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Abstract

A recent paper by Zapletal [5] discusses permutation models of set
theory which arise from dynamical ideals and highlights properties of the
dynamical ideal which relate to fragments of choice in the permutation
model. In this paper, we provide several examples from topology which
illustrate using these connections to argue that the corresponding permu-
tation model satisfies either the axiom of countable choice or well-ordered
choice.

1 Introduction

In [5], the notion of dynamical ideals are introduced as a method of construct-
ing permutation models of set theory, and various theorems are proved that
relate dynamical properties of the dynamical ideal with fragments of the axiom
of choice in the corresponding model, allowing one to determine properties of
the model without making explicit reference to the model. In principle, the
dynamical properties of a dynamical ideal depend on both the choice of ideal
and the underlying space, and in this paper, we look at examples of ideals on
natural spaces which satisfy two of those dynamical properties.

In particular, we show that the ideals generated by closed sets in the fol-
lowing spaces are dynamically σ-complete (definition 1.4): 2ω (Theorem 2.4),
ωω (Theorem 2.6), Rn (Theorem 2.11). We also show that the following ideals
support a cone measure (definition 1.6): the ideals generated by closed nowhere
dense sets on 2ω (Theorem 3.9) or any manifold (Theorem 3.6), and the ideal
generated by compact totally disconnected sets in R2 (Theorem 3.11). We also
show that the ideal generated by compact nowhere dense sets in Rn supports
a cone measure (Theorem 3.7), yet give an example of a manifold where the
same ideal fails to support a cone measure (Theorem 2.15). This paper leaves
open multiple problems, such as the status of the ideal generated by countable
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closed sets or the ideal generated by closed nowhere dense sets in infinite di-
mensional spaces. Additionally, the status of the ideal generated by compact
totally disconnected sets in Rn for n ≥ 3 remains unknown.

This first section introduces the relevant definitions of dynamical ideals, per-
mutation models, and the relevant dynamical properties that we are concerned
with. Section 2 investigates examples of dynamical ideals which are dynamically
σ-complete (Definition 1.4) and Section 3 investigates examples of dynamical
ideals which support a cone measure (Definition 1.6).

Definition 1.1. A dynamical ideal is a tuple which consists of a group Γ, its
action on a set X, and an ideal I on X which is invariant under the group
action. We denote a dynamical ideal by (Γ ↷ X, I).

This paper will be primarily concerned with dynamical ideals where the
underlying set X is taken to be a topological space and the group Γ is the group
of self-homeomorphisms of X acting by application - unless otherwise stated,
the acting group should be taken to be the group of self-homeomorphisms of X.
In our discussion of topological spaces, we will use the following notation: given
a set a, a denotes the closure, bd(a) denotes the boundary, and int(a) denotes
the interior of a. Additionally, when a metric is present, diam(a) denotes the
diameter according to the metric, and Ball(a, ε) denotes the set of all points x
such that d(x, a) < ε. If x is a point, then Ball(x, ε) = Ball({x}, ε).

Definition 1.2. Given a model of set theory with atoms V [[X]] where X is the
set of atoms, a group action Γ ↷ X extends to a group action Γ ↷ V [[X]] in a
natural way: for A ∈ V [[X]] such that A /∈ X and γ ∈ Γ, let γ ·A = {γ · a : a ∈
A}. We let pstab(A) = {γ ∈ Γ : for all a ∈ A, γ · a = a} denote the pointwise
stabilizer, and stab(A) = {γ ∈ Γ : γ ·A = A} denote the stabilizer.

Definition 1.3. Given a dynamical ideal (Γ ↷ X, I) and a model of set the-
ory with atoms using X as the set of atoms V [[X]], we define the permuta-
tion model corresponding to the dynamical ideal by as the transitive part of
{A ∈ V [[X]] : there exists b ∈ I such that pstab(b) ⊆ stab(A)}. The permuta-
tion model is denoted by W [[X]].

Definition 1.4. We say the dynamical ideal (Γ ↷ X, I) is dynamically σ-
complete if for all a ∈ I and any countable sequence (bi : i ∈ ω) of sets in I
there exist group elements γi ∈ pstab(a) such that

⋃ω
i=0 γi · bi ∈ I.

Theorem 4.3 of [5] states that if a dynamical ideal is dynamically σ-complete,
then the associated permutation model satisfies the axiom of countable choice.

Definition 1.5. We say the dynamical ideal (Γ ↷ X, I) has cofinal orbits if
for every a ∈ I there exists b ∈ I which is a-large: for any c ∈ I there exists
γ ∈ pstab(a) such that c ⊆ γ · b.

