How to use Topology to Study Set Theory

Justin Young

University of Florida Work with Jindrich Zapletal

GMA Colloquium February 5, 2025

Set Theory

Set theory is concerned with studying models of ZF to classify the complexity of statements.

Set Theory

Set theory is concerned with studying models of ZF to classify the complexity of statements.

Example

If A holds in all models that satisfy B, then we can say that A is a consequence of B.

Set Theory

Set theory is concerned with studying models of ZF to classify the complexity of statements.

Example

If A holds in all models that satisfy B, then we can say that A is a consequence of B.

Example

If there exists a model M that satisfies A and B as well as a model N that satisfies $\neg A$ and B, then we can say that A is independent of B.

Choice

Definition

The **Axiom of Choice** is the statement that every family of nonempty sets has a choice function.

Choice

Definition

The **Axiom of Choice** is the statement that every family of nonempty sets has a choice function.

Definition

The **Axiom of Well-Ordered Choice** is the statement that every well-ordered family of nonempty sets has a choice function.

Choice

Definition

The **Axiom of Choice** is the statement that every family of nonempty sets has a choice function.

Definition

The **Axiom of Well-Ordered Choice** is the statement that every well-ordered family of nonempty sets has a choice function.

Definition

The **Axiom of Countable Choice** is the statement that every countable family of nonempty sets has a choice function.

Definition

Definition

ZFA denotes the set theory with atoms. It is ZF with the following modifications:

Definition

- $\ensuremath{\bullet}$ The language contains a unary relational symbol $\ensuremath{\mathbb{A}}$ to denote atoms
- The axiom of extensionality applies only to sets which are not atoms

Definition

- $\ensuremath{\bullet}$ The language contains a unary relational symbol $\ensuremath{\mathbb{A}}$ to denote atoms
- The axiom of extensionality applies only to sets which are not atoms

Definition

- The axiom of extensionality applies only to sets which are not atoms
- **4** $\exists y \forall x \ x \in y \iff \mathbb{A}(x)$ there is a set containing all atoms

Definition

ZFA denotes the set theory with atoms. It is ZF with the following modifications:

- $\ensuremath{\bullet}$ The language contains a unary relational symbol $\ensuremath{\mathbb{A}}$ to denote atoms
- The axiom of extensionality applies only to sets which are not atoms
- **4** $\exists y \forall x \ x \in y \iff \mathbb{A}(x)$ there is a set containing all atoms

Definition

ZFCA denotes ZFA+Axiom of Choice

ZF Cumulative Hierarchy

$$V_0 = \emptyset$$

ZF Cumulative Hierarchy

$$V_0 = \emptyset$$

For ordinals α , $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$

ZF Cumulative Hierarchy

$$V_0 = \emptyset$$

For ordinals α , $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$

For limit ordinals λ , $V_{\lambda} = \bigcup_{\alpha \in \lambda} V_{\alpha}$

ZF Cumulative Hierarchy

$$\begin{array}{l} V_0 = \emptyset \\ \text{For ordinals } \alpha, \ V_{\alpha+1} = \mathcal{P}(V_\alpha) \\ \text{For limit ordinals } \lambda, \ V_\lambda = \bigcup_{\alpha \in \lambda} V_\alpha \\ \text{In the end, } V = \bigcup_{\alpha \in \textit{Ord}} V_\alpha \end{array}$$

ZF Cumulative Hierarchy

$$V_0=\emptyset$$
 For ordinals α , $V_{\alpha+1}=\mathcal{P}(V_{\alpha})$ For limit ordinals λ , $V_{\lambda}=\bigcup_{\alpha\in\lambda}V_{\alpha}$ In the end, $V=\bigcup_{\alpha\in Ord}V_{\alpha}$

ZFA Cumulative Hierarchy

$$V_0[X]=X$$

ZF Cumulative Hierarchy

$$V_0=\emptyset$$
 For ordinals α , $V_{\alpha+1}=\mathcal{P}(V_{\alpha})$ For limit ordinals λ , $V_{\lambda}=\bigcup_{\alpha\in\lambda}V_{\alpha}$ In the end, $V=\bigcup_{\alpha\in Ord}V_{\alpha}$

ZFA Cumulative Hierarchy

$$V_0[X] = X$$

For ordinals α , $V_{\alpha+1}[[X]] = \mathcal{P}(V_{\alpha}[[X]])$

ZF Cumulative Hierarchy

$$V_0 = \emptyset$$
 For ordinals α , $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$ For limit ordinals λ , $V_{\lambda} = \bigcup_{\alpha \in \lambda} V_{\alpha}$ In the end, $V = \bigcup_{\alpha \in \mathit{Ord}} V_{\alpha}$

ZFA Cumulative Hierarchy

 $V_0[X] = X$ For ordinals α , $V_{\alpha+1}[[X]] = \mathcal{P}(V_{\alpha}[[X]])$ For limit ordinals λ , $V_{\lambda}[[X]] = \bigcup_{\alpha \in \lambda} V_{\alpha}[[X]]$

