sn+1 \ X forms a sequence such that
diam(Ui) → 0

2. Sn+1 \ Ui is an n+ 1 cell for each i.

3. the set of closures {Ui : i ∈ ω} is pairwise disjoint.

4.
⋃
Ui = Sn+1.
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Any homeomorphic image of an S-carpet is also an S-carpet.

Definition 10. We note that if X ⊆ Rn+1 is an n dimensional S-carpet, then exactly
one of the components of Rn \X is unbounded. Given an n + 1 cell D ⊆ Rn+1, we say
X fills D if the unbounded component of Rn+1 \X is exactly Rn+1 \D. Equivalently, X
fills D if X ⊆ D and bd(D) ⊆ X.

The following theorem is attributed to Whyburn for n = 1 and Cannon for n ≥ 2.
Cannon used the annulus theorem to extend Whyburn’s results for all n ̸= 4 since the
annulus theorem had not been proved for n = 4 at the time. The annulus theorem has
since been proven for the n = 4 case, and so we note the characterization theorem holds
in all dimensions.

Proposition 16. Let X and Y be two n-dimensional S-carpets embedded in Sn+1 and let
U and V be components of Sn+1 \X and Sn+1 \Y respectively. If h is a homeomorphism
from the boundary of U to the boundary of V , then h can be extended to a homeomorphism
from X to Y .

This proposition tells us that all S-Carpets of the same dimension are homeomorphic.
We note the following special case of the previous proposition:

Corollary 16.1. Let X and Y be two n − 1-dimensional S-carpets that fill the n cell
D ⊆ Rn. There is a homeomorphism φ of Rn which is the identity on R \D and whose
restriction to X is a homeomorphism from X to Y .

Proof. Apply the previous proposition such that h is the identity map on the boundary
of D. The proposition yields an extension h̄ : X → Y . It remains to extend h̄ to φ by
defining φ on each component Ui of R \X. The unbounded component is exactly R \D,
and we let φ be the identity here. Otherwise, for the bounded Ui, note that h̄(bd(Ui)) is
the boundary for one of the components of D \ Y . Denote the corresponding component
of D \ Y by Vi, and let hi extend h̄ ↾ bd(Ui) be a homeomorphism between Ui and Vi.
Take φ to be the union of h̄ and all hi.

When he first introduced the one-dimensional S-carpet, Sierpiński proves that his
construction contains a topological image of a any compact nowhere dense set in the
plane. His theorem generalizes to higher dimensions, but the homeomorphism given is a
product of homeomorphisms and hence is not the identity on the boundary of the square
that his carpet fills. We state a slightly modified version of his theorem, generalized to
arbitrary finite dimension.

Proposition 17. Let X = [0, 1]n, let A ⊆ X be compact nowhere dense. There is an
S-Carpet K which fills X such that A ⊆ K.

Proof. We first define some notation: for the entirety of this proof, a box will be taken
to mean a product of closed intervals. We consider arbitrary elements of X to have
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the form x = (x0, x1, . . . , xn−1) and we denote sequences in (3n)<ω as (αj
i : j ∈ k, i ∈

n) = (α0
0α

0
1 . . . α

0
n−1;α

1
0 . . . α

1
n−1; . . . ;α

k−1
0 . . . αk−1

n−1). We will define D(αj
i : j ∈ k, i ∈ n)

(referred to as Dk(α
j
i ) or sometimes just by D(αj

i )) by recursion on k, and in the end
define

K = X \
⋃

(αj
i )∈(3n)<ω

int(D(αj
i )).

To start with the case k = 0, divide X into 3n congruent boxes separated by the hyper-
planes xi = 1/3 and xi = 2/3. Denote the box containing the center by V0, and use the
fact that A is nowhere dense to find a box D0 ⊆ V0 such that A∩D0 = ∅. D0 is a product
of intervals; say the interval in the i’th coordinate is [x1i , x

2
i ]. Extend the hyperplanes

xi = x1i and xi = x2i to get new boxes, and label the boxes by R1(α
j
i ) such that R1(α

j
i )

denotes the α0
i ’th box along the i’th axis. Formally, we define R1(α

j
i ) =

∏
i∈n[x

α0
i

i , x
α0
i+1

i ],
where x0i = 0 and x3i = 1. We note that R1(1, . . . , 1) = D and that for all possible

intervals, [x
α0
i

i , x
α0
i+1

i ] < 2/3. In particular, we see diam(R1(α
j
i )) <

√
n · 2/3.