Theorem 3.3 of [5] states that if a dynamical ideal has cofinal orbits, then the
associated permutation model satisfies the axiom of well-ordered choice. The
paper goes on to identify a stronger condition visible in the permutation model
which implies that the ideal has cofinal orbits:
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Definition 1.6. A dynamical ideal (Γ ↷ X, I) supports a cone measure if in
the associated permutation model W [[X]], there is a set C ⊆ I which is cofinal
with respect to inclusion and such that for every set D ⊆ C there is a ∈ I such
that the set cone(a) := {b ∈ C : a ⊆ b} is either a subset of D or disjoint from
D. The set C is referred to as a support of the cone measure.

2 Dynamically σ-Complete Ideals

In this section, we present examples of dynamically σ-complete ideals. We first
make the following definitions:

Definition 2.1. We say a topological space together with an ideal (X, τ, I) is
tight if for any a ∈ I, a can be expanded to a set a′ ∈ I such that for any b ∈ I
and any open neighborhood U ∈ τ of a′, there exists γ ∈ pstab(a′) with γ ·b ⊆ U .
In the case that (X, τ) is metrizable, it is equivalent to fix a compatible metric
and just consider neighborhoods U which are open metric balls about a′.

Definition 2.2. Let (X, τ) be a topological space. An ideal I is called a σ-ideal
of closed sets if it has the form I = {A ⊆ X : A ∈ J} for some σ-ideal J . If
I instead has the form I = {A ⊆ X : A ∈ J is compact} then we say I is a
σ-ideal of compact sets.

When I is a σ-ideal of closed sets, tightness of a sequential and perfectly
normal Hausdorff space is enough to guarantee that the ideal is dynamically
σ-complete, as established in the following proposition:

Proposition 2.3. Let (X, τ) be a sequential and perfectly normal Hausdorff
space, let Γ be the group of self-homeomorphisms acting by application, and let
I be a σ-ideal of closed sets. Then if (X, τ, I) is tight, then the dynamical ideal
(Γ ↷ X, I) is dynamically σ-complete. In particular, the result holds if X is
metrizable. Further, if X locally compact, then the result holds even if I is a
σ-ideal of compact sets.

Proof. Let J be a σ-ideal such that I = {a ⊆ X : a ∈ J}. Let a ∈ I and
(bi : i ∈ ω) ⊆ I be given - without loss of generality assume each of these sets
are closed. Enlarge a to a′ ∈ I as needed to witness that (X, τ, I) is tight, and
let (Ui : i ∈ ω) be a sequence of open neighborhoods of a′ such that Ui ⊇ Ui+1

and
⋂

i∈ω Ui = a′ witnessing that (X, τ) is perfectly normal. Let γi ∈ pstab(a′)
be such that γi · (bi) ⊆ Ui.

Letting c = a′ ∪
⋃

i∈ω γi · bi, we note that since a′ and each of the γi · bi
belong to J , it follows that c ∈ J . To conclude that c ∈ I, it remains to show
that c is closed. To see this, let x belong to the closure of c and use the fact
that the space is sequential to find a sequence (xi : i ∈ ω) in c which converges
to x. If there is some γk · bk which the sequence (xi) visits infinitely often, then
we can pass to a subsequence and use the fact that γk · bk is closed to conclude
x ∈ γk · bk. If not, then (xi : i ∈ ω) visits each γk · bk finitely many times and
we can pass to a subsequence (xiℓ : ℓ ∈ ω) such that if xiℓ ∈ bk, then ℓ ≤ k. We
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show that x ∈ a′ by showing that x ∈ Uk for each k: let k ∈ ω be given, and
suppose towards a contradiction that x ̸∈ Uk. Then x ̸∈ Uk+1, and we can find
an open neighborhood V ∋ x which separates x from Uk+1. But note that by
assumption, Uk+1 and V both contain all but finitely many elements from the
sequence (xiℓ : ℓ ∈ ω), a contradiction.

When X is locally compact and we consider the ideal generated by countable
compact sets, we modify the above argument by choosing neighborhoods Un of
a′ such that Un is compact. Hence in the end, c ⊆ U0 is also compact.

We can use the above result to show that certain topological spaces yield dy-
namically σ-complete ideals. The next few theorems illustrate spaces which are
tight, hence correspond to a dynamical ideal which is dynamically σ-complete.

Theorem 2.4. The Cantor space X = 2ω with the usual topology and the ideal
generated by countable closed subsets is tight.