ZF Cumulative Hierarchy

$$V_0 = \emptyset$$

For ordinals α , $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
For limit ordinals λ , $V_{\lambda} = \bigcup_{\alpha \in \lambda} V_{\alpha}$
In the end, $V = \bigcup_{\alpha \in Ord} V_{\alpha}$

ZFA Cumulative Hierarchy

```
\begin{array}{l} V_0[X] = X \\ \text{For ordinals } \alpha, \ V_{\alpha+1}[[X]] = \mathcal{P}(V_{\alpha}[[X]]) \\ \text{For limit ordinals } \lambda, \ V_{\lambda}[[X]] = \bigcup_{\alpha \in \lambda} V_{\alpha}[[X]] \\ \text{In the end, } V[[X]] = \bigcup_{\alpha \in \mathit{Ord}} V_{\alpha}[[X]] \end{array}
```

ZF Cumulative Hierarchy

$$V_0 = \emptyset$$

For ordinals α , $V_{\alpha+1} = \mathcal{P}(V_{\alpha})$
For limit ordinals λ , $V_{\lambda} = \bigcup_{\alpha \in \lambda} V_{\alpha}$
In the end, $V = \bigcup_{\alpha \in Ord} V_{\alpha}$

ZFA Cumulative Hierarchy

$$\begin{array}{l} V_0[X] = X \\ \text{For ordinals } \alpha, \ V_{\alpha+1}[[X]] = \mathcal{P}(V_{\alpha}[[X]]) \\ \text{For limit ordinals } \lambda, \ V_{\lambda}[[X]] = \bigcup_{\alpha \in \lambda} V_{\alpha}[[X]] \\ \text{In the end, } V[[X]] = \bigcup_{\alpha \in \mathit{Ord}} V_{\alpha}[[X]] \end{array}$$

 $V \subset V[[X]]$ is the class of sets whose transitive closure contains no atoms. V is called the pure part of V[[X]] and is itself a model of ZF.

Definition

Let $\Gamma \curvearrowright X$ be a group action. For $x \in X$, define $stab(x) = \{ \gamma \in \Gamma : \gamma \cdot x = x \}$. For $a \subseteq X$, define $pstab(a) = \{ \gamma \in \Gamma : \forall x \in a \ \gamma \cdot x = x \}$.

Definition

Let $\Gamma \curvearrowright X$ be a group action. For $x \in X$, define $stab(x) = \{ \gamma \in \Gamma : \gamma \cdot x = x \}$. For $a \subseteq X$, define $pstab(a) = \{ \gamma \in \Gamma : \forall x \in a \ \gamma \cdot x = x \}$.

Definition

Let $\Gamma \curvearrowright X$ be a group action. This action extends to $\Gamma \curvearrowright V[[X]]$:

Definition

Let $\Gamma \curvearrowright X$ be a group action. For $x \in X$, define $stab(x) = \{ \gamma \in \Gamma : \gamma \cdot x = x \}$. For $a \subseteq X$, define $pstab(a) = \{ \gamma \in \Gamma : \forall x \in a \ \gamma \cdot x = x \}$.

Definition

Let $\Gamma \curvearrowright X$ be a group action. This action extends to $\Gamma \curvearrowright V[[X]]$: for $\gamma \in \Gamma$ and $A \in V[[X]]$, $\gamma \cdot A = \{\gamma \cdot a : a \in A\}$.

Definition

Let $\Gamma \curvearrowright X$ be a group action. For $x \in X$, define $stab(x) = \{ \gamma \in \Gamma : \gamma \cdot x = x \}$. For $a \subseteq X$, define $pstab(a) = \{ \gamma \in \Gamma : \forall x \in a \ \gamma \cdot x = x \}$.

Definition

Let $\Gamma \curvearrowright X$ be a group action. This action extends to $\Gamma \curvearrowright V[[X]]$: for $\gamma \in \Gamma$ and $A \in V[[X]]$, $\gamma \cdot A = \{\gamma \cdot a : a \in A\}$.

Note that V, the pure part of V[[X]] is fixed pointwise by the action.

Dynamical Ideal

Definition

A dynamical ideal is a tuple $(\Gamma \curvearrowright X, I)$ where Γ is a group, X is a set which Γ acts on, and I is an ideal on X which contains all singletons and is invariant under the group action (i.e. $\Gamma \cdot I \subseteq I$).

Dynamical Ideal

Definition

A dynamical ideal is a tuple $(\Gamma \curvearrowright X, I)$ where Γ is a group, X is a set which Γ acts on, and I is an ideal on X which contains all singletons and is invariant under the group action (i.e. $\Gamma \cdot I \subseteq I$).