Now for successor values of k, assume that for (αj
i ) ∈ (3n)k, we have already defined all

of the boxes Rk(α
j
i ) and that diam(Rk(α

j
i )) <

√
n · (2/3)k. Fix a particular sequence

(αj
i ), and we define Dk(α

j
i ) by first dividing Rk(α

j
i ) into 3k congruent boxes, denoting

the box which contains the center of Rk(α
j
i ) by Vk(α

j
i ). Let Dk(α

j
i ) ⊆ Vk(α

j
i ) be a box

disjoint from A. Now for βj
i : j ∈ k + 1, i ∈ n which extend αj

i , define Rk+1(β
j
i ) to

be the boxes obtained by extending the hyperplane edges of Dk(α
j
i ). Again we have

Rk+1(α
j
i ; 1, . . . , 1) = Dk(α

j
i ), and in every dimension, Rk+1(β

j
i ) is at most 2/3 the length

of Rk(α
j
i , so we see diam(Rk+1(β

j
i )) <

√
n · (2/3)k+1.

We let K have the definition stated above, and now we show that K is an S-Carpet
which contains A. By construction, each D(αj

i ) is disjoint from A, so K contains
A. We note that not all of the int(D(αj

i )) are full components of X \ K; in partic-
ular if (αj

i ) = (βj
i )

⌢(1, . . . , 1)⌢(γji ) contains the sequence of n 1’s, then D(αj
i ) is a

proper subset of D(βj
i ). Otherwise, we consider the sequence of complementary com-

ponents {Ui : i ∈ ω} to be the interiors of maximal D(αj
i ). Since diam(Dk(α

j
i )) =

diam(Rk+1(α
j
i ; 1, . . . , 1) <

√
n · (2/3)k+1, we see that diam(Ui) → 0. Further, by embed-

ding K into the sphere by identifying the boundary of X, we see that for each i, Sn+1\Ui

is indeed an n+1 cell. By construction, the maximal D(αj
i ) are disjoint, hence so are the

closures of the Ui. Finally, to see that K itself is nowhere dense, let O be an arbitrary
open set. Note that for a fixed k, the set {Rk(α

j
i ) : α

j
i ∈ (3n)k} covers X. Choose a large

enough k and (αj
i ) ∈ (3n)k such that Rk(α

j
i ) ⊆ O, and see Dk(α

j
i ) ⊆ Rk(α

j
i ) ⊆ O.

Now we are ready to prove that the ideal of closed nowhere dense sets has cofinal
orbits.

Proof. Let A ⊆ Rn be closed nowhere dense. First let L be the union of all hyperplanes
of the form xi = m for m ∈ Z, and let K ⊇ L∪A be closed nowhere dense such that the
components of its complement are all homeomorphic to open balls. In particular, note
that we can do this by filling each cube Q of L by a S-Carpet which contains A ∩ Q.
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Now index the components of Rn \K by {Ui : i ∈ ω} and fill each Ui with an S-Carpet
Bi. We let B = K ∪

⋃
Bi, and claim that B ∈ I is A-large.

To see that B is closed, we note that each component of the complement of B is an
open set, and to see that B is nowhere dense, let U be an arbitrary open set. There
is some Ui that meets U , and we note that some component of Rn \ Bi is contained
in U ∩ Ui. Finally, to see that B is A-large, let C be a closed nowhere dense set. Let
Ci = C ∩Ui and let Di be a S-Carpet filling Ui which contains Ci. Since both Bi and Di

are S-Carpets filling Ui, we can use Corollary 16.1 to find a homeomorphism hi : Ui → Ui

which is the identity on the boundary and such that hi(Bi) = Di. In particular, we also
get hi(Bi) ⊇ Ci. After defining hi in this manner for each i, we let γ = id ↾ K ∪

⋃
i∈ω hi

be the desired homeomorphism to witness that B is A-large. We note that since each hn
is the identity on the boundary of where it’s defined, and this boundary is exactly the
portion of K on which hn is defined, γ is well-defined. Since γ is the identity on K ⊇ A,
we know γ ∈ pstab(A), and by construction we have C ⊆ γ(B).

As a note, we get the same result working in Sn and/or by using the ideal of compact
nowhere dense sets instead of closed nowhere dense.

3 Ideal of compact 0-dimensional sets

In this section, we let X = R2, Γ be the group of self-homeomorphisms of R2 acting by
application, and I be the ideal generated by compact 0-dimensional sets.

Theorem 18. The dynamical ideal (Γ ↷ X, I) has cofinal orbits.

Proof. We note that if A ⊆ R2 is compact nowhere dense, then there exists a map
f : [0, 1] → R2 which is homeomorphic on its image such that A ⊆ f ′′[0, 1]. Hence
without loss of generality, we can assume that a is contained within the unit circle, and
since closed sets of dimension 0 are nowhere dense in R and all nowhere dense sets are
contained in an n − 1 dimensional S-carpet, we can assume that a is the 0-dimensional
S-carpet, i.e. the Cantor set. We fill each component Ui of S

1 \ a with another copy of
the Cantor set denoted bi, and claim b = a ∪

⋃
bi is a-large.

Let c ∈ I be given; we construct the necessary homeomorphism in three steps. Now
find a γ1 ∈ Γ that fixes S1 pointwise such that c\a is disjoint from the rays which extend
from the origin and pass through points of a. Let Vi be the open set consisting of points
which lie on the same ray from the origin as some point in Ui, and let ci = γ1 · c ∩ Vi.
Now let p, q denote the endpoints of Ui, and find a path from p to q which stays in Vi
and contains every element of ci. Let φi be the selfhomeomorphism of Vi which fixes
the boundary of Vi and maps this path to Ui, and let γ2 be the union of all φi. Finally,
we note that on each Ui there is a boundary-preserving self-homeomorphism ψi such
that bi ⊇ ψiφi · ci. We note that ψi can be extended to a boundary-preserving self-
homeomorphism ψ̄i of Vi, and we let γ3 be the union of all ψ̄i. It follows that γ3γ2γ1 is
the desired homeomorphism to witness that b is a-large.
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We note that this result also works when I is the ideal of closed 0-dimensional sets
- a slightly modified argument shows the compactness assumption is not necessary. The
result may also hold when X is a higher-dimensional Euclidean space, although one needs
to be careful of knots which might impede the argument.

4 Urysohn Rational Ultrametric Space

Definition 11. Consider the class K of finite rational-valued ultrametric spaces. This
forms a Fräıssé class, and we let X denote the Fräıssé limit of K.

Definition 12. For r ∈ R, we define Ir ⊆ P(X) such that A ∈ Ir if and only if for all
x ∈ X, 0 < δ < ε ≤ r, there exists y ∈ Ball(x, ε) such that Ball(y, δ) ∩ A = ∅.

This definition is a bit awkward since it quantifies over all ε ≤ r. However, using ε
helps in the proofs of Proposition 20 and Proposition 21.

As a note, if we want to check that A ∈ Ir, then it is enough to quantify x only
over A itself. If Ball(x, ε) is disjoint from A, then finding a point y is trivial, and if
a ∈ Ball(x, ε) ∩ A, then Ball(a, ε) = Ball(x, ε) by properties of the ultrametric.

Proposition 19. Let δ < r. Then Ir does not contain any δ-nets of X.

Proof. Let δ < r and A be a δ-net. To see that A ̸∈ Ir, note that for every choice of
y ∈ X, Ball(y, δ) has nontrivial intersection with A.

Proposition 20. If s ≤ r, then Ir ⊆ Is.

Proof. Let A ∈ Ir. Choose x ∈ X and δ, ε such that 0 < δ < ε ≤ s. Since s ≤ r, we see
ε ≤ r, and hence we can find a y to witness A ∈ Ir. We note this same y witnesses that
A ∈ Is.

Proposition 21. Ir is an ideal.

Proof. Note that if A ∈ Ir and B ⊆ A, then any choice of y to witness A ∈ Ir also
witnesses B ∈ Ir since Ball(y, δ) ∩ B ⊆ Ball(y, δ) ∩ A = ∅. To see that Ir is closed
under unions, let A,B ∈ Ir. Given x ∈ X and 0 < δ < ε ≤ r, let δ′ be such that
δ < δ′ < ε. Find y1 ∈ Ball(x, ε) such that Ball(y1, δ

′) is disjoint from A. Next find
y2 ∈ Ball(y1, δ

′) such that Ball(y2, δ) is disjoint from B. Note that y2 ∈ Ball(x, ε) and
that Ball(y2, δ) ⊆ Ball(y1, δ

′) is also disjoint from A.

Proposition 22. Ir contains all singletons and is invariant under isometries.

Proof. Let A = {x} ⊆ X and 0 < δ < ε ≤ r. Let δ′ be rational such that δ < δ′ < ε,
and find y such that d(x, y) = δ′. To see that Ir is invariant under isometries, let A ∈ Ir
and given x, δ, ε, let y as needed such that Ball(y, δ) ∩ A = ∅. For any isometry φ and
given φ(x), δ, ε, we see φ(y) will work such that Ball(φ(y), δ) ∩ φ(A) = ∅.
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Proposition 23. Ir contains infinite sets. In particular, Ir contains all closed sequences.

Proof. Let xn → x ∈ X, and let A = {x, x0, x1, . . . }. Given 0 < δ < ε ≤ r and
some a ∈ A, we must find a suitable y. We first note that if x ̸∈ Ball(a, ε), then
Ball(a, ε) contains only finitely many points of A, and so such a choice of y can be
found. Otherwise, it is sufficient to consider Ball(x, ε) and we note that there are finitely
many xi such that δ < d(xi, x) < ε. We let δ′ be rational such that for all of those xi,
we have d(xi, x) < δ′ < ε. Now find some y such that d(y, x) = δ′. By properties of
the ultrametric, we see that for all xi ∈ Ball(x, ε), we have d(y, xi) = δ′ > δ. Hence
Ball(y, δ) ∩ A = ∅.

The ideal of closed sets with finitely many accumulation points is not σ-complete in
any topological space which contains infinitely many accumulation points. To see this, let
bi be sets with i-many accumulation points. Then regardless of what homeomorphisms
φi are chosen,

⋃
φibi has infinitely many limit points.
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