Proof. Let a, b ∈ I be two closed sets, and let U be an open neighborhood of a.
By compactness of a, we can find a clopen set V ⊆ U which contains a; write
b′ = b\U to obtain a closed set which is disjoint from V . Let C be a cover of b′ by
pairwise disjoint neighborhoods of the form Ns = {x : x(n) = s(n) for all n <
|s|} for a finite string s ∈ 2<ω - by compactness, C = {Ns0 , . . . , Nsk} can be
taken to be finite. Because a∪ b is closed and countable, a∪ b is nowhere dense,
so let O ⊆ V be an open open set disjoint from a ∪ b with the form O = Nt

for some finite string t ∈ 2<ω. Let Vi = Nti where ti = t⌢1⌢ . . .⌢ 1⌢0 is the
string obtained from t by concatenating i 1s and then a final 0. We define a
homeomorphism φi : (Nsi ∪ Vi) → (Nsi ∪ Vi) for i ≤ k by φi(s

⌢
i y) = t⌢i y and

φi(t
⌢
i y) = s⌢i y. In words, the map φi swaps the sub-tree of 2ω which starts

at si with the subtree which starts at ti. The union of these homeomorphisms,
together with the identity elsewhere on 2ω defines a homeomorphism of the
entire Cantor space. By construction, the homeomorphism fixes a pointwise
and is such that the image of b is contained in V .

We obtain a similar result for the Baire space ωω, but must first establish a
preliminary proposition:

Proposition 2.5. Let a ⊆ ωω be closed countable, and U ⊆ ωω an open subset
containing a. There is a clopen subset V ⊆ U which contains a.

Proof. We prove by induction on the Cantor Bendixson rank of a. Let a, U be
given as in the statement of the proposition, and let α be the least ordinal such
that a(α) ̸= ∅ and a(α+) = ∅. Then aα contains no limit points; let b = a(α) and
write b = {xi : i ∈ ω}, fix an ultrametric d on ωω and recursively construct sets
Vi ⊆ U such that

1. Vj is clopen

2. for j < i, Vi ∩ Vj = ∅

3. diam(Vi) < 2−i
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4. If xi ∈ Vj for some j < i, then Vi = ∅, and otherwise Vi ∋ xi.

We note that since U \
⋃

j<i Vj is open, it is easy to construct Vi in this manner
by choosing it to be a neighborhood of xi. In the end, V =

⋃
i∈ω Vi is open; to

see V is closed, suppose y ∈ V , and let (ym : m ∈ ω) be a sequence of elements
from V which converges to y. Each ym belongs to a unique Vi, denote the
particular set by Vim , and observe that this induces a sequence of elements of b,
namely (xim : m ∈ ω). Use the fact that d is an ultrametric to write d(xim , y) ≤
max{d(xim , ym), d(ym, y)}. If y = xim for some m, then y ∈ V . Otherwise,
by the assumption that b contains no accumulation points, we observe that
d(xim , y) is bounded away from 0, and hence so is d(xim , ym). In particular, the
sequence diam(Vim) is bounded away from 0, so we conclude the sequence visits
only finitely many Vi, and since the union of finitely many Vi is closed, we see
that y ∈ V .

Now observe that a∗ = a \ V is closed and has Cantor Bendixson rank ≤ α.
By induction, there is a clopen set V ∗ ⊆ U \ V which contains a∗, and hence
V ∪ V ∗ is clopen and contains a.

Theorem 2.6. The Baire space X = ωω with the usual topology and the ideal
generated by countable closed subsets is tight.

Proof. Let a, b ∈ I be two closed sets, and let U be an open neighborhood of
a. Use Proposition 2.5 to find a clopen set V ⊆ U such that a ⊆ V . Use the
fact that since a∪ b is closed and countable, the union is nowhere dense to find
a clopen O ⊆ V which is disjoint from a ∪ b. Next we use the fact that any
nonempty clopen subset of ωω is homeomorphic to ωω to find a homeomorphism
φ1 : O → ωω \ V . Observe that the union of φ1 together with its inverse and
the identity on V \ O yields a homeomorphism of ωω which fixes a pointwise
and maps b into V .

In [5], it is shown that the ideal generated by countable compact sets in R is
tight. This result is true when generalized to Rn, but requires a different proof.
To build up to the proof, we first consider the following propositions:

Proposition 2.7. Let A,B ⊆ Rn be countable compact, and let U ⊆ X be a
metric open ball containing A. Then there is a metric open ball with rational
radius V with the same center as U such that A ⊆ V ⊆ V ⊆ U , and such that
the boundary of V is disjoint from B.

Proof. Let U = Ball(x, r), and define a continuous function f : B → R by
f(y) = d(x, y). Since B is countable compact, so is the image of f , hence f(B)
is nowhere dense. Let δ = inf{ε : A ⊆ Ball(x, ε)}, and note that {s ∈ Q :
δ < s < r and s ̸∈ f(B)} is nonempty. Fix some s from this set, and note that
V = Ball(x, s) works.