Definition

An ideal on X is a set $I \subseteq \mathcal{P}(X)$ such that

Let (X, τ) be a topological space, let Γ be the group of homeomorphisms of X, acting by application (i.e. $\gamma \cdot x = \gamma(x)$). Then any ideal defined solely in terms of the topology will yield a dynamical ideal:

Let (X, τ) be a topological space, let Γ be the group of homeomorphisms of X, acting by application (i.e. $\gamma \cdot x = \gamma(x)$). Then any ideal defined solely in terms of the topology will yield a dynamical ideal:

Example

Let (X, τ) be a topological space, let Γ be the group of homeomorphisms of X, acting by application (i.e. $\gamma \cdot x = \gamma(x)$). Then any ideal defined solely in terms of the topology will yield a dynamical ideal:

Example

Let (X,τ) be a topological space, let Γ be the group of homeomorphisms of X, acting by application (i.e. $\gamma \cdot x = \gamma(x)$). Then any ideal defined solely in terms of the topology will yield a dynamical ideal:

Example

Let (X, τ) be a topological space, let Γ be the group of homeomorphisms of X, acting by application (i.e. $\gamma \cdot x = \gamma(x)$). Then any ideal defined solely in terms of the topology will yield a dynamical ideal:

Example

Definition

• $a \subseteq X$ is nowhere dense if for every nonempty open set $U \subseteq X$ there exists a nonempty open set $V \subseteq U$ disjoint from a.

Let (X, τ) be a topological space, let Γ be the group of homeomorphisms of X, acting by application (i.e. $\gamma \cdot x = \gamma(x)$). Then any ideal defined solely in terms of the topology will yield a dynamical ideal:

Example

Definition

- **1** $a \subseteq X$ is nowhere dense if for every nonempty open set $U \subseteq X$ there exists a nonempty open set $V \subseteq U$ disjoint from a.
- ② $a \subseteq X$ is totally disconnected if the only connected components of a are singletons.

Permutation Model from Dynamical Ideal

Definition

The permutation model associated with the dynamical ideal $(\Gamma \curvearrowright X, I)$ is the transitive part of $\{A \in V[[X]] | \exists b \in I \ pstab(b) \subseteq stab(A)\}$. The permutation model is denoted W[[X]].

Permutation Model from Dynamical Ideal

Definition

The permutation model associated with the dynamical ideal $(\Gamma \curvearrowright X, I)$ is the transitive part of $\{A \in V[[X]] | \exists b \in I \ pstab(b) \subseteq stab(A)\}$. The permutation model is denoted W[[X]].

Definition

By "transitive part" we mean that we want $A \in W[[X]] \implies A \subset W[[X]].$

The Permutation Model

Theorem

Given a dynamical ideal ($\Gamma \curvearrowright X, I$), the associated permutation model W[[X]] is a model of ZFA. Except in trivial cases, it will not satisfy the full Axiom of Choice.

The Permutation Model

Theorem

Given a dynamical ideal ($\Gamma \curvearrowright X, I$), the associated permutation model W[[X]] is a model of ZFA. Except in trivial cases, it will not satisfy the full Axiom of Choice.

Lemma

We have $I, X \in W[[X]]$, and $V \subset W[[X]]$.

σ -Complete Ideals

Definition

The axiom of countable choice states that every countable family of nonempty sets has a choice function.

σ -Complete Ideals

Definition

The axiom of countable choice states that every countable family of nonempty sets has a choice function.

Definition

Let $(\Gamma \curvearrowright X, I)$ be a dynamical ideal. The dynamical ideal is dynamically σ -complete if for every set $a \in I$ and every countable sequence $(b_n : n \in \omega) \subseteq I$ there are group elements $\gamma_n \in \operatorname{pstab}(a)$ such that $\bigcup_n \gamma_n \cdot b_n \in I$.

σ -Complete Ideals

Definition

The axiom of countable choice states that every countable family of nonempty sets has a choice function.

Definition

Let $(\Gamma \curvearrowright X, I)$ be a dynamical ideal. The dynamical ideal is dynamically σ -complete if for every set $a \in I$ and every countable sequence $(b_n : n \in \omega) \subseteq I$ there are group elements $\gamma_n \in \operatorname{pstab}(a)$ such that $\bigcup_n \gamma_n \cdot b_n \in I$.

$\mathsf{Theorem}$

(Zapletal, 2024) Let $(\Gamma \curvearrowright X, I)$ be a dynamical ideal. If the dynamical ideal is dynamically σ -complete, then the associated permutation model satisfies the axiom of countable choice.

A Tool for σ -completeness

Definition

Let $(Homeo(X) \curvearrowright X, I)$ be a dynamical ideal. We say the dynamical ideal is tight if for all $a, b \in I$ and for all open $U \subseteq X$, there is $\gamma \in pstab(a)$ such that $\gamma \cdot b \subseteq U$.

A Tool for σ -completeness

Definition

Let $(Homeo(X) \curvearrowright X, I)$ be a dynamical ideal. We say the dynamical ideal is tight if for all $a, b \in I$ and for all open $U \subseteq X$, there is $\gamma \in pstab(a)$ such that $\gamma \cdot b \subseteq U$.

Proposition

(Y.) Let I be the ideal generated by countable closed sets on a topological space X that is G_{δ} , normal Hausdorff, and sequential. If the dynamical ideal $(Homeo(X) \curvearrowright X, I)$ is tight, then it is dynamically σ -complete.

A Tool for σ -completeness

Definition

Let $(Homeo(X) \curvearrowright X, I)$ be a dynamical ideal. We say the dynamical ideal is tight if for all $a, b \in I$ and for all open $U \subseteq X$, there is $\gamma \in pstab(a)$ such that $\gamma \cdot b \subseteq U$.

