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Set Theory

Set theory is concerned with studying models of ZF to classify the
complexity of statements.

Example

If A holds in all models that satisfy B, then we can say that A is a
consequence of B.

Example

If there exists a model M that satisfies A and B as well as a model
N that satisfies ¬A and B, then we can say that A is independent
of B.
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Choice

Definition

The Axiom of Choice is the statement that every family of
nonempty sets has a choice function.

Definition

The Axiom of Well-Ordered Choice is the statement that every
well-ordered family of nonempty sets has a choice function.

Definition

The Axiom of Countable Choice is the statement that every
countable family of nonempty sets has a choice function.
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Set Theory with Atoms

Definition

ZFA denotes the set theory with atoms. It is ZF with the following
modifications:

1 The language contains a unary relational symbol A to denote
atoms

2 The axiom of extensionality applies only to sets which are not
atoms

3 ∀xA(x) =⇒ ∀y y ̸∈ x - atoms don’t contain elements

4 ∃y∀x x ∈ y ⇐⇒ A(x) - there is a set containing all atoms

Definition

ZFCA denotes ZFA+Axiom of Choice
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Set Theory with Atoms

ZF Cumulative Hierarchy

V0 = ∅

For ordinals α, Vα+1 = P(Vα)
For limit ordinals λ, Vλ =

⋃
α∈λ Vα

In the end, V =
⋃

α∈Ord Vα

ZFA Cumulative Hierarchy

V0[X ] = X
For ordinals α, Vα+1[[X ]] = P(Vα[[X ]])
For limit ordinals λ, Vλ[[X ]] =

⋃
α∈λ Vα[[X ]]

In the end, V [[X ]] =
⋃

α∈Ord Vα[[X ]]

V ⊂ V [[X ]] is the class of sets whose transitive closure contains no
atoms. V is called the pure part of V [[X ]] and is itself a model of
ZF .
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Group Actions

Definition

Let Γ ↷ X be a group action. For x ∈ X , define
stab(x) = {γ ∈ Γ : γ · x = x}. For a ⊆ X , define
pstab(a) = {γ ∈ Γ : ∀x ∈ a γ · x = x}.

Definition

Let Γ ↷ X be a group action. This action extends to Γ ↷ V [[X ]]:
for γ ∈ Γ and A ∈ V [[X ]], γ · A = {γ · a : a ∈ A}.

Note that V , the pure part of V [[X ]] is fixed pointwise by the
action.
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Dynamical Ideal

Definition

A dynamical ideal is a tuple (Γ ↷ X , I ) where Γ is a group, X is a
set which Γ acts on, and I is an ideal on X which contains all
singletons and is invariant under the group action (i.e. Γ · I ⊆ I ).

Definition

An ideal on X is a set I ⊆ P(X ) such that

1 A,B ∈ I =⇒ A ∪ B ∈ I

2 A ∈ I ,B ⊆ A =⇒ B ∈ I

Justin Young How to use Topology to Study Set Theory
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Examples of Dynamical Ideals

Let (X , τ) be a topological space, let Γ be the group of
homeomorphisms of X , acting by application (i.e. γ · x = γ(x)).
Then any ideal defined solely in terms of the topology will yield a
dynamical ideal:

Example

1 I = {a ⊆ X : a is countable}
2 I = {a ⊆ X : a is nowhere dense}
3 I = {a ⊆ X : a is totally disconnected}

Definition

1 a ⊆ X is nowhere dense if for every nonempty open set U ⊆ X
there exists a nonempty open set V ⊆ U disjoint from a.

2 a ⊆ X is totally disconnected if the only connected
components of a are singletons.

Justin Young How to use Topology to Study Set Theory



8

Examples of Dynamical Ideals

Let (X , τ) be a topological space, let Γ be the group of
homeomorphisms of X , acting by application (i.e. γ · x = γ(x)).
Then any ideal defined solely in terms of the topology will yield a
dynamical ideal:

Example

1 I = {a ⊆ X : a is countable}

2 I = {a ⊆ X : a is nowhere dense}
3 I = {a ⊆ X : a is totally disconnected}

Definition

1 a ⊆ X is nowhere dense if for every nonempty open set U ⊆ X
there exists a nonempty open set V ⊆ U disjoint from a.

2 a ⊆ X is totally disconnected if the only connected
components of a are singletons.