Proposition 2.8. Let a ⊆ Rn be countable compact, and let ε > 0. There is a
finite cover C of a consisting of pairwise disjoint metric open balls of radius less
than ε. In particular,

⋃
C ⊆ Ball(a, ε).
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Proof. We proceed by induction on the Cantor-Bendixson rank of a. Let α be
the least ordinal such that a(α) ̸= ∅ and a(α+) = ∅. Then a(α) contains no
accumulation points; we write a(α) = {xi : i ∈ ω}, and we recursively construct
balls Bi = Ball(xi, εi) with εi < ε such that

1. for j < i, Bi ∩Bj = ∅

2. for all x ∈ a and all i ∈ ω, x ̸∈ bd(Bi)

3. If xi ∈ Bj for some j < i, then Bi = ∅, and otherwise Bi ∋ xi.

We note that property 2 can be ensured by the proposition above, and properties
1 and 3 can be ensured since a(α) has no accumulation points. Further, since
aα is compact, we note that the process will yield finitely many sets Bi - let
k denote the index of the last nonempty set constructed. In the end, we let
a∗ = a \

⋃
i≤k Bi, and we note a∗ is closed of rank ≤ α. We let δ = inf{d(x, y) :

x ∈ a∗, y ∈
⋃

i≤k Bi} - we note δ > 0 since Bi were chosen to not intersect a
in its boundary. Let δ′ = min{δ, ε}, and by induction, we can cover a∗ with
pairwise disjoint open balls of radius smaller than δ and which are also disjoint
from the Bi. Taking the cover of a∗ together with the Bi gives a cover of a as
desired.

Proposition 2.9. Let a ⊆ Rn be countable compact, and let C be a cover of a.
There exists a refinement of C into a cover of a by pairwise disjoint metric balls
with rational radius.

Proof. Let a ⊆ X be countable compact, and let C be a cover of a. Use Propo-
sition 2.7 to replace C with a refinement C1 consisting of balls whose boundary
do not intersect a. Let ε = min{d(x, y) : x ∈ a, y ∈ bd(C) for C ∈ C1}. Now use
Proposition 2.8 to construct a cover C2 of a by pairwise disjoint balls of radius
smaller than ε; the choice of ε ensures that C2 is a refinement of C1.

Proposition 2.10. Let {C1, . . . , Cm} be a collection of pairwise disjoint closed
metric balls in Rn. There is a set K which is the image of the closed unit ball
under some homeomorphism of Rn and satisfies C1, C2 ⊆ K and for 3 ≤ i ≤ m,
Ci ∩K = ∅.

Proof. Let L be a straight line path from the center of C1 to the center of
C2. Since the balls are all closed and pairwise disjoint, we can find larger
balls D3 ⊇ C3, D4 ⊇ C4, . . . , Dm ⊇ Cm such that C1, c2, D3, . . . , Dm are all
pairwise disjoint. If L passes through Di, replace L by a curve that it traces
the geodesic along the boundary of Di. By this construction, L does not have
a knot, so there is a homeomorphism ψ of Rn that sends L to the first axis; i.e.
ψ(L) ⊆ {(x, 0, . . . , 0) : x ∈ R. Construct a family of cylinders about L as follows:
cylρL := ψ−1({(x, r2, . . . , rn) :

√
r22 + · · · + r2n ≤ ρ, (x, 0, . . . , 0) ∈ ψ(L)}). Since

there are finitely many Cm, we can choose ρ such that cylρL does not intersect
any of the C3, . . . , Cm. In the end, let K = C1 ∪ cylρL ∪ C2.

We are now finally ready to prove that Rn with the ideal generated by
countable compact sets is tight.
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Theorem 2.11. Euclidean space Rn with the usual topology and the ideal gen-
erated by compact countable sets is tight. Moreover, tightness can be witnessed
by a homeomorphism with compact support.

Proof. Let a, b be countable compact, and let ε > 0. Find a finite cover of a,
denoted by C = {C1, . . . , Cm} of pairwise disjoint basic open balls of radius at
most ε/2 whose boundaries are disjoint from b. Here we note that if x ∈ b∩

⋃
C,

then x is already close enough to a to satisfy the tightness condition. Hence we
let a′ = a∪ (b∩

⋃
C) and b′ = b \ a′ and observe that a′ and b′ are still compact

and countable. Now choose δ small enough such that Ball(b′, δ) is disjoint from⋃
C, and find a cover D = {D1, . . . , Dℓ} of b′ by pairwise disjoint balls of radius

smaller than δ.
We use induction on ℓ to constuct a homeomorphism γ of Rn, such that