Proposition

(Y.) Let I be the ideal generated by countable closed sets on a topological space X that is G_{δ} , normal Hausdorff, and sequential. If the dynamical ideal $(Homeo(X) \curvearrowright X, I)$ is tight, then it is dynamically σ -complete.

Proof.

By picture.

Example

(Y.) Let $X=2^{\omega}$ and I be the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Example

(Y.) Let $X=2^\omega$ and I be the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Proof.

By picture.

Example

(Y.) Let $X=2^\omega$ and I be the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X,I)$ is tight.

Proof.

By picture.

Example

A similar argument shows the result holds when $X=\omega^{\omega}.$

Example

(Y.) Let $X = \mathbb{R}^n$ and I be the ideal generated by countable compact sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Example

(Y.) Let $X = \mathbb{R}^n$ and I be the ideal generated by countable compact sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Proof. $(n \ge 2)$

• Let a, b, ε be given, and let \mathcal{C} cover a by pairwise disjoint balls of radius $< \varepsilon$ with boundaries disjoint from b.

Example

(Y.) Let $X = \mathbb{R}^n$ and I be the ideal generated by countable compact sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

- Let a, b, ε be given, and let \mathcal{C} cover a by pairwise disjoint balls of radius $< \varepsilon$ with boundaries disjoint from b.
- **2** Replace b with $b \setminus \bigcup C$ and a with $a \cup (b \cap \bigcup C)$.

Example

(Y.) Let $X = \mathbb{R}^n$ and I be the ideal generated by countable compact sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

- **1** Let a, b, ε be given, and let \mathcal{C} cover a by pairwise disjoint balls of radius $< \varepsilon$ with boundaries disjoint from b.
- 2 Replace b with $b \setminus \bigcup C$ and a with $a \cup (b \cap \bigcup C)$.
- **1** Let \mathcal{D} cover b by pairwise disjoint balls with $\bigcup \mathcal{D} \cap \bigcup \mathcal{C} \neq \emptyset$.

Example

(Y.) Let $X = \mathbb{R}^n$ and I be the ideal generated by countable compact sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

- Let a, b, ε be given, and let \mathcal{C} cover a by pairwise disjoint balls of radius $< \varepsilon$ with boundaries disjoint from b.
- 2 Replace b with $b \setminus \bigcup C$ and a with $a \cup (b \cap \bigcup C)$.
- **3** Let \mathcal{D} cover b by pairwise disjoint balls with $\bigcup \mathcal{D} \cap \bigcup \mathcal{C} \neq \emptyset$.
- Given $C \in \mathcal{C}$ and $D \in \mathcal{D}$, find a set K which is the image of the unit circle under a self-homeomorphism of \mathbb{R}^n , contains C and D and does not meet any other set in either cover.

Example

(Y.) Let $X = \mathbb{R}^n$ and I be the ideal generated by countable compact sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

- Let a, b, ε be given, and let \mathcal{C} cover a by pairwise disjoint balls of radius $< \varepsilon$ with boundaries disjoint from b.
- 2 Replace b with $b \setminus \bigcup C$ and a with $a \cup (b \cap \bigcup C)$.
- **3** Let \mathcal{D} cover b by pairwise disjoint balls with $\bigcup \mathcal{D} \cap \bigcup \mathcal{C} \neq \emptyset$.
- Given $C \in \mathcal{C}$ and $D \in \mathcal{D}$, find a set K which is the image of the unit circle under a self-homeomorphism of \mathbb{R}^n , contains C and D and does not meet any other set in either cover.
- Apply the Annulus Theorem to the region obtained in the previous step.

Example

(Y.) Let $X = \mathbb{R}^n$ or $X = S^{n+1}$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Example

(Y.) Let $X = \mathbb{R}^n$ or $X = S^{n+1}$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Proof.

Given $a, b \in I$, tile X with homeomorphic copies of $[0,1]^n$ such that the boundaries avoid a, b. Now deal with each cube individually.

Example

(Y.) Let $X = \mathbb{R}^n$ or $X = S^{n+1}$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Proof.

Given $a, b \in I$, tile X with homeomorphic copies of $[0,1]^n$ such that the boundaries avoid a, b. Now deal with each cube individually.

Example

(Y.) Let $X = [0,1]^n$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Example

(Y.) Let $X = \mathbb{R}^n$ or $X = S^{n+1}$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Proof.

Given $a, b \in I$, tile X with homeomorphic copies of $[0,1]^n$ such that the boundaries avoid a, b. Now deal with each cube individually.

Example

(Y.) Let $X = [0,1]^n$ and I the ideal generated by countable closed sets. Then $(Homeo(X) \curvearrowright X, I)$ is tight.

Proof.

Use a sphere to separate the cube into two parts which can be dealt with individually.

A Non-example

Proposition

Let (X,d) be an uncountable separable metric space, and let I contain all countable closed sets. Then $(Iso(X,d) \curvearrowright (X,d),I)$ is not σ -complete.

A Non-example

Proposition

Let (X,d) be an uncountable separable metric space, and let I contain all countable closed sets. Then $(Iso(X,d) \curvearrowright (X,d),I)$ is not σ -complete.

Proof.

