STA 4321

Spring 2019

Quiz 5

Full Name:								
On my honor, I have neither given nor received unauthorized aid on this quiz								
Signature:								
This is a 10 minute quiz. There are 5 multiple choice problems, each having EXACTLY ONE correct answer. You may <i>not</i> use any books, other references, or text-capable electronic devices.								
1. Let X be a continuous random variable with density function f_X . Then								
(a) $\int_{-\infty}^{\infty} f_X(x) dx = 0$. (b) $\int_{-\infty}^{\infty} f_X(x) dx = \frac{1}{2}$. (c) $\int_{-\infty}^{\infty} f_X(x) dx = 1$. (d) $\int_{-\infty}^{\infty} f_X(x) dx = F_X(1)$.								
2. If $X \sim \text{Uniform}[0,1]$, then								
(a) $E[X] = 0$. (b) $E[X] = 1$. (c) $E[X] = \frac{1}{2}$. (d) $V(X) = 1$.								
3. The exponential random variable is a special case of the class of								
(a) gamma random variables. (b) uniform random variables. (c) normal random variables. (d) discrete random variables.								
4. If Z is a standard normal random variable, then								
(a) $E[Z] = 1$. (b) $E[Z^2] = 0$. (c) $V(Z) = \frac{1}{2}$. (d) $V(Z) = 1$.								

5.	The exponential	distribution i	is the on	ly continuous	distribution	which	has the	memory	less
property. This statement is									

(a) True. (b) False. See lecture notes.

-

ì