γ(b′) ⊆
⋃
C and γ ∈ pstab(a)′. The base case ℓ = 0 is trivial. For general ℓ,

we start by finding γ1 such that γ1(b′ ∩D1) ⊆
⋃
C and γ1 fixes all other points

of a′ and b′. To do this, first use Proposition 2.7 to find a ball C ′
1 ⊆ C ′

1 ⊆ C1

which contains a′ ∩ C1. Let D∗
1 ⊆ C1 \ C ′

1 be a ball whose boundary is disjoint
from the boundary of C1 \C ′

1; D∗
1 is the target where elements of b′∩D1 will be

sent. Use Proposition 2.10 to find a set K which contains D1, D
∗
1 , and is disjoint

from C ′
1, C2, . . . , Cm, D2, . . . , Dℓ. Let f : K → K be a homeomorphism of K

which fixes the boundary and is such that f(b ∩D1) ⊆ D∗
1 . Let φ1 : Rn → Rn

be the homeomorphism obtained by extending f with the identity outside of K,
observing that φ1 fixes a′ pointwise and moves b′ ∩D1 within ε of a.

Since a′ ∪ φ1(b′ ∩ D1) is still countable compact, we apply the induction
hypothesis to obtain a φ2 which fixes a′ ∪ φ1(b′ ∩ D1) pointwise and moves
b′ \D1 into

⋃
C. Taking the composition of the two homeomorphisms, we see

that φ = φ2φ1 is the desired homeomorphism to witness that the space is tight.
Further, we observe that φ is a homeomorphism with compact support, so the
result holds even if the acting group is restricted to only homeomorphisms with
compact support.

Theorem 2.12. Euclidean space Rn with the usual topology and the ideal gen-
erated by closed countable sets is tight.

Proof. Let a be given countable closed, and let a′ extend a by adding in every
point where each coordinate has a fractional part of 1/2. Let b be a given
countable closed set, and ε > 0. Now consider hyperplanes of the form xi = m,
where 1 ≤ i ≤ n and m ∈ Z. Some of these hyperplanes may intersect a′∪b, but
because a′∪b is countable, there exists some real number ri,m ∈ (m−10−1,m+
10−1) such that xi = ri,m is disjoint from a′ ∪ b. Note that the collection of
all such hyperplanes divide the Rn into regions which are homeomorphic to the
cube [0, 1]n, and each of which has nontrivial intersection with a′ (in particular,
each region will have exactly one point where each coordinate has a fractional
part of 1/2). Enumerate these regions by Uj , and let a′j = a′ ∩ Uj , bj = b ∩ Uj .
By construction, a′j , bj are compact in int(Uj), and so by the previous result,
there is a homeomorphism φj of Uj that fixes its boundary pointwise, fixes a′j
pointwise, and brings bj within ε of a′j . The union of all the φj is well-defined
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because they are all the identity on the boundaries of their respective regions,
and taking the union yields a homeomorphism of the entire space Rn which fixes
a′ pointwise and moves b within ε of a′.

We finish this section with examples of ideals which are not dynamically σ-
complete. This first class of ideals differs from what has been discussed above in
that we fix a metric and restrict the acting group to the group of self-isometries
instead of the group of all self-homeomorphisms. It turns out that restricting
the group in this way is enough to prevent the ideal from being dynamically
σ-complete.

Theorem 2.13. Let (X, d) be an uncountable separable metric space, and let I
contain all countable closed sets and exclude X itself. Then (Iso(X) ↷ X, I) is
not dynamically σ-complete.

Proof. For a counterexample, let a = ∅ and let bn be a 1/n-net of X. That is,
for each x ∈ X, d(x, bn) < 1/n. Then regardless of the choice of group elements
γn ∈ Iso(X), we see that γn · bn is still a 1/n-net of X. In the end,

⋃
n∈ω γn · bn

is a dense subset of X and hence its closure is X and does not belong to the
ideal.

We introduce this next non-example of dynamical σ-completeness in antici-
pation of how it contrasts with examples given in the following section. We first
make the following definition:

Definition 2.14. We define the Cantor Set Iteration to be a set X ⊆ R2

as follows: let C0 = [0,−1] and let Ci+1 =
1

3
Ci ∪

(
2

3
+

1

3
Ci

)
. Let Ki =⋃

j≤i Cj × [j, j + 1]. In the end, let X =
⋃

i∈ωKi.

Theorem 2.15. Let X be the Cantor Set Iteration as defined above. Let Γ
denote the group of self-homeomorphisms of X acting by application, and let I
denote the ideal generated by compact nowhere dense sets. The ideal (Γ ↷ X, I)
does not have cofinal orbits.