1 Let $a = \emptyset$ and for each n let b_n be a 1/n net of X.

A Non-example

Proposition

Let (X,d) be an uncountable separable metric space, and let I contain all countable closed sets. Then $(Iso(X,d) \curvearrowright (X,d),I)$ is not σ -complete.

Proof.

- **1** Let $a = \emptyset$ and for each n let b_n be a 1/n net of X.
- 2 Note that regardless of the choice of γ_n , $\bigcup \gamma_n \cdot b_n$ will be a dense set.

Cofinal Orbits

Definition

The axiom of well-ordered choice is the statement that every well-ordered family of nonempty sets has a choice function.

Cofinal Orbits

Definition

The axiom of well-ordered choice is the statement that every well-ordered family of nonempty sets has a choice function.

Definition

Let $(\Gamma \curvearrowright X, I)$ be a dynamical ideal. It has cofinal orbits if for every $a \in I$ there exists $b \in I$ which is a-large: for every $c \in I$ there exists $\gamma \in pstab(a)$ such that $c \subseteq \gamma \cdot b$.

Cofinal Orbits

Definition

The axiom of well-ordered choice is the statement that every well-ordered family of nonempty sets has a choice function.

Definition

Let $(\Gamma \curvearrowright X, I)$ be a dynamical ideal. It has cofinal orbits if for every $a \in I$ there exists $b \in I$ which is a-large: for every $c \in I$ there exists $\gamma \in pstab(a)$ such that $c \subseteq \gamma \cdot b$.

$\mathsf{Theorem}$

(Zapletal, 2024) Let $(\Gamma \curvearrowright X, I)$ be a dynamical ideal with cofinal orbits. The corresponding permutation model satisfies the axiom of well-ordered choice.

An example of cofinal orbits

Example

(Y., independently discovered by M. Elekes) Let $X = [0,1]^n$, and I the ideal generated by closed nowhere dense sets. Then $(Homeo(X) \curvearrowright X, I)$ has cofinal orbits.

An example of cofinal orbits

Example

(Y., independently discovered by M. Elekes) Let $X = [0,1]^n$, and I the ideal generated by closed nowhere dense sets. Then $(Homeo(X) \curvearrowright X, I)$ has cofinal orbits.

The argument involves building a Sierpiński carpet on top of nowhere dense sets:

Definition

 $A\subseteq X=[0,1]^n$ is an n-1-dimensional Sierpiński carpet filling X if

Definition

 $A \subseteq X = [0,1]^n$ is an n-1-dimensional Sierpiński carpet filling X if

- A is closed nowhere dense
- \bigcirc $bd(X) \subseteq A$
- **3** The set of components of $X \setminus A$, $\{U_i : i \in \omega\}$ is such that $diam(U_i) \to 0$ and each U_i is homeomorphic to an open ball.
- $\{\overline{U_i}: i \in \omega\}$ is pairwise disjoint

Definition

 $A \subseteq X = [0,1]^n$ is an n-1-dimensional Sierpiński carpet filling X if

- A is closed nowhere dense
- \bigcirc $bd(X) \subseteq A$
- **3** The set of components of $X \setminus A$, $\{U_i : i \in \omega\}$ is such that $diam(U_i) \to 0$ and each U_i is homeomorphic to an open ball.
- $\{\overline{U_i}: i \in \omega\}$ is pairwise disjoint

The following is a corollary of theorems of Whyburn (n = 2, 1958) and Cannon ($n \ge 3$, 1972):

Lemma

Given Sierpiński carpets $A, B \subseteq X$, there is a self-homeomorphism of X such that h(A) = B and $h \upharpoonright bd(X) = id$.

Lemma

Given $A \subseteq [0,1]^n$ nowhere dense, there is a Sierpiński Carpet B filling $[0,1]^n$ such that $A \subseteq B$.

Lemma

Given $A \subseteq [0,1]^n$ nowhere dense, there is a Sierpiński Carpet B filling $[0,1]^n$ such that $A \subseteq B$.

Proof.

Fix a countable dense subset $\{x_i : i \in \omega\}$ and construct U_i centered at x_i such that

- **1** $diam(U_i) < 1/i$
- ② $\overline{U_i}$ is disjoint from A and $\overline{U_j}$ for j < i.

Lemma

Given $A \subseteq [0,1]^n$ nowhere dense, there is a Sierpiński Carpet B filling $[0,1]^n$ such that $A \subseteq B$.

Proof.

Fix a countable dense subset $\{x_i : i \in \omega\}$ and construct U_i centered at x_i such that

- **1** $diam(U_i) < 1/i$
- ② $\overline{U_i}$ is disjoint from A and $\overline{U_j}$ for j < i.

In the end, let $B = [0,1]^n \setminus \bigcup U_i$.

NWD has Cofinal Orbits

We are finally ready to state the proof that $(Homeo([0,1]^n) \curvearrowright [0,1]^n, NWD)$ has cofinal orbits.

We are finally ready to state the proof that $(Homeo([0,1]^n) \curvearrowright [0,1]^n, NWD)$ has cofinal orbits.

Proof.

• Given $a \in I$, let $K \supseteq a$ be a Sierpiński carpet filling $[0,1]^n$.

