STA 4321

Spring 2019

Quiz 4 (with solutions)

Full Name: \qquad
On my honor, I have neither given nor received unauthorized aid on this quiz

Signature: \qquad
This is a 10 minute quiz. There are 5 multiple choice problems, each having EXACTLY ONE correct answer. You may not use any books, other references, or text-capable electronic devices.

1. Let X be the number of heads obtained in 40 independent tosses of a fair coin. Then X is a Binomial random variable with
(a) $n=40, p=0$.
(b) $n=0.5, p=40$.
(c) $n=40, p=0.5$.
(d) $n=100, p=0$.

Correct answer (c): $n=$ Number of repetitions $=40, p=$ probability of success in a single repetition $=0.5$.
2. An experiment consists of repeatedly and independently tossing a fair die until a six is obtained. Let X denote the number of throws before obtaining a six. Then
(a) $E[X]=5$.
(b) $E[X]=\frac{1}{6}$.
(c) $E[X]=1$.
(d) $E[X]=6$.

Correct answer (a): X is Geometric $\left(\frac{1}{6}\right)$. Hence, $E[X]=\frac{1-1 / 6}{1 / 6}=5$.
3. What is the range of a Geometric random variable?
(a) All integers.
(b) All positive integers.
(c) All non-negative integers.
(d) All negative integers.

Correct answer (c): Non-negative integers include 0, positive integers do not.
4. A large collection of tires has 3% defective tires. Suppose one chooses tires from this collection until he/she obtains 4 non-defective tires. Then the total number of defective tires drawn in this process has a Negative Binomial distribution with
(a) $r=3, p=0.04$.
(b) $r=4, p=0.97$.
(c) $r=3, p=0.97$.
(d) $r=4, p=0.03$.

Correct answer (b): $r=$ Total number of successes $=4, p=$ Probability of success $=1-0.03=0.97$.
5. A Negative $\operatorname{Binomial}(r, p)$ random variable can be expressed as a sum of $r \operatorname{Geometric}(p)$ random variables. This statement is
(a) True.
(b) False.

Correct answer (a) (see lecture notes).