Proof. Before showing that the ideal is not dynamically σ-complete, we first
make a few remarks: let Ki ⊆ X be as defined in the construction of X and
observe that X \K consists of 2i components, each of which is has non-compact
closure. Observe that any compact set a ⊆ X is contained in Ki for some i,
and that if a ⊆ b are both compact sets, then the number components of X \ a
with non-compact closure is less than or equal to the number such components
of X \ b: if U is a component of X \ a such that U is not compact, then note
b∩U is compact. Hence U \ b consists of components, at least one of which has
non-compact closure.

Now we show that the ideal does not have cofinal orbits: we let a = ∅, and
choose bi to be compact nowhere dense such that X \ bi contains 2i components
whose closure is not compact (in particular, one can take bi to be the boundary
of Ki). Let hi : X → X be any homeomorphism; observe that X \ hi(bi) still
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contains 2i components whose closure is not compact. Then we consider the set
B =

⋃
n∈ω hi(bi) and show it has non-compact closure. Suppose to the contrary

that c ⊇ B is a compact set, then c ⊆ Ki for some i. Hence X\c must contain at
most 2i components which have non-compact closure. However, hi+1(bi+1) ⊆ c,
so c must have at least 2i+1 components which have non-compact closure, and
we have reached a contradiction.

3 Ideals with cofinal orbits

In this section we present a couple examples of ideals which support a cone
measure and hence have cofinal orbits. Our first examples come from consid-
ering the ideal of nowhere dense subsets of manifolds, by which we mean an
n-dimensional manifold is a second countable Hausdorff space which is locally
Euclidean: every point has a neighborhood which is homeomorphic to either Rn

or R≥0 ×Rn−1. We make no distinction between whether or not a manifold has
a boundary, as the following definition and all theorems apply equally to both.
We first make the definition:

Definition 3.1. Let X be an n-dimensional connected manifold (with or without
boundary), and let A ⊆ X. Say that A is a flat S-carpet in X if

1. A is connected, closed, and nowhere dense.

2. There are countably many components Ui of X \ A and each component
is open.

3. The set of closures of the complementary components {Ui : i ∈ ω} is
pairwise disjoint.

4. For each component Ui of X \ A, there is an open set Vi ⊋ Ui such that
hi : Vi → Rn is a homeomorphism and also induces a homeomorphism
between Ui and the open unit ball in Rn.

5. If (xi : i ∈ ω) is a sequence such that xi ∈ Ui and some subsequence
converges xiℓ → x, then Uiℓ → {x} in the hyperspace.

We note that if X is a manifold with boundary and A is a flat S-carpet in
X, then A necessarily contains all boundary points of X by condition 4 in the
definition. We also note that when X is compact and has a metric, condition 5
is equivalent to saying that diam(Ui) → 0.

The authors of [4] and [1] study flat S-carpets in the sphere Sn (using the
metric characterization of condition 5 instead of the one given here). We sum-
marize the relevant results of the papers in the following theorem, which will
lead to two immediate corollaries:

Theorem 3.2. Let X,Y be flat S-carpets in the sphere Sn. Any homeomor-
phism between X,Y will induce a correspondence between the complementary
components of the two sets. Further, any partial correspondence between the
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sets of complementary components can be extended to a homeomorphism between
X,Y . That is, if U0, . . . , Uk, V0, . . . , Vk are finitely many complementary com-
ponents of X,Y respectively, then given homeomorphisms φi : bd(Ui) → bd(Vi)
between the boundaries of the complementary components, one can obtain a
homeomorphism from φ : X → Y which extends each φi.

Of note is that [1] only claims the results for n ̸= 4. However, developments
have occurred since the paper was first published, namely that the annulus
theorem since been proven in the relevant case, so we observe the results hold
in the case n = 4 here. We get the following immediate corollaries.

Corollary 3.3. Let X,Y be two flat S-carpets in Sn, and let h : X → Y
be a homeomorphism between the two carpets. Then h can be extended to a
homeomorphism h : Sn → Sn.

Proof. The previous theorem tells us that h induces a correspondence between
the complementary components of X,Y . Let Ui denote the complementary
components of X and denote the corresponding complementary components
of Y induced by h as Vi. Let hi : Ui → Vi be a homeomorphism extending
h ↾ bd(Ui). Let h = h∪

⋃
i∈ω hi - this is well-defined since hi equals h everywhere

the domains overlap.
To see that h is continuous, let (xm : m ∈ ω) be a sequence such that

xm → x. If either infinitely many xm belong to X or infinitely many xm belong
to the same Ui, then h(xm) → h(x) by continuity of h on X or Ui respectively.
Otherwise we can pass to a subsequence such that xm each belong to distinct
Uim . In this case, we use the fact that X is a flat S-carpet to note that it
satisfies condition 5 in the definition above and find a sequence consisting of
x′m ∈ bd(Uim) such that x′m → x. Since x′m ∈ X, we see that h(x′m) → h(x).
From here, using the fact that Y satisfies condition 5 tells us that h(xm) → h(x).
Hence h is continuous, and the same argument shows that h−1 is continuous.