We are finally ready to state the proof that $(Homeo([0,1]^n) \curvearrowright [0,1]^n, NWD)$ has cofinal orbits.

- **①** Given $a \in I$, let $K \supseteq a$ be a Sierpiński carpet filling $[0,1]^n$.
- ② For each complementary component U_i of $[0,1]^n \setminus K$, let b_i be a Sierpiński carpet filling $\overline{U_i}$. Let $b = K \cup \bigcup b_i$.

We are finally ready to state the proof that $(Homeo([0,1]^n) \curvearrowright [0,1]^n, NWD)$ has cofinal orbits.

- **1** Given $a \in I$, let $K \supseteq a$ be a Sierpiński carpet filling $[0,1]^n$.
- ② For each complementary component U_i of $[0,1]^n \setminus K$, let b_i be a Sierpiński carpet filling $\overline{U_i}$. Let $b = K \cup \bigcup b_i$.
- ③ Given $c \in I$, to see b is a-large, apply the corollary from Whyburn and Cannon to each $\overline{U_i}$ to get γ_i which moves b_i onto the corresponding portion of c.

We are finally ready to state the proof that $(Homeo([0,1]^n) \curvearrowright [0,1]^n, NWD)$ has cofinal orbits.

- **①** Given $a \in I$, let $K \supseteq a$ be a Sierpiński carpet filling $[0,1]^n$.
- ② For each complementary component U_i of $[0,1]^n \setminus K$, let b_i be a Sierpiński carpet filling $\overline{U_i}$. Let $b = K \cup \bigcup b_i$.
- **3** Given $c \in I$, to see b is a-large, apply the corollary from Whyburn and Cannon to each $\overline{U_i}$ to get γ_i which moves b_i onto the corresponding portion of c.
- Finally, paste all of the γ_i together.

Example

Let X be any manifold and $\Gamma = Homeo(X) \curvearrowright X$ by application. Then for $I = \{a \subseteq X : \overline{a} \text{ is nowhere dense}\}$, the dynamical ideal has cofinal orbits.

Example

Let X be any manifold and $\Gamma = Homeo(X) \curvearrowright X$ by application. Then for $I = \{a \subseteq X : \overline{a} \text{ is nowhere dense}\}$, the dynamical ideal has cofinal orbits.

Proof.

Tile the space with copies of the cube.

Example

Let X be any manifold and $\Gamma = Homeo(X) \curvearrowright X$ by application. Then for $I = \{a \subseteq X : \overline{a} \text{ is nowhere dense}\}$, the dynamical ideal has cofinal orbits.

Proof.

Tile the space with copies of the cube.

Example

Question Let $X = \mathbb{R}^n$, $\Gamma = Homeo(X) \curvearrowright X$ by application, and let $J = \{a \subseteq X : \overline{a} \text{ is compact and nowhere dense}\}$. The dynamical ideal $(\Gamma \curvearrowright X, J)$ has cofinal orbits.

Example

Let X be any manifold and $\Gamma = Homeo(X) \curvearrowright X$ by application. Then for $I = \{a \subseteq X : \overline{a} \text{ is nowhere dense}\}$, the dynamical ideal has cofinal orbits.

Proof.

Tile the space with copies of the cube.

Example

Question Let $X = \mathbb{R}^n$, $\Gamma = Homeo(X) \curvearrowright X$ by application, and let $J = \{a \subseteq X : \overline{a} \text{ is compact and nowhere dense}\}$. The dynamical ideal $(\Gamma \curvearrowright X, J)$ has cofinal orbits.

Proof.

By picture.

Another Example of Cofinal Orbits

Example

Let $X = \mathbb{R}^2$ and $\Gamma = Homeo(X)$ acting by application, and let $I = \{a \subseteq X : \overline{a} \text{ is totally disconnected and compact}\}$. Then the dynamical ideal $(\Gamma \curvearrowright X, I)$ has cofinal orbits.

Another Example of Cofinal Orbits

Example

Let $X = \mathbb{R}^2$ and $\Gamma = Homeo(X)$ acting by application, and let $I = \{a \subseteq X : \overline{a} \text{ is totally disconnected and compact}\}$. Then the dynamical ideal $(\Gamma \curvearrowright X, I)$ has cofinal orbits.

Theorem

(Moise) Let M and M' be totally disconnected compact sets in \mathbb{R}^2 , and let $\varphi: M \to M'$ be a homeomorphism. φ extends to a homeomorphism $\overline{\varphi}: \mathbb{R}^2 \to \mathbb{R}^2$.

Another Example of Cofinal Orbits

Example

Let $X = \mathbb{R}^2$ and $\Gamma = Homeo(X)$ acting by application, and let $I = \{a \subseteq X : \overline{a} \text{ is totally disconnected and compact}\}$. Then the dynamical ideal $(\Gamma \curvearrowright X, I)$ has cofinal orbits.

Theorem

(Moise) Let M and M' be totally disconnected compact sets in \mathbb{R}^2 , and let $\varphi: M \to M'$ be a homeomorphism. φ extends to a homeomorphism $\overline{\varphi}: \mathbb{R}^2 \to \mathbb{R}^2$.

