
Proof that the ADDA and DA Markov chains have the
same stationary distribution

Consider a Data Augmentation setting where D = (D1,D2) denotes the collection of latent
variables partitioned into two blocks (D1 and D2), and θ denotes the parameter of interest.
Consider the setting where r = 0.5, so the asynchronous version ADDA updates exactly one
of the two latent variable blocks at any given iteration. At any given iteration, we allow
the probability that the first latent variable block will be updated to depend on the current
parameter value. Let πD,θ denote the posterior density of interest (this is the stationary
density of the corresponding DA algorithm). The dependence of this posterior density on
the observed data has been suppressed for notational convenience. We use πD|θ, πθ|D, πθ, πD
to denote the associated conditional and marginal densities. For ease of exposition, we will
assume that D and θ are supported on a discrete space (hence the densities above are with
respect to an appropriate discrete measure). The arguments below can be extended in a
straightforward way to a general setting with more than two latent variable blocks, and to
non-discrete settings.

Let (D(0), θ(0)) denote the starting value for the ADDA chain, and assume that it is drawn
from the desired posterior πD,θ. Let (D(1), θ(1)) denote the next iterate generated by the
ADDA chain. Our goal is to show that (D(1), θ(1)) ∼ πD,θ. As we will see below, a key
assumption which enables this is the conditional independence assumption which implies
πD|θ(d̃ | θ̃) = πD1|θ(d̃1 | θ̃)πD2|θ(d̃2 | θ̃) (recall that d̃1 and d̃2 denote the two blocks of d̃).

Since θ(1) given D(1) is a draw from πθ|D, it follows that

P ((D(1), θ(1)) = (d̃, θ̃)) = P (θ(1) = θ̃ | D(1) = d̃)P (D(1) = d̃)

= πθ|D(θ̃ | d̃)P (D(1) = d̃).

Hence, to prove the desired result, it is enough to show that P (D(1) = d̃) = πD(d̃). Note
that

P (D(1) = d̃) =
∑
d′,θ′

P (D(1) = d̃ | (D(0), θ(0)) = (d′, θ′))πD,θ(d
′, θ′).

Let us recall how D(1) is sampled given (D(0), θ(0)) = (d′, θ′). With probability say c1(θ
′),

only the first latent variable block D(1)
1 is obtained using a draw from πD1|θ(· | θ′) and the

second block is left unchanged at d′2, and with probability c2(θ
′) = 1−c1(θ′), only the second

latent variable block D(1)
2 is obtained using πD2|θ(· | θ′) and the first block is left unchanged
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at d′1. It follows that

P (D(1) = d̃)

=
∑
d′,θ′

c1(θ
′)πD1|θ(d̃1 | θ′)1{d′2=d̃2}

πD,θ(d
′, θ′) +

∑
d′,θ′

c2(θ
′)πD2|θ(d̃2 | θ′)1{d′1=d̃1}

πD,θ(d
′, θ′)

Using πD,θ(d
′, θ′) = πD1|θ(d

′
1 | θ′)πD2|θ(d

′
2 | θ′)πθ(θ′) (by conditional independence of D1 and

D2 given θ), we get

P (D(1) = d̃)

=
∑
θ′

∑
d′1

∑
d′2

c1(θ
′)πD1|θ(d̃1 | θ′)1{d′2=d̃2}

πD1|θ(d
′
1 | θ′)πD2|θ(d

′
2 | θ′)πθ(θ′) +

∑
θ′

∑
d′1

∑
d′2

c2(θ
′)πD2|θ(d̃2 | θ′)1{d′1=d̃1}

πD1|θ(d
′
1 | θ′)πD2|θ(d

′
2 | θ′)πθ(θ′)

=
∑
θ′

c1(θ
′)πD1|θ(d̃1 | θ′)πθ(θ′)

∑
d′1

πD1|θ(d
′
1 | θ′)

∑
d′2

πD2|θ(d
′
2 | θ′)1{d′2=d̃2}

+

∑
θ′

c2(θ
′)πD2|θ(d̃2 | θ′)πθ(θ′)

∑
d′2

πD2|θ(d
′
2 | θ′)

∑
d′1

πD1|θ(d
′
1 | θ′)1{d′1=d̃1}


=

∑
θ′

c1(θ
′)πD1|θ(d̃1 | θ′)πθ(θ′)πD2|θ(d̃2 | θ′) +

∑
θ′

c2(θ
′)πD2|θ(d̃2 | θ′)πθ(θ′)πD1|θ(d̃1 | θ′)

=
∑
θ′

(c1(θ
′) + c2(θ

′))πD,θ(d̃, θ
′).

The last step again uses conditional independence ofD1 andD2 given θ. Since c1(θ
′)+c2(θ

′) =
1, it follows that

P (D(1) = d̃) =
∑
θ′

πD,θ(d̃, θ
′) = πD(d̃).

Note that the above argument considers the pure asynchronous ADDA (ε = 0). But the
ADDA kernel with positive ε is a mixture of the DA and pure asynchronous ADDA kernels,
so the result immediately follows for such settings as well. For a setting with more than
two blocks and a general value of r ∈ (0, 1), we will have J =

(
K

dKre

)
terms in the derivation

above instead of two terms. The jth term, with essentially the same manipulations as above,
will simplify to cj(θ

′)πD,θ(d̃, θ
′), where cj(θ

′) denotes the probability of choosing the relevant

subset of latent variable blocks. Since
∑J

j=1 cj(θ
′) = 1, the result will follow. �
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