Justin Young How to use Topology to Study Set Theory



8

Examples of Dynamical Ideals

Let (X , τ) be a topological space, let Γ be the group of
homeomorphisms of X , acting by application (i.e. γ · x = γ(x)).
Then any ideal defined solely in terms of the topology will yield a
dynamical ideal:

Example

1 I = {a ⊆ X : a is countable}
2 I = {a ⊆ X : a is nowhere dense}

3 I = {a ⊆ X : a is totally disconnected}

Definition

1 a ⊆ X is nowhere dense if for every nonempty open set U ⊆ X
there exists a nonempty open set V ⊆ U disjoint from a.

2 a ⊆ X is totally disconnected if the only connected
components of a are singletons.

Justin Young How to use Topology to Study Set Theory



8

Examples of Dynamical Ideals

Let (X , τ) be a topological space, let Γ be the group of
homeomorphisms of X , acting by application (i.e. γ · x = γ(x)).
Then any ideal defined solely in terms of the topology will yield a
dynamical ideal:

Example

1 I = {a ⊆ X : a is countable}
2 I = {a ⊆ X : a is nowhere dense}
3 I = {a ⊆ X : a is totally disconnected}

Definition

1 a ⊆ X is nowhere dense if for every nonempty open set U ⊆ X
there exists a nonempty open set V ⊆ U disjoint from a.

2 a ⊆ X is totally disconnected if the only connected
components of a are singletons.

Justin Young How to use Topology to Study Set Theory



8

Examples of Dynamical Ideals

Let (X , τ) be a topological space, let Γ be the group of
homeomorphisms of X , acting by application (i.e. γ · x = γ(x)).
Then any ideal defined solely in terms of the topology will yield a
dynamical ideal:

Example

1 I = {a ⊆ X : a is countable}
2 I = {a ⊆ X : a is nowhere dense}
3 I = {a ⊆ X : a is totally disconnected}

Definition

1 a ⊆ X is nowhere dense if for every nonempty open set U ⊆ X
there exists a nonempty open set V ⊆ U disjoint from a.

2 a ⊆ X is totally disconnected if the only connected
components of a are singletons.

Justin Young How to use Topology to Study Set Theory



8

Examples of Dynamical Ideals

Let (X , τ) be a topological space, let Γ be the group of
homeomorphisms of X , acting by application (i.e. γ · x = γ(x)).
Then any ideal defined solely in terms of the topology will yield a
dynamical ideal:

Example

1 I = {a ⊆ X : a is countable}
2 I = {a ⊆ X : a is nowhere dense}
3 I = {a ⊆ X : a is totally disconnected}

Definition

1 a ⊆ X is nowhere dense if for every nonempty open set U ⊆ X
there exists a nonempty open set V ⊆ U disjoint from a.

2 a ⊆ X is totally disconnected if the only connected
components of a are singletons.

Justin Young How to use Topology to Study Set Theory



9

Permutation Model from Dynamical Ideal

Definition

The permutation model associated with the dynamical ideal
(Γ ↷ X , I ) is the transitive part of
{A ∈ V [[X ]]|∃b ∈ I pstab(b) ⊆ stab(A)}. The permutation model
is denoted W [[X ]].

Definition

By ”transitive part” we mean that we want
A ∈ W [[X ]] =⇒ A ⊂ W [[X ]].

Justin Young How to use Topology to Study Set Theory
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The Permutation Model

Theorem

Given a dynamical ideal (Γ ↷ X , I ), the associated permutation
model W [[X ]] is a model of ZFA. Except in trivial cases, it will not
satisfy the full Axiom of Choice.

Lemma

We have I ,X ∈ W [[X ]], and V ⊂ W [[X ]].
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σ-Complete Ideals

Definition

The axiom of countable choice states that every countable family
of nonempty sets has a choice function.

Definition

Let (Γ ↷ X , I ) be a dynamical ideal. The dynamical ideal is
dynamically σ-complete if for every set a ∈ I and every countable
sequence (bn : n ∈ ω) ⊆ I there are group elements γn ∈ pstab(a)
such that

⋃
n γn · bn ∈ I .