Corollary

(Moore-Kline theorem) Every totally disconnected compact set in \mathbb{R}^2 lies in an arc in \mathbb{R}^2 .

Lemma

Let $C \subseteq \mathbb{R}^2$ be compact and totally disconnected. There exists a continuous injection $\varphi: C \to S^1$ such that $\varphi \upharpoonright C \cap S^1 = id$.

Lemma

Let $C \subseteq \mathbb{R}^2$ be compact and totally disconnected. There exists a continuous injection $\varphi: C \to S^1$ such that $\varphi \upharpoonright C \cap S^1 = id$.

Proof.

• Without loss of generality, $C \subseteq Ball(S^1, 1/2)$.

Lemma

Let $C \subseteq \mathbb{R}^2$ be compact and totally disconnected. There exists a continuous injection $\varphi: C \to S^1$ such that $\varphi \upharpoonright C \cap S^1 = id$.

- Without loss of generality, $C \subseteq Ball(S^1, 1/2)$.
- ② For $n \ge 1$, let $Ball(S^1, 1/2^{n+1}) \subseteq N_n \subseteq Ball(S^1, 1/2^n)$ be annular neighborhoods of S^1 such that $bd(N_n) \cap C = \emptyset$.

Lemma

Let $C \subseteq \mathbb{R}^2$ be compact and totally disconnected. There exists a continuous injection $\varphi: C \to S^1$ such that $\varphi \upharpoonright C \cap S^1 = id$.

- Without loss of generality, $C \subseteq Ball(S^1, 1/2)$.
- ② For $n \ge 1$, let $Ball(S^1, 1/2^{n+1}) \subseteq N_n \subseteq Ball(S^1, 1/2^n)$ be annular neighborhoods of S^1 such that $bd(N_n) \cap C = \emptyset$.
- **3** Let $\varphi_0: S^1 \cap C \to S^1 = id$. Recursively define C_n and φ_n such that $C_n = \bigcup_{i \leq n} Im(\varphi_i)$

Lemma

Let $C \subseteq \mathbb{R}^2$ be compact and totally disconnected. There exists a continuous injection $\varphi: C \to S^1$ such that $\varphi \upharpoonright C \cap S^1 = id$.

- Without loss of generality, $C \subseteq Ball(S^1, 1/2)$.
- ② For $n \ge 1$, let $Ball(S^1, 1/2^{n+1}) \subseteq N_n \subseteq Ball(S^1, 1/2^n)$ be annular neighborhoods of S^1 such that $bd(N_n) \cap C = \emptyset$.
- **3** Let $\varphi_0: S^1 \cap C \to S^1 = id$. Recursively define C_n and φ_n such that $C_n = \bigcup_{i \leq n} Im(\varphi_i)$ and $\varphi_n: C \cap (N_n \setminus N_{n+1}) \to S_1$ such that $d(\varphi(x), \pi(x)) < 1/2^{n-1}$

Lemma

Let $C \subseteq \mathbb{R}^2$ be compact and totally disconnected. There exists a continuous injection $\varphi: C \to S^1$ such that $\varphi \upharpoonright C \cap S^1 = id$.

- Without loss of generality, $C \subseteq Ball(S^1, 1/2)$.
- ② For $n \ge 1$, let $Ball(S^1, 1/2^{n+1}) \subseteq N_n \subseteq Ball(S^1, 1/2^n)$ be annular neighborhoods of S^1 such that $bd(N_n) \cap C = \emptyset$.
- **3** Let $\varphi_0: S^1 \cap C \to S^1 = id$. Recursively define C_n and φ_n such that $C_n = \bigcup_{i \leq n} Im(\varphi_i)$ and $\varphi_n: C \cap (N_n \setminus N_{n+1}) \to S_1$ such that $d(\varphi(x), \pi(x)) < 1/2^{n-1}$ and $Im(\varphi_n) \cap C_{n-1} = \emptyset$.

Lemma

Let $C \subseteq \mathbb{R}^2$ be compact and totally disconnected. There exists a continuous injection $\varphi: C \to S^1$ such that $\varphi \upharpoonright C \cap S^1 = id$.

- Without loss of generality, $C \subseteq Ball(S^1, 1/2)$.
- ② For $n \ge 1$, let $Ball(S^1, 1/2^{n+1}) \subseteq N_n \subseteq Ball(S^1, 1/2^n)$ be annular neighborhoods of S^1 such that $bd(N_n) \cap C = \emptyset$.
- **③** Let $\varphi_0: S^1 \cap C \to S^1 = id$. Recursively define C_n and φ_n such that $C_n = \bigcup_{i \le n} Im(\varphi_i)$ and $\varphi_n: C \cap (N_n \setminus N_{n+1}) \to S_1$ such that $d(\varphi(x), \pi(x)) < 1/2^{n-1}$ and $Im(\varphi_n) \cap C_{n-1} = \emptyset$.
- **1** In the end, let $\varphi = \bigcup_{n \in \omega} \varphi_n$.

We are ready to prove that $(Homeo(\mathbb{R}^2) \curvearrowright \mathbb{R}^2, I = \{a \subseteq \mathbb{R}^2 : a \text{ is compact totally disconnected}\})$ has cofinal orbits.

Proof.