Corollary 3.4. Let M be a manifold obtained by removing k disjoint flat balls
from the sphere Sn, and let X,Y ⊆ M be flat S-carpets in M . There is a
homeomorphism φ of M which fixes the boundary of M pointwise and whose
restriction to X is a homeomorphism from X to Y . In particular, if k = 1,
then we see that M ≃ [0, 1]n is the n-dimensional cube, and if k = 2, then
M ≃ [0, 1] × Sn−1 is the annulus.

Proof. Let φ embed M into Sn and let h : φ(X) → φ(Y ) be a homeomorphism
which extends the identity map on the boundary of φ(M). Extend h to h, a
homeomorphism of the entire sphere as in the previous corollary. Observe that
h(φ(M)) is a homeomorphism of φ(M), which fixes the boundary and hence
the composition φ−1hφ(M) is a homeomorphism of M which maps X to Y and
fixes the boundary of M pointwise.

We will show that in any manifold X, the set of flat S-carpets in X is the
support of a cone measure in the permutation model. We first show that this
set is cofinal:
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Proposition 3.5. Let X be a separable n-dimensional manifold (with or without
boundary), let a ⊆ X be closed nowhere dense. There is a flat S-Carpet K in
X such that a ⊆ K.

Proof. Let (Wi : i ∈ ω) be a countable basis for X. Recursively construct open
sets Vi, Ui as follows: if Wi ⊆ Uj for some j < i, then let Vi, Ui = ∅. Otherwise,
let Vi ⊆Wi be open such that for j < i, either Vi∩Wj = ∅ or Vi ⊆Wj . Further,
choose Vi to be disjoint from a and Uj for j < i, and let φi : Rn → Vi be a
homeomorphism. Let B denote the open unit ball in Rn, and let Ui ⊆ Vi be the
open set given by φi(B). Let K = X \

⋃
i∈ω Ui. By construction, K satisfies

requirements 1-4 to be a flat S-carpet in X.
To see that requirement 5 is satisfied, suppose (xi : i ∈ ω) is a sequence such

that xi ∈ Ui, and xi has a subsequence (xiℓ : ℓ ∈ ω) which converges to the
point x. Let O = Wk be a basic open neighborhood of x. Now let N > k be
such that if ℓ ≥ N , then xiℓ ∈ O. Observe that since xiℓ ∈ Uiℓ , we know Uiℓ

has nonempty intersection with O and is hence contained in O.

Theorem 3.6. Let X be a n-dimensional connected manifold (with or without
boundary), and let I be the ideal generated by closed nowhere dense sets. Let
C ⊆ I be the set of flat S-carpets in X. C is the support of a cone measure.

Proof. Working in the permutation model, let D ⊆ C be a cofinal subset, and
let a ∈ I be such that pstab(a) ⊆ stab(D). Without loss of generality, we can
assume that a ∈ C by enlarging via the previous proposition. Let b ∈ C be
such that for each complementary component Ui of a, b ∩ Ui is a flat S-carpet
in Ui. We will show that cone(b) ⊆ D: let c ∈ C, d ∈ D such that b ⊆ c, d. Let
ci = c∩Ui, and di = d∩Ui; observe that since b, c and d are flat in X, and b∩Ui

is flat in Ui, we have ci, di are flat in Ui. Inside each Ui, use Corollary 3.4 to find
a self-homeomorphism φi of Ui which fixes the boundary and maps di to ci. In
the end, let φ be equal to φi on Ui and the identity elsewhere, and observe that
φ is a homeomorphism of X such that φ ∈ pstab(a). By construction, φ(d) = c,
and since φ ∈ pstab(a) ⊆ stab(D), we conclude c ∈ D.

We note that by Theorem 2.15, it is not true that for every manifold, the ideal
of compact nowhere dense sets supports a cone measure. However, there are
certainly manifolds where the ideal of compact nowhere dense sets do support
a cone measure, as illustrated in the following theorem:

Theorem 3.7. Let n ∈ ω, and let X = Rn with the usual topology. For ease
of notation, we will represent Rn as Sn−1 × R≥0, and define the closed balls
Br = Sn−1 × [0, r]. Let I denote the ideal generated by compact nowhere dense
sets. Let C ⊆ I be the set of flat S-carpets in Br for some r > 0. C is a cofinal
subset of I and is the support of a cone measure.