Theorem

(Zapletal, 2024) Let (Γ ↷ X , I ) be a dynamical ideal. If the
dynamical ideal is dynamically σ-complete, then the associated
permutation model satisfies the axiom of countable choice.
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A Tool for σ-completeness

Definition

Let (Homeo(X ) ↷ X , I ) be a dynamical ideal. We say the
dynamical ideal is tight if for all a, b ∈ I and for all open U ⊆ X ,
there is γ ∈ pstab(a) such that γ · b ⊆ U.

Proposition

(Y.) Let I be the ideal generated by countable closed sets on a
topological space X that is Gδ, normal Hausdorff, and sequential.
If the dynamical ideal (Homeo(X ) ↷ X , I ) is tight, then it is
dynamically σ-complete.

Proof.

By picture.
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Examples of Tight Ideals

Example

(Y.) Let X = 2ω and I be the ideal generated by countable closed
sets. Then (Homeo(X ) ↷ X , I ) is tight.

Proof.

By picture.

Example

A similar argument shows the result holds when X = ωω.
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Examples of Tight Ideals

Example

(Y.) Let X = Rn and I be the ideal generated by countable
compact sets. Then (Homeo(X ) ↷ X , I ) is tight.

Proof. (n ≥ 2)

1 Let a, b, ε be given, and let C cover a by pairwise disjoint balls
of radius < ε with boundaries disjoint from b.

2 Replace b with b \
⋃
C and a with a ∪ (b ∩

⋃
C).

3 Let D cover b by pairwise disjoint balls with
⋃
D ∩

⋃
C ̸= ∅.

4 Given C ∈ C and D ∈ D, find a set K which is the image of
the unit circle under a self-homeomorphism of Rn, contains C
and D and does not meet any other set in either cover.

5 Apply the Annulus Theorem to the region obtained in the
previous step.
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Modifications

Example

(Y.) Let X = Rn or X = Sn+1 and I the ideal generated by
countable closed sets. Then (Homeo(X ) ↷ X , I ) is tight.

Proof.

Given a, b ∈ I , tile X with homeomorphic copies of [0, 1]n such
that the boundaries avoid a, b. Now deal with each cube
individually.

Example

(Y.) Let X = [0, 1]n and I the ideal generated by countable closed
sets. Then (Homeo(X ) ↷ X , I ) is tight.

Proof.

Use a sphere to separate the cube into two parts which can be
dealt with individually.
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A Non-example

Proposition

Let (X , d) be an uncountable separable metric space, and let I
contain all countable closed sets. Then (Iso(X , d) ↷ (X , d), I ) is
not σ-complete.

Proof.

1 Let a = ∅ and for each n let bn be a 1/n net of X .

2 Note that regardless of the choice of γn,
⋃
γn · bn will be a

dense set.
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Cofinal Orbits

Definition

The axiom of well-ordered choice is the statement that every
well-ordered family of nonempty sets has a choice function.

Definition

Let (Γ ↷ X , I ) be a dynamical ideal. It has cofinal orbits if for
every a ∈ I there exists b ∈ I which is a-large: for every c ∈ I there
exists γ ∈ pstab(a) such that c ⊆ γ · b.

Theorem

(Zapletal, 2024) Let (Γ ↷ X , I ) be a dynamical ideal with cofinal
orbits. The corresponding permutation model satisfies the axiom
of well-ordered choice.
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An example of cofinal orbits

Example

(Y., independently discovered by M. Elekes) Let X = [0, 1]n, and I
the ideal generated by closed nowhere dense sets. Then
(Homeo(X ) ↷ X , I ) has cofinal orbits.

The argument involves building a Sierpiński carpet on top of
nowhere dense sets:
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Sierpiński Carpet

Definition

A ⊆ X = [0, 1]n is an n−1-dimensional Sierpiński carpet filling X if

1 A is closed nowhere dense

2 bd(X ) ⊆ A

3 The set of components of X \ A, {Ui : i ∈ ω} is such that
diam(Ui ) → 0 and each Ui is homeomorphic to an open ball.

4 {Ui : i ∈ ω} is pairwise disjoint

The following is a corollary of theorems of Whyburn (n = 2, 1958)
and Cannon (n ≥ 3, 1972):

Lemma

Given Sierpiński carpets A,B ⊆ X , there is a self-homeomorphism
of X such that h(A) = B and h ↾ bd(X ) = id .
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Sierpiński Carpet

Lemma

Given A ⊆ [0, 1]n nowhere dense, there is a Sierpiński Carpet B
filling [0, 1]n such that A ⊆ B.

Proof.

Fix a countable dense subset {xi : i ∈ ω} and construct Ui

centered at xi such that

1 diam(Ui ) < 1/i

2 Ui is disjoint from A and Uj for j < i .

In the end, let B = [0, 1]n \
⋃

Ui .
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NWD has Cofinal Orbits

We are finally ready to state the proof that
(Homeo([0, 1]n) ↷ [0, 1]n,NWD) has cofinal orbits.

Proof.

1 Given a ∈ I , let K ⊇ a be a Sierpiński carpet filling [0, 1]n.

2 For each complementary component Ui of [0, 1]
n \ K , let bi

be a Sierpiński carpet filling Ui . Let b = K ∪
⋃
bi .

3 Given c ∈ I , to see b is a-large, apply the corollary from
Whyburn and Cannon to each Ui to get γi which moves bi
onto the corresponding portion of c .

4 Finally, paste all of the γi together.
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Modifications

Example

Let X be any manifold and Γ = Homeo(X ) ↷ X by application.
Then for I = {a ⊆ X : a is nowhere dense}, the dynamical ideal
has cofinal orbits.

Proof.

Tile the space with copies of the cube.

Example

Question Let X = Rn, Γ = Homeo(X ) ↷ X by application, and let
J = {a ⊆ X : a is compact and nowhere dense}. The dynamical
ideal (Γ ↷ X , J) has cofinal orbits.

Proof.

By picture.
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Another Example of Cofinal Orbits

Example

Let X = R2 and Γ = Homeo(X ) acting by application, and let
I = {a ⊆ X : a is totally disconnected and compact}. Then the
dynamical ideal (Γ ↷ X , I ) has cofinal orbits.

Theorem

(Moise) Let M and M ′ be totally disconnected compact sets in R2,
and let φ : M → M ′ be a homeomorphism. φ extends to a
homeomorphism φ : R2 → R2.

Corollary

(Moore-Kline theorem) Every totally disconnected compact set in
R2 lies in an arc in R2.
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Totally disconnected sets

Lemma

Let C ⊆ R2 be compact and totally disconnected. There exists a
continuous injection φ : C → S1 such that φ ↾ C ∩ S1 = id.

Proof.

1 Without loss of generality, C ⊆ Ball(S1, 1/2).

2 For n ≥ 1, let Ball(S1, 1/2n+1) ⊆ Nn ⊆ Ball(S1, 1/2n) be
annular neighborhoods of S1 such that bd(Nn) ∩ C = ∅.

3 Let φ0 : S
1 ∩ C → S1 = id . Recursively define Cn and φn

such that Cn =
⋃

i≤n Im(φi ) and φn : C ∩ (Nn \ Nn+1) → S1
such that d(φ(x), π(x)) < 1/2n−1and Im(φn) ∩ Cn−1 = ∅.

4 In the end, let φ =
⋃

n∈ω φn.
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Totally disconnected sets

We are ready to prove that (Homeo(R2) ↷ R2, I = {a ⊆ R2 :
a is compact totally disconnected}) has cofinal orbits.

Proof.

1 Without loss of generality, we can assume a ∈ S1.

2 S1 \ a consists of open intervals. For each interval Ui , let
bi ⊆ Ui be a copy of the Cantor set. We will show
b =

⋃
i∈ω bi is a-large.

3 Let c be given, without loss of generality, a ⊆ c . Let
φ : c → S1 be given as in the previous lemma. Let
φ : R2 → R2 be the extension to a homeomorphism of the
plane.

4 Let ψi : Ui → Ui be a boundary preserving homeomorphism
such that ψi (φ(c) ∩ Ui ) ⊆ bi . Let ψ =

⋃
i∈ω ψi .

5 Extend ψ to ψ : R2 → R2. Note ψ ◦ φ works.
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Questions for further study

1 The homeomorphism extension theorem does not hold for
totally disconnected sets in R3. Is there a difference in the
permutation models?

2 What results can be obtained about the ideal of countable
closed sets in infinite dimensional space?

3 What results can be obtained about the ideal of nowhere
dense closed sets in infinite dimensional space?

4 What similarities and differences can be seen in the models of
differing dimensions?

5 What other structures should we use to study set theory?
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Thank you!
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