① Without loss of generality, we can assume $a \in S^1$.

We are ready to prove that $(Homeo(\mathbb{R}^2) \curvearrowright \mathbb{R}^2, I = \{a \subseteq \mathbb{R}^2 : a \text{ is compact totally disconnected}\})$ has cofinal orbits.

- **1** Without loss of generality, we can assume $a \in S^1$.
- ② $S^1 \setminus a$ consists of open intervals. For each interval U_i , let $b_i \subseteq \overline{U_i}$ be a copy of the Cantor set. We will show $b = \bigcup_{i \in \omega} b_i$ is a-large.

We are ready to prove that $(Homeo(\mathbb{R}^2) \curvearrowright \mathbb{R}^2, I = \{a \subseteq \mathbb{R}^2 : a \text{ is compact totally disconnected}\})$ has cofinal orbits.

- **1** Without loss of generality, we can assume $a \in S^1$.
- ② $S^1 \setminus a$ consists of open intervals. For each interval U_i , let $b_i \subseteq \overline{U_i}$ be a copy of the Cantor set. We will show $b = \bigcup_{i \in \omega} b_i$ is a-large.
- **③** Let *c* be given, without loss of generality, *a* ⊆ *c*. Let $\varphi: c \to S^1$ be given as in the previous lemma. Let $\overline{\varphi}: \mathbb{R}^2 \to \mathbb{R}^2$ be the extension to a homeomorphism of the plane.

We are ready to prove that $(Homeo(\mathbb{R}^2) \curvearrowright \mathbb{R}^2, I = \{a \subseteq \mathbb{R}^2 : a \text{ is compact totally disconnected}\})$ has cofinal orbits.

- **1** Without loss of generality, we can assume $a \in S^1$.
- ② $S^1 \setminus a$ consists of open intervals. For each interval U_i , let $b_i \subseteq \overline{U_i}$ be a copy of the Cantor set. We will show $b = \bigcup_{i \in \omega} b_i$ is a-large.
- **3** Let c be given, without loss of generality, $a \subseteq c$. Let $\varphi: c \to S^1$ be given as in the previous lemma. Let $\overline{\varphi}: \mathbb{R}^2 \to \mathbb{R}^2$ be the extension to a homeomorphism of the plane.
- Let $\psi_i: U_i \to U_i$ be a boundary preserving homeomorphism such that $\psi_i(\overline{\varphi}(c) \cap U_i) \subseteq b_i$. Let $\psi = \bigcup_{i \in \omega} \psi_i$.

We are ready to prove that $(Homeo(\mathbb{R}^2) \curvearrowright \mathbb{R}^2, I = \{a \subseteq \mathbb{R}^2 : a \text{ is compact totally disconnected}\})$ has cofinal orbits.

- **1** Without loss of generality, we can assume $a \in S^1$.
- ② $S^1 \setminus a$ consists of open intervals. For each interval U_i , let $b_i \subseteq \overline{U_i}$ be a copy of the Cantor set. We will show $b = \bigcup_{i \in \omega} b_i$ is a-large.
- **3** Let c be given, without loss of generality, $a \subseteq c$. Let $\varphi: c \to S^1$ be given as in the previous lemma. Let $\overline{\varphi}: \mathbb{R}^2 \to \mathbb{R}^2$ be the extension to a homeomorphism of the plane.
- Let $\psi_i: U_i \to U_i$ be a boundary preserving homeomorphism such that $\psi_i(\overline{\varphi}(c) \cap U_i) \subseteq b_i$. Let $\psi = \bigcup_{i \in \omega} \psi_i$.
- **5** Extend ψ to $\overline{\psi}: \mathbb{R}^2 \to \mathbb{R}^2$. Note $\overline{\psi} \circ \overline{\varphi}$ works.

• The homeomorphism extension theorem does not hold for totally disconnected sets in \mathbb{R}^3 . Is there a difference in the permutation models?

- ① The homeomorphism extension theorem does not hold for totally disconnected sets in \mathbb{R}^3 . Is there a difference in the permutation models?
- What results can be obtained about the ideal of countable closed sets in infinite dimensional space?

- **1** The homeomorphism extension theorem does not hold for totally disconnected sets in \mathbb{R}^3 . Is there a difference in the permutation models?
- What results can be obtained about the ideal of countable closed sets in infinite dimensional space?
- What results can be obtained about the ideal of nowhere dense closed sets in infinite dimensional space?

- The homeomorphism extension theorem does not hold for totally disconnected sets in \mathbb{R}^3 . Is there a difference in the permutation models?
- What results can be obtained about the ideal of countable closed sets in infinite dimensional space?
- What results can be obtained about the ideal of nowhere dense closed sets in infinite dimensional space?
- What similarities and differences can be seen in the models of differing dimensions?

- The homeomorphism extension theorem does not hold for totally disconnected sets in \mathbb{R}^3 . Is there a difference in the permutation models?
- What results can be obtained about the ideal of countable closed sets in infinite dimensional space?
- What results can be obtained about the ideal of nowhere dense closed sets in infinite dimensional space?
- What similarities and differences can be seen in the models of differing dimensions?
- What other structures should we use to study set theory?

Thank you!