Proof. That C is cofinal follows quickly from Theorem 3.5 and the Heine-Borel
theorem. To see that C is a support of the cone measure, work in the permuta-
tion model, let D ⊆ C be cofinal, and let a ∈ I be such that pstab(a) ⊆ stab(D).
Let r > 0 be big enough such that a ⊆ Br, and find a flat S-carpet b in B2r
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that contains a and whose intersection with each component U of Br \ a is a
flat S-carpet in U . Now to show that cone(b) ⊆ D, let c ∈ C, d ∈ D such
that b ⊆ c, d. Let s, t be such that c, d are flat S-carpets in Bs, Bt respectively;
observe s, t ≥ 2r. Let φ′ : R≥0 → R≥0 be a homeomorphism which fixes the
interval [0, r] and is such that φ′(t) = s. Define φ = idSn−1 ×φ′, and observe φ
fixes Br pointwise and hence fixes a′ pointwise. Now let A = Bs \Br observe
that c ∩ A and d ∩ A are both flat S-carpets in A, and Corollary 3.4 yields
a homeomorphism ψ0 of A which fixes the boundary and maps φ(d) ∩ A to
c ∩ A. Additionally, we can proceed as in the proof of Theorem 3.6 to find a
self-homeomorphism ψ1 of Br which fixes a and the boundary pointwise and
maps d ∩ Br to c ∩ Br. Now let ψ be the self-homeomorphism of Rn obtained
by taking the union of ψ0, ψ1, and the identity on Rn \ Bs. The composition
ψφ is a self-homeomorphism which fixes a pointwise and maps d to c. Since
pstab(a) ⊆ stab(D), we conclude c ∈ D, and so the result follows.

We now consider results concerning totally disconnected sets. We first note
the following theorem presented in [2]:

Theorem 3.8. If C1, C2 are homeomorphic to the Cantor set, b1, b2 are nowhere
dense subsets of C1, C2 respectively, and h : b1 → b2 is a homeomorphism, then
h can be extended to a homeomorphism h : C1 → C2.

From this theorem, we quickly get the following result:

Theorem 3.9. Let X = 2ω denote the Cantor space with its standard topology.
Let I be the ideal on X generated by closed nowhere dense sets. Let C ⊂ I be the
set of perfect nowhere dense sets. C is a cofinal subset of I and is the support
of a cone measure.

Proof. Working in the permutation model, let D ⊆ C be a cofinal subset, and
let a ∈ I be such that pstab(a) ⊆ stab(D). Let b ∈ C be a set such that a ⊆ b
is nowhere dense; we claim that cone(b) ⊆ D: let b ⊆ c ∈ C and b ⊆ d ∈ D.
Observe that a is nowhere dense in c and d, and that c and d are homeomorphic
to the Cantor space. Hence [2] can be used to extend the identity map on a
to a homeomorphism h : d → c. Apply [2] again to obtain a homeomorphism
h : 2ω → 2ω, and observe that h ∈ pstab(a) ⊆ stab(D), so c = h(d) ∈ D.

We next show that a similar result holds when looking at compact totally
disconnect subsets of the Euclidean plane. The proof will be very similar, but
we will need a different extension theorem given in [3]:

Theorem 3.10. If M,M ′ are compact totally disconnected sets in R2, and
f : M → M ′ is a homeomorphism, then f extends to a homeomorphism f̄ :
R2 → R2.

Theorem 3.11. Let X = R2 be the 2-dimensional Euclidean space with stan-
dard topology, and let I be the ideal on X generated by compact totally discon-
nected sets. Let C ⊆ I be the set of perfect compact totally disconnected sets. C
is a cofinal subset of I and is the support of a cone measure.
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Proof. Working in the permutation model, let D ⊆ C be a cofinal subset, and
let a ∈ I be such that pstab(a) ⊆ stab(D). Let b ∈ C be a set such that a ⊆ b
is nowhere dense; we claim that cone(b) ⊆ D: let b ⊆ c ∈ C and b ⊆ d ∈ D.
Observe that a is a nowhere dense subset of c and d, and use the theorem from
[2] to extend the identity on a to a homeomorphism φ : d→ c between d and c.
From here, extend φ to a homeomorphism of the entire plane φ : R2 → R2 [3].
Since φ ∈ pstab(a), we know φ ∈ stab(D), and hence c = φ(d) ∈ D.

We note that in R3, the extension theorem given in [3] does not hold since
there are multiple distinct embeddings of 2ω in R3. Hence the above argument
does not immediately generalize to higher dimensions. It is an open problem to
either show that the ideal of compact totally disconnected sets supports a cone
measure in R3 or to find a specific counterexample witnessing that it